
Citation: Cai, X.; Cheng, P.; Liu, S.;

Zhang, H.; Sun, H. Human Motion

Prediction Based on a Multi-Scale

Hypergraph for Intangible Cultural

Heritage Dance Videos. Electronics

2023, 12, 4830. https://doi.org/

10.3390/electronics12234830

Academic Editor: Hyunjin Park

Received: 25 October 2023

Revised: 24 November 2023

Accepted: 27 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Human Motion Prediction Based on a Multi-Scale Hypergraph
for Intangible Cultural Heritage Dance Videos
Xingquan Cai , Pengyan Cheng , Shike Liu , Haoyu Zhang * and Haiyan Sun

School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
caixingquan@ncut.edu.cn (X.C.); chengpengyan@mail.ncut.edu.cn (P.C.); shikeliu@mail.ncut.edu.cn (S.L.);
sunhaiyan@ncut.edu.cn (H.S.)
* Correspondence: zhanghaoyu@mail.ncut.edu.cn; Tel.: +86-15216262561

Abstract: Compared to traditional dance, intangible cultural heritage dance often involves the
isotropic extension of choreographic actions, utilizing both upper and lower limbs. This characteristic
choreography style makes the remote joints lack interaction, consequently reducing accuracy in
existing human motion prediction methods. Therefore, we propose a human motion prediction
method based on the multi-scale hypergraph convolutional network of the intangible cultural heritage
dance video. Firstly, this method inputs the 3D human posture sequence from intangible cultural
heritage dance videos. The hypergraph is designed according to the synergistic relationship of
the human joints in the intangible cultural heritage dance video, which is used to represent the
spatial correlation of the 3D human posture. Then, a multi-scale hypergraph convolutional network
is constructed, utilizing multi-scale transformation operators to segment the human skeleton into
different scales. This network adopts a graph structure to represent the 3D human posture at
different scales, which is then used by the single-scalar fusion operator to spatial features in the 3D
human posture sequence are extracted by fusing the feature information of the hypergraph and the
multi-scale graph. Finally, the Temporal Graph Transformer network is introduced to capture the
temporal dependence among adjacent frames within the time domain. This facilitates the extraction
of temporal features from the 3D human posture sequence, ultimately enabling the prediction of
future 3D human posture sequences. Experiments show that we achieve the best performance in both
short-term and long-term human motion prediction when compared to Motion-Mixer and Motion-
Attention algorithms on Human3.6M and 3DPW datasets. In addition, ablation experiments show
that our method can predict more precise 3D human pose sequences, even in the presence of isotropic
extensions of upper and lower limbs in intangible cultural heritage dance videos. This approach
effectively addresses the issue of missing segments in intangible cultural heritage dance videos.

Keywords: human motion prediction; hypergraph; multi-scale hypergraph convolutional network;
transformer

1. Introduction

Intangible cultural heritage dances are produced in the process of labor and daily life
entertainment within communities, inheriting and developing the original dances of various
nationalities. Their artistic expressions and cultural significance are deeply influenced by
the local regional environment, national culture, historical context, and customs, which
are reflected in various dance movements, costumes, and props [1]. However, due to the
deficiency of video documentation, primarily attributable to the limitations of early video
recording equipment, these intangible cultural heritage dances are facing the risk of being
lost [2]. Therefore, there is an urgent need to safeguard and preserve the cultural heritage
of intangible cultural heritage dances.

In recent years, with the development of deep learning, 3D skeleton-based human
motion prediction methods have been used to predict future pose sequences from observed
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motion sequences, which are applied in various domains, including autonomous driving [3],
health care [4], and pedestrian tracking [5]. Motion prediction can be broadly classified
into two categories: short-term prediction and long-term prediction. Short-term prediction
involves estimating motion shortly based on the current motion, while long-term prediction
predicts motion in subsequent moments based on repeated iterations of the predicted
motion segments [6]. Modern dance styles such as jazz and urban are characterized by
repetition and symmetry in dance movement choreography, such as repeating the same
movement within an eight-beat period, with the same hand and foot movements executed
on both sides but in opposite directions. However, in intangible cultural heritage dances
such as Miao dance and Wa dance [1], the choreography of movements often extends in the
same direction for both upper and lower limbs, as shown in Figure 1a,b. This choreographic
feature causes the lack of interaction of distant joints (e.g., the connection from the right
hand to the right foot), leading to the problem of low accuracy of the prediction results.
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Figure 1. Schematic diagram of upper and lower limb isotropic extension of intangible cultural
heritage dance.

To address the above problems, existing methods [7–9] focus on constructing graph
convolution networks to represent the spatial correlations between human joint points.
However, these graph convolution-based approaches only consider physical constraints
of the body (e.g., the display of joint angles) [10], and lack the modeling of interactions
across jointed limb segments. Therefore, we propose to use hypergraphs to represent the
interactions among human joint points.

Therefore, we propose a human motion prediction method based on a multi-scale
hypergraph convolutional network for intangible cultural heritage dance videos. Addition-
ally, we design an array of joint point hypergraphs for the interactions among different
joint points of performer’s intangible cultural heritage dances (as illustrated in Figure 1c).
A multi-scale hypergraph convolutional network is constructed to extract spatial features
of the 3D gesture sequences. Subsequently, the Temporal Graph Transformer module is
introduced to extract the temporal information within the action sequences. Ultimately,
this method outputs the predicted 3D human joint point coordinates.

We evaluate our model on the publicly available large-scale 3D human pose estimation
datasets Human 3.6M [11] and 3DPW [12] and on a small homemade non-legacy dance
movement dataset. Our approach achieves superior performance compared to several
representative 3D human pose estimation methods and is effective in overcoming the
problem of low accuracy in motion prediction due to the lack of long-range joint point in-
teractions in dance movements. In addition, we conducted ablation studies to demonstrate
that multi-scale hypergraphs can better focus on the long-distance interactions between
multiple joint points.
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In summary, our main contributions are listed as follows:

(1) We design joint point hypergraphs for representing 3D human gesture sequence
spatial information for intangible cultural heritage dance videos’ joint point interaction
information.

(2) A multi-scale hypergraph convolutional network is constructed for the joint hy-
pergraph, which extracts the spatial features of the 3D human posture sequence
represented by the multi-scale hypergraph.

(3) A Temporal Graph Transformer is introduced for the multi-scale hypergraph convolu-
tional network, to extract the temporal features among 3D human posture sequences.

2. Related Work
2.1. Motion Prediction

Motion prediction is the inference of human motion from temporally incomplete video
data [6]. 3D human motion prediction [13] using RNNs has been extensively studied in the
past few years. In 2015, Fragkiadaki et al. [14] proposed a recursive encoder–decoder model
that introduces a non-linear network of encoders and decoders to enable the integration
of representation learning and dynamic learning in the space and time domain. In 2017,
Martinez et al. [7] introduced a recursive encoder–decoder model with the RNN units
by adding residual connections. With the development of convolutional networks, they
gained significant achievements in hierarchical structure and capturing spatio-temporal
correlation. In 2018, Li et al. [15] proposed a hierarchical structure containing convolutional
long-term encoders and decoders, efficiently capturing spatial and temporal correlation.
In 2021, Sodianos et al. [8] proposed a spatio-temporally separable convolutional network
to solve the temporal and spatial interaction complexity prediction. Dang et al. [10]
proposed a multi-scale residual graph network with descending and ascending GCNs to
extract features in a fine-to-coarse manner. In 2022, A. Bouazizi et al. [9] used a multilayer
perceptron (MLP) architecture alone to perform short-term and long-term human motion
prediction with good performance.

2.2. Hypergraph

Meanwhile, hypergraph learning [16] has also achieved good performance in many
applications. In 2005, S. Agarwal et al. [17] used group averaging to transform hypergraphs
into simple graphs, applying hypergraphs for clustering. In 2009, Tian et al. [18] proposed
a semi-supervised learning method, HyperPrior, to classify gene expression data by using
biological knowledge as a constraint for classification. In 2010, Bu et al. [19] developed
music recommendations by modeling the relationship of different entities including music,
tags, and users through the hypergraph.

Since graph-structured neural networks can only focus on the connection structure
between neighboring nodes, they fail to capture the interaction relationship of distant joints.
For skeleton-based motion prediction tasks, where actions usually need to be coordinated
across multiple joints, previous studies have used graph convolution methods that only
consider the physical connections between joints, but ignore the unique characteristics of
the three-dimensional skeleton, where each type of body joint has its own unique physical
function. Therefore, in order to better represent the interactions between different joint
groups (as illustrated in Figure 1c), we designed the hypergraph structure to divide the
human joints into different groups, which can better extract the features of the joint groups.
In fact, for the movements in the intangible cultural heritage dance video, it is necessary
to consider not only the connection relationship between adjacency joints but also the
interaction relationship between distant joints (e.g., in the intangible cultural heritage
dance movement, the left arm and the left leg extended in the same direction). Therefore,
this paper proposes a human motion prediction method for intangible cultural heritage
dance videos based on convolutional networks with multi-scale hypergraphs. Compared
to traditional graph-structured neural networks, the convolutional network based on the
multi-scale hypergraph can extract rich spatial features of 3D joint points and can capture
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rich multi-scale relationships to extract action dependencies between neighboring frames
for motion prediction.

2.3. Multi-Scale Convolutional Networks

Graph Convolutional Networks can convolve irregularly structured data like 3D
human skeleton compared to traditional CNNs. Meanwhile, in order to synthesize the
3D human skeleton information at different scales, multi-scale graph convolutional neural
network is proposed to solve this problem. For example, Li et al. [20] used multi-scale
multistreaming GCN to obtain more discriminating temporal features. Fan et al. [21]
selectively fused different scale features. Li et al. [22] generated the next scale by removing
some joints in the middle position. Dang et al. [10] performed scale generation by selecting
the middle of these sites. However, the above methods are mainly suitable for classification
tasks due to their simplicity and focus on information extraction only.

2.4. Transformer Network

Human motion prediction needs to consider not only the spatial correlation of the
human skeleton in each frame but also the temporal continuity of the action in the time
domain. Early prediction methods LSTM [23] extract temporal information by extracting
sequential time cues between frames, and Seq2Seq [15] obtains motion prediction results
by constructing encoder and decoder architectures that are jointly trained based on the
loss of previous sampling. However, the two approaches mentioned above lack the un-
derstanding of extended temporal information. In 2017, Vaswani et al. [24] applied the
self-attention mechanism to a wide range of applications in the field of NLP. Inspired by
the other of this application, many explored its application in the field of human motion
prediction. In 2021, Cheng et al. [25] designed Motion-Transformer to capture temporal
dependence by pre-training on self-detection of human actions. Lin et al. [26] proposed a
novel Transformer for cross-attention, which can capture temporal dependence within an
image block by alternately applying attention within and between image blocks to build
an efficient hierarchical network. In 2020, Wu et al. [27] learned complex patterns and
dynamics of time series data through a self-attention mechanism, which can be applied to
unused types of time series data. Therefore, we consider using the Transformer model [28]
to accomplish the extraction of time-series features in more complex human movement
prediction problems.

In the current landscape, the preservation and inheritance of intangible cultural her-
itage dances face a significant challenge due to the acute shortage of skilled individuals. As
a result, some of these dance forms have remained unpassed, with only a few early recorded
performance videos exist. Unfortunately, the limitations of the early video equipment and
the suboptimal methods for image preservation have led to the situation that there are
missing dance segments in the video transitions and narration, among other segments [1].
Therefore, utilizing the method of 3D human posture estimation to obtain the 3D human
key points from the video [29], and predicting the missing part of the action frames in the
video based on the obtained coordinates of the joints, can assist with the inheritance and
preservation of the intangible cultural heritage dance videos.

Therefore, based on the above analysis, we propose a human motion prediction
method based on a multi-scale hypergraph convolutional network for intangible cultural
heritage dance videos. We first design the hypergraph based on the body joints, then
construct a multi-scale hypergraph convolutional network to extract the spatial feature
information of the 3D human joint sequences, and then extract the temporal feature infor-
mation in the 3D human joint sequences by constructing a Temporal Graph Transformer
network, and then ultimately output the 3D human joint sequences obtained by prediction.

3. The Proposed Method

Aiming at the current 3D human motion prediction methods for intangible cultural
heritage dance videos, particularly the challenges posed by the extended choreography
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style involving isotropic extensions of the upper and lower limbs, which often results in
significant motion prediction errors, our paper proposes a novel human motion prediction
method based on the hypergraph multi-scale fusion convolutional network for intangible
cultural heritage dance videos.

At the stage where video data are obtained from the 3D skeleton information, there
exist two types of 3D human pose estimation methods: single-stage methods [30] and two-
stage methods [31]. Since two-stage methods can further benefit from 2D pose information
and large-scale 2DHPE (human pose estimation) datasets [32], generally exhibit better
performance [29]. For example, the multi-hypothesis transformer (MHFomer) model [33]
in the two-stage approach can extract accurate 3D human pose sequences, even in complex
environmental settings. As shown in Figure 2, the specific operational steps of our proposed
human motion prediction method, grounded in the hypergraph multi-scale fusion convo-
lutional network for non-legacy videos are as follows: First and foremost, we initiate the
process by inputting the folk-dance video. Subsequently, we use the multiple hypothesis
transformer (MHFomer) algorithm to obtain the 3D human posture sequence. Next, to
harness the spatial correlations within the 3D human joints more effectively, we design a set
of multi-scale joint hypergraphs. These hypergraphs are instrumental in facilitating a more
comprehensive understanding of the connections among joints. Then, a multi-scale convo-
lutional network is constructed to fuse the spatial features at different scales to better deal
with the problem under the upper and lower limbs in the same direction extension chore-
ography mode. Finally, the Temporal Graph Transformer model is introduced to extract
temporal features from the resultant feature graph sequence. This extracted information is
then utilized to predict the future coordinate sequence of the 3D joint points.
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3.1. Joint Hypergraphs Generation

The traditional graph structure builds a spatial graph based on body joints in each
frame [10,34]. However, this modeling approach only considers the physical constraints
between body joints. This makes it difficult to effectively capture the connections across
joints, thereby failing to provide an accurate depiction of the overarching relationships
within the human skeleton and interactions among distant joints. Therefore, we propose a
method to design a hypergraph based on human joints to model the connectivity between
nodes in the hypergraph. This method can better capture the spatial correlation between
multiple joints. Moreover, the use of hypergraphs can fully consider the connectivity
relationships between different joints and the interaction relationships at a distance.
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The multi-scale node hypergraph expresses the spatial information among joint points.
Since the intangible cultural heritage dance movements need to be accomplished by inter-
action and collaboration among multiple joint points, our designs the hypergraph structure
with 3D human joint points as graph nodes, and the hypergraph structure takes the human
joint points as vertices, and connects them with hyperedges according to the interaction rela-
tionship among different joint points, to construct the hypergraph Gspa =

(
Vspa, εspa, Wspa

)
as shown in Figure 3.
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Where Vspa denotes the vertex set Vspa = {vn|n = 1, . . . N} of the hypergraph, it
represents the number of human joints, and 17 joints are used in this paper for 3D joint
coordinate prediction. εspa denotes the set of joint-space hyperedges, and Wspa denotes the
weight of each hyperedge in the set of joint-space hyperedges.

The construction of the hypergraph is divided into four steps. Initially, the process
entails defining the initial spatial correlation matrix. Subsequently, we calculate the number
of hyper-edges of the joints. Furthermore, we calculate the count of joints contained within
these hyper-edges. Finally, we generate the spatially regularized hypergraph Laplace
matrix. The specific steps are as follows:

Step 1. Define the initial spatial association matrix. Define the association matrix Hspa
with initial size |v|×|ε| as shown in Equation (1).

Hspa(v, e) =
{

1, i f v ∈ e
0, i f v /∈ e

(1)

where v ∈ Vspa and e ∈ εspa.
Step 2. Calculate the number of hyperedges at the joints. Based on the association

matrix Hspa, the degree of the node v ∈ Vspa is computed to represent the number of
hyperedges containing that joint, as shown in Equation (2).

d(v) = ∑
e∈εspa

Wspa(e)Hspa(v, e) (2)

Step 3. Calculate the number of joints contained in the hyperedge. The degree of the
computed hyperedge e ∈ εspa indicates the number of joints contained in that hyperedge,
and the computation process is shown in Equation (3).
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δ(e) = ∑
v∈Vspa

Hspa(v, e) (3)

Step 4. Generate a spatially regularized hypergraph Laplace matrix. To utilize the
high-order joints interaction information in the hypergraph for feature extraction, the
hypergraph Laplacian matrix Gspa is generated based on the association matrix Hspa, which
is calculated as shown in Equation (4).

Gspa = D−1/2
v HspaWspaD−1

e (Hspa)
T D−1/2

vt (4)

where Dv and De denote the diagonal matrices of vertex degree d(v) and hyperedge
degree δ(e) in the hypergraph. Respectively, based on the above steps, a hypergraph
Gspa =

(
Vspa, εspa, Wspa

)
with 3D joints as graph nodes is constructed to represent the

non-physical dependencies of multiple 3D joints in the spatial domain.

3.2. Multi-Scale Hypergraph Convolution Module Construction

The human skeleton can be scaled to different scales according to limb segments (e.g.,
legs, torso), we establish three scales for representing the human skeleton, namely, torso
scale, limb scale, and joint scale. Therefore, we propose a multi-scale architecture that
effectively utilizes the skeleton information at different scales for feature extraction. Using a
multi-scale hypergraph convolution module, we construct a multi-scale hypergraph module
to extract spatial information from different scales based on the designed joint hypergraph.

The steps of constructing the multi-scale hypergraph convolution network are divided
into three steps: Firstly, the multi-scale segmentation operator is constructed. Then, the
single-scale graph convolution and hypergraph convolution modules are constructed for
the spatial information extraction at each scale. Finally, the single-scale hypergraph fusion
operator is designed to fuse the information from different scales.

3.2.1. Constructing Multi-Scale Segmentation Operator Construction

In contrast to previous approaches [35], which categorize joints based on joints alone
to obtain multi-scale maps, our method categorizes human joints into three scales based
on human skeleton relationships. These scales include the torso, limb, and joint scales.
The torso scale focuses on the global information of the human skeleton, the limb scale
focuses on the overall connections among limb segments, and the joint scale focuses on the
connectivity among joint points. In our paper, we construct a multi-scale spatial map, as
shown in Figure 4. Specifically, the joint scale contains 17 joints, while the limb scale and
torso scale each consist of 11 and 5 joint points, respectively.

The human skeleton map contains rich connectivity among joints, and by aggregating
multiple connected joints in proximity, different-scale skeleton maps representing global
information can be obtained.

Maximum pooling is used in a general approach to classify different scales of skeleton
maps [35], and maximum pooling selects joints that contain the most information among
the neighboring connected joints as the representative to obtain the torso scale map that
contains global information. However, maximum pooling tends to ignore the joints with
less information. Therefore, we use average pooling to aggregate the information between
adjacent connected joints. Compared to maximum pooling, average pooling can focus on
the information in each joint point, making the limb-scale and torso-scale skeleton maps
more complete global information.
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Constructing the multi-scale segmentation operator is specifically divided into two
steps. Initially, we define the spatial map convolution. Then, design the scale transformation
operator for scaling purposes. The specific steps are as follows:

Step 1. Calculate spatial graph convolution.
We represent the human skeleton joints as a spatial graph, where the joints are used as

graph nodes and the neighboring connections among the nodes are used as the edges of
the graph, defining g = (z, e), where z = v× t, g ∈ RV×V×t is the human skeleton graph
containing v joints in t frames, and we define the adjacency matrix gk(i, j) as shown in
Equation (5).

gk(i,j) =

{
1 i f d(i, j) = k
0 otherwise

(5)

where k is the path between node i and node j. To solve the problem of too little informa-
tion, we superimpose the neighbor matrix gk(i,j) obtained from different values of k. The
calculation process is shown in Equation (6).

g =
K

∑
k=0

gk (6)

Meanwhile, considering the spatio-temporal graph g = S ⊗ T ∈ R(TV)×(TV) as a
single-scale down graph information, we set X ∈ RT×V×D as the motion tensor, and based
on the decomposability assumption, a spatial graph convolution is defined, as shown in
Equation (7).

X′ =V∗T(U∗SX) (7)

where ∗S denotes the spatial graph convolution for decomposition and U and V denote
the graph filters. Equation (7) indicates that the spatio-temporal convolution map can
be decomposed into a spatial and temporal graph convolution. Based on Equation (7),
the spatial convolution processes each data frame individually, and works as shown in
Equation (8) for the tth timestamped segment in X.

(U∗SX)[t,:,:] =
L

∑
`=0

S`X[t,:,:]U` ∈ RV×D′ (8)
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where U ∈ RL×D×D′ , the `th fragment U` ∈ RV×D′ is the trainable weight matrix corre-
sponding to the `th order. Obtained after the above process is the spatial feature X obtained
by the spatial convolution operator.

Step 2. Scale conversion operator.
In order to convert the obtained joint-scale spatial graph into any set scale, we proposes

a trainable average pooling operator, let X ∈ RT×V×d be the spatial data at the joint scale,
S0 be the spatial graph adjacency matrix, and at the rth spatial scale, the spatial pooling
operator ψ0→r ∈ [0, 1]V×Vr is expressed as shown in Equation (9).

ψ0→r = σ
(
S0
[
ReLU

(
U∗S0 X)13W0→r

])
(9)

where U∗S0 can be obtained from the above equation, [·]13 : RT×V×d → RV×(dT) denotes the
conversion of features from temporal dimension to spatial dimension. W0→r ∈ R(dT)×Mr

is the trainable weights, σ(·) is the softmax operation performed on each dimension.(
ψ0→r)i,j denotes the assignment of the ith joint of the joint scale to the jth group of the

rth spatial scale. The original image features and spatial map adjacency matrix can be
converted to any r spatial scale by the scale conversion operator obtained above, as shown
in Equations (10) and (11).

X[t,:,:]
r = ψT

0→rX[t,:,:] (10)

Sr = ψT
0→rS0ψ0→r (11)

After the above steps, the spatial features of the body parts in the rth scale can be
obtained by fusing the features of the plurality of body joints by Equation (14). A new
connectivity spatial matrix diagram for the rth scale of the coarsened scale can be obtained
by Equation (15). for representing the physical connections of the multi-joint set at the
rth scale.

3.2.2. Single-Scale Graph Convolution and the Hypergraph Convolution
Module Construction

To fully extract the spatial features of the 3D human skeleton at each scale, we propose
a single-scale graph convolution module. Its structure is shown in Figure 5.
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Figure 5. Schematic diagram of the single-scale graph convolution module.

We use the limb scale in it as an example, where the trainable neighbor matrix in the
single-scale graph convolution is ASr ∈ RVr×Vr. Vr is the number of limb scales, and all the
joints of this matrix are connected to each other, which need to be obtained by training.
During the training process, the weights between each neighboring joint point in ASr are
adaptively adjusted, which is calculated as shown in Equation (12).

XS,SP = ReLU
(
convja(ASrSrWS + SrUS)

)
∈ RVr×V′r (12)
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where Sr ∈ RVr×DX is the spatial matrix represented by the input graph and WS,
US ∈ RVj×Vj is the trainable parameter matrix, after which spatial features are extracted
from the limb scale. Then, the obtained spatial feature matrix XS,SP is input into two
parallel convolutional layers with convolutional kernel size 1 to obtain the intermediate
features, and then the two sets of intermediate features are multiplied together to output
the adjacency matrix, which is computed as shown in Equation (13).

Aja = conv1(Xj)
T · conv2(Xj) ∈ RN×Vj×Vj (13)

where N is the batch size. Similarly, we designed the Single-Scale hypergraph convolution
module. During the training process, its computation is shown in Equation (14).

XS,SP = ReLU
(
convja

(
HspaXSWS

))
∈ RV×D′X (14)

where Hspa is the association matrix of the hypergraph, XS ∈ RV×DX is the matrix repre-
sented by the input hypergraph, and WS ∈ RDX×D′X is the trainable parameter matrix after
which spatial features are extracted from the limb scale. After the above steps, the spatial
feature matrix XSP in r scale can be obtained.

We compare the difference between Equations (12) and (14), where the trainable matrix
WS in Equation (14) yields richer information about crotch-joint interactions, due to the fact
that when we designed the hypergraph structure, the Laplace matrix of the hypergraph
(shown in Equation (4)) is more biased towards focusing on interactions between remote
joint points.

3.2.3. Single-Scale Hypergraph Fusion Operator Construction

The torso-scale features, limb-scale features obtained by graph convolution processing,
and joint-scale features obtained by single-scale hypergraph convolution processing are
fused, and we design a trainable fusion parameter for automatically adjusting the fusion
operator, which is shown in Equations (15) and (16).

X+
2 = αW32X3 + (1− α)X2 (15)

X+ = αW21X+
2 + (1− α)X1 (16)

where Xi denotes a feature of order i, Wij denotes a weight matrix of the up-adopted
features from order i to order j, α is a fusion coefficient, and + represents a fusion feature.
After the above steps, by constructing a multi-scale hypergraph convolution module, the
3D human body pose represented by the multi-scale hypergraph is subjected to feature
extraction, and 3D joint point spatial features of dimension X ∈ RV×DX are obtained.

3.3. Temporal Graph Transformer to Extract Spatio-Temporal Features Introduction

Through the utilization of a multi-scale hypergraph convolutional network, the
method can extract spatial features from the 3D human skeleton, employing a multi-
scale hypergraph representation. However, human motion prediction needs to consider
not only the spatial correlation of the human skeleton for each frame but also the temporal
coherence across actions in the time domain.

Compared with general time series methods (e.g., LSTM [23] and seq2seq [15]), the
Transformer [28] model can learn complex dependencies with different temporal sequence
lengths. In the human motion prediction task, there is a strong continuity of actions between
the frames of human gesture sequences, so we propose the Temporal Graph Transformer
method for extracting temporal features of human motion. The method consists of four
core components, which are position coding, Multihead Self Attention (MHA) module,
Temporal Feature Interaction (TFI) module, and Multilayer Perceptron (MLP) module. The
structure of the Temporal Graph Transformer is shown in Figure 6.
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(1) Position coding
In order to preserve the positional information of human skeletal joints, we introduces

positional encoding ESPos1 ∈ R(J·2)×V , which is used to distinguish different history frames.
Since the position of the key points of each frame in the input sequence is fixed, we choose
the local timestamp method to encode the position of the data. We let t be the desired
position in the input frame. The calculation process is shown in Equation (17).

ESPosi =

{
sin(pos/(1000)2k/d) i f i = 2k,
cos(pos/(1000)2k/d) i f i = 2k + 1,

(17)

where k takes the value of {0, 1, . . . , d/2− 1}, d is the number of feature channels of the
input fusion feature X, and t is the desired position in the input frame.

(2) The MHA module
In the MHA module, the input multi-scale hypergraph features, XT ∈ Rn×d are

mapped to the vectors Queries Q ∈ Rn×d, Keys K ∈ Rn×d and Values V ∈ Rn×d through
three different weight matrices as shown in Equation (18).

QT , KT , VT = X̂TWT
q , X̂TWT

k , X̂TWT
v (18)

where Wq, Wk, and Wv are learnable weights. A dot product is performed for each query
Q and key value K to measure the degree of association between the query and the key.
Then, in order to control the computational scale of the dot product, a scaling operation
is performed, dividing by the dimension

√
d of the vector k. Finally, the temporal feature

information of the 3D pose is obtained by transforming it into attention weights and
multiplying it with VT through softmax. The calculation process is shown in Equation (19).

MT = softmax(QT(KT)T/
√

dT
A)V

T (19)

where
√

d is the scaling factor.
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(3) The TFI module
In order to explore the connection among potential features, a shared three-layer

feed-forward neural network model is designed. Its computational procedure is shown in
Equation (20).

UT = ReLU(BN(ReLU(M̂′TWT
0 ))W

T
1 )W

T
2 (20)

Meanwhile, in order to solve the problems of gradient vanishing and gradient explo-
sion in neural network training, we use residual connection M′T = MT + XT for training.

(4) The MLP module
After the MHA module and the TFI module, the feature information is transformed

using the MLP module. The MLP module contains two linear layers, the ReLU activa-
tion function, and the batch normalization layer. The calculation process is shown in
Equations (21)–(23).

Z = W1·X + b1 (21)

Â = BN(ReLU(Z)) (22)

Z2 = W2·Â + b2 (23)

where W1 and W2 denote the weights of the two linear layers, respectively, and b1 and
b2 are the two bias terms. Following the steps above, the outcome is the extraction of
spatiotemporal features from the input 3D skeleton sequence, enabling the prediction of
the 3D human skeleton sequence for a future period.

4. Experimental Verification and Analysis

To verify the feasibility and effectiveness of the method in this paper, a human motion
prediction method based on a multi-scale hypergraphic convolutional network for non-
legacy dance videos is designed and implemented. For the experimental validation, the
computer hardware environment used is Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz,
64GB RAM, and NVIDIA Quadro RTX 6000 graphics card; the software environment is
Windows 10 operating system; and the runtime environments are Python3.8, PyTorch1.7.1
and Pycharm2022.2.1.

4.1. Datasets and Evaluation Indicators

In this paper, the method is evaluated on the Human3.6M [11] dataset, which is more
popular in 3D human motion prediction. The Human3.6M dataset is widely used for
human motion prediction. He consists of 3.6 million 3D human pose images with 32 joints
per 3D pose. 7 professional subjects are performing 15 different daily actions (e.g., walking,
eating, talking on the phone). We follow previous paradigms [7,8,15] and construct five
of the subjects (S1, S5, S6, S7, S8) as the training dataset and two subjects (S9, S11) as the
test dataset.

Meanwhile, the method in this paper is evaluated for generalization performance
on the 3DPW dataset, which is more prevalent in the field of motion prediction. The 3D
Pose in the Wild dataset (3DPW) [12] is a large-scale dataset consisting of video sequences
acquired by a moving cell phone camera, containing more than 51k frames of 3D poses
for challenging indoor and outdoor activities. challenging indoor and outdoor activities.
We use the training, testing, and validation separation suggested by the official setup. The
frame rate of the 3D poses is 30 Hz.

In addition, this paper has curated a small-scale dataset of intangible cultural heritage
dance movements to facilitate a more effective exploration of the motion characteristics
within intangible cultural heritage dance videos. We engaged the expertise of a master in
intangible cultural heritage dance as our subject. We employed the NOKOV optical motion
capture system to collect a dataset of their intangible cultural heritage dance movements.
The capture duration for each dance segment was set at 20 s, with a frame rate of 120 frames
per second, covering an approximate area of 1 m × 1 m. This intangible cultural heritage
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dance dataset, developed within this paper’s context, comprises 12,000 images, representing
five distinct intangible cultural heritage dance forms.

This paper uses MPJPE (Mean Per Joint Position Error) as the evaluation index. By
calculating the average error between the predicted joint coordinates and the real joint
coordinates to the ground distance after heel joint alignment, the MPJPE calculation process
is shown in Equation (24).

LMPJPE =
1

V(T + K)

T+K

∑
k=1

V

∑
v=1
||X̂vk − Xvk||2 (24)

where Xvk denotes the predicted 3D joint point coordinates of joint v in frame k, and
Xvk ∈ R3 is the corresponding true 3D joint point coordinates. |·||2 denotes the `2 paradigm.
For the angle-based representation, the loss function between the predicted joint angles
and the real situation is calculated as shown in the formula (25).

Lpred =
1

J × Tf

J

∑
j=1

Th+Tf

∑
t=Th+1

||X̂t,j − Xt,j||2 (25)

where X̂t,j denotes the predicted angle of the joint j at frame t and Xt,j is the corresponding
true joint angle.

4.2. Comparative Experiments on 3D Motion Prediction

To verify the feasibility and effectiveness of the human motion prediction method
based on a multi-scale hypergraph convolutional network for intangible cultural heritage
dance videos proposed in this paper, a 3D motion prediction comparison experiment is
designed. The deep learning framework Pytorch is used in the experiment to construct
the multi-scale hypergraph convolutional network model. The initial learning rate of the
model is set to 0.001, and after the 20th epoch, it is reduced by a factor of 0.1 for every
5 epochs. batch size is 256. this paper compares it with the existing algorithms on the
Human3.6M dataset. The experimental results are shown in Tables 1 and 2.

We quantitatively evaluate our proposed model for current state-of-the-art short-term
(<500 ms) and long-term (>500 ms) predictions.

Table 1. Performance comparison between different methods for short-term prediction (400 ms) of
MPJPE (mm) for each activity on the Human3.6M dataset.

Motion Res.Sup [7] convSeq2Seq [15] LTD-10-25 [13] MotionMixer [9] STSGCN [8] SPGSN [36] Ours

Walking 66.1 63.6 44.4 42.4 45.9 41.5 38.4
Eating 61.7 48.4 38.6 36.1 45.0 38.0 35.8

Smoking 65.4 48.9 39.5 36.8 44.7 34.6 36.0
Discussion 91.3 77.6 68.1 64.1 68.5 67.1 63.9
Direction 84.1 69.7 58.0 53.4 53.2 50.3 53.5
Greeting 108.8 96.0 82.6 82.2 87.6 86.4 76.3
Phoning 76.4 59.9 50.8 51.1 52.0 48.5 48.2
Waiting 87.7 69.7 44.4 56.4 59.2 54.1 53.5

WalkingDog 110.6 103.3 38.6 87.8 93.3 84.9 87.0
WalkingToge 67.3 61.2 39.5 43.5 43.9 40.9 38.5

Posing 114.3 92.9 79.9 79.5 73.1 76.5 68.8
Purchases 100.7 89.9 78.1 76.1 79.6 74.4 73.7

Sitting 91.2 63.1 58.3 54.5 57.8 53.4 54.8
Sitting down 112.0 82.7 76.4 74.5 76.8 70.7 73.7
Taking photo 87.6 63.6 54.3 51.6 56.3 52.7 50.1

Average 88.3 72.7 68.1 59.3 62.9 58.3 56.8
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Table 2. Performance comparison between different methods for long-term prediction (1000 ms) of
MPJPE (mm) for each activity on the Human3.6M dataset.

Motion Res.Sup [7] convSeq2Seq [15] LTD-10-25 [13] MotionMixer [9] STSGCN [8] SPGSN [36] Ours

Walking 79.1 82.3 60.9 59.9 66.7 53.6 55.2
Eating 98.0 87.1 75.8 76.6 75.1 73.4 73.1

Smoking 102.1 81.7 72.1 68.5 74.1 68.6 70.2
Discussion 131.8 129.3 118.5 117.4 107.7 118.6 117.1
Direction 129.1 115.8 105.5 105.4 109.9 100.5 105.2
Greeting 153.9 147.3 136.8 136.5 103.8 143.2 136.7
Phoning 126.4 114.0 105.1 104.4 109.9 102.5 103.2
Waiting 135.4 117.7 108.3 107.7 118.3 103.6 103.8

WalkingDog 164.5 162.4 146.4 142.2 118.3 138.0 145.5
WalkingToge 98.2 87.4 65.7 65.4 95.8 60.9 61.8

Posing 183.2 187.4 174.8 174.9 107.6 165.4 168.4
Purchases 154.0 151.5 134.9 135.1 119.3 133.9 132.6

Sitting 152.6 120.7 118.7 115.7 119.8 116.2 114.7
SittingDown 187.4 150.3 143.8 141.1 129.7 149.9 141.5
TakingPhoto 153.9 128.1 115.9 114.6 119.8 118.2 111.9

Average 136.6 124.2 112.4 111.0 113.3 109.6 109.4

As can be seen from Tables 1 and 2, the short-term and long-term prediction per-
formance of this paper’s method in estimating average frames for each activity on the
Human3.6M dataset outperforms previous methods. In particular, the error of this method
in short-term prediction of MPJPE for various types of action behaviors on the Human3.6M
dataset is reduced by 11.3 mm and 2.5 mm compared to the existing LTD-10-25 [13] and
MotionMixer [9] methods. The error of long-term prediction of MPJPE for various types of
action behaviors on the Human3.6M dataset is reduced by 11.3 mm and 2.5 mm compared
to the existing LTD-10-25 and MotionMixer methods were reduced by 3 mm and 0.6 mm.

As can be seen from Table 3, the performance of this paper’s method in short-term
prediction and long-term prediction in the estimation of the average frames of each activity
on the 3DPW dataset is better than the previous methods. Comparing with the existing
MLP-based motion prediction method Motion-Attention [9] and Transformer-based method
AuxFomer [36], the reductions are 4.2 mm and 18.3 mm in short-term prediction and 3.5 mm
and 39.2 mm in long-term prediction, respectively. In order to show the detailed information
in the IHC dance videos more clearly, we pre-processed the input dance videos, retained
the first 15s of the videos for input into the model, and compared the output with the
intercepted videos (Truth). We visualized the sequence of individual joint coordinates
output from the network model, where the visualization results for the Hmong dance, the
Korean dance and the Mongolian dance are shown in Figures 7 and 8.

Table 3. Performance comparison between different methods for short-term forecasting and long-term
forecasting of MPJPE (mm) for each activity on the 3DPW dataset.

Millisecond 400 1000

convSeq2Seq [15] 58.8 87.8
LTD-10-25 [13] 46.6 75.5

Motion-Attention [9] 44.4 71.8
AuxFormer [36] 58.5 107.5

Ours 40.2 68.3
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Figure 8. Visual results of short-term and long-term prediction sequences under the condition of
simultaneous upper and lower limb extension [13].

In Figures 7 and 8, the first row represents the frames of the intangible cultural
heritage dance videos after splitting, the second row showcases the visual sequence of
three-dimensional human pose coordinates from our self-made dataset, the third row
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displays the prediction video frame sequence generated by the Motion-Attention method,
and the fourth row exhibits the prediction video sequence produced by our proposed
method. In Figures 7 and 8, it can be observed that significant errors in the predictions from
Motion-Attention become noticeable at the 500 ms mark (highlighted in red) and the 100 ms
mark (highlighted in green). Therefore, it is evident that our method outperforms Motion-
Attention by accurately and reasonably completing the actions, providing a superior
prediction of the motion sequences.

4.3. Ablation Experiments

To verify the impact brought by each module and design in the method, we conduct
ablation experiments based on the MPJPE evaluation metrics on the Human3.6M dataset.
The first is the impact brought by different graph structures on the accuracy of motion
prediction. Table 4 demonstrates that the method in this paper employs the traditional
graph structure [10], multi-scale graph [35], hypergraph [17], and multi-scale hypergraph
for short-term and long-term prediction. It can be seen that the multi-scale hypergraph
designed in this paper reduces the MPJPE errors in short-term prediction and long-term
prediction by 2.1 mm and 4.1 mm, respectively, compared to the traditional graph structure.
It indicates that the multi-scale hypergraph designed in this paper for joints is effective.

Table 4. Comparative depletion experiments of different graph structures.

Graph Structures
MPJPE

400 1000

Traditional Graphs [10] 58.9 113.5
Multi-Scale Graphs [35] 58.6 110.1

Spatial Hypergraphs [17] 57.2 109.8

Multi-Scale Hypergraphs 56.8 109.4

Then, ablation experiments were performed for the scale segmentation operator. We
compared the method of this paper with the method of replacing scale generation with
joint removal [37], and Table 5 demonstrated that the method of this paper and the MSGC
method for short-term prediction and long-term prediction, the multi-scale segmentation
operator designed in this paper reduces the MPJPE error by 0.8 mm and 0.5 mm in short-
term prediction and long-term prediction, respectively, in comparison with the MSGC
method, to prove that our segmentation method is effective.

Table 5. Comparative depletion experiments of different scale segmentation operators.

Segmentation
Method/Scale

MPJPE

Joint Scale Skeleton Scale Component Scale 400 1000

MSGC [38]
√ √ √

69.2 119.4
Ours-1L

√
69.6 119.8

Ours-2L
√ √

69.1 119.3

Ours
√ √ √

68.4 118.9

Next, ablation experiments of segmentation were performed on different scales of
segmentation. To verify the effectiveness of the multi-scale mechanism, we set the seg-
mentation scales as joint scale, bone scale, and part scale, respectively, and conducted
experiments on different numbers of scales. From Table 5, compared with the short-term
prediction and long-term prediction results of Ours-1L, Ours-2L, and Ours, it can be seen
that the three scales segmentation of this paper’s method gives the optimal results, which
verifies the effectiveness of the multi-scale architecture.
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At the same time, we conducted ablation experiments on the number of multi-scale
hypergraph convolution modules. To verify the effect of the stacking of multi-scale hyper-
graph convolution modules, we conduct experiments on different numbers of multi-scale
hypergraph convolution, adjust the number from 1 to 4, and show the MPJPE on the
H3.6M dataset. As can be seen in Table 6, the MPJPE gradually decreases when we use 1
to 3 modules, and when the number of multi-scale hypergraph convolution modules is
increased to 4, the MPJPE value tends to increase, so we finally choose to stack 3 multi-scale
hypergraph convolution modules.

Table 6. Comparative depletion experiments of different numbers of multi-scale convolution
modules.

Number of (MCM)
MPJPE

1 2 3 4 0

400 ms 57.4 56.9 56.8 57.2 57.6
1000 ms 109.9 109.8 109.4 110.7 110.9

Finally, the effectiveness of the TGT module is tested. To verify the effectiveness of our
introduced Temporal Graph Transformer, we have experimented with this paper’s method
with other time series models [37,39]. From Table 7, we can see that the introduction of the
TGT module is effective.

Table 7. Depletion experiments using different time series models.

Decoder 400 1000

TCN [39] 58.7 112.9
GRU [37] 58.2 112.7

Ours 56.8 109.4

In order to verify the validity of our movement prediction method, we invited
100 dance majors and 100 non-dance majors as well as 6 professional modern dance
teachers and 3 professional intangible cultural heritage dance teachers to score our method
by means of a questionnaire. The composition of the experimental subjects is shown in
Figure 9.
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Figure 9. Number of subjects and their composition.

Subjects were allowed to score the predicted segments after learning them, marking
them out of 5. Subjects could choose 0–5 to rate the results. A 15 s video of each of the five
NRL performance forms, namely Dai, Miao, Wei, Tibetan dance and Jiaozhou Yangge, is
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selected as the experimental data, and the prediction results are uniformly outputted for
one kind of video in each experiment. The experiment recorded the average of all subjects’
scores on the predicted dance segment. The statistical results of the experiment are shown
in Figure 10.
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From Figures 9 and 10, it can be seen that the scores of the Viennese dance are higher
than other dances, which may be analyzed due to the fact that the Viennese dance has more
repetitive movements within one octave, which makes it easier for learners to learn. The
overall scores are higher than 4.7, which shows that our method can meet the needs of
the experimental use scenarios for dance movement prediction, and the present approach
is effective.

5. Discussion

In this section, we summarize the results of our study on HPP (Human Pose Prediction)
and compare them with the results of previous studies. We will then analyze the limitations
of the proposed multi-scale hypergraph convolutional network and propose future research
directions regarding HPP.

We focus on using hypergraphs to represent interactions across joints and have
achieved satisfactory results on Human3.6m and 3DPW. The main underlying network of
our approach is the multi-scale graph convolutional network. The multi-scale network can
extract richer spatial information of the 3D human skeleton, combined with the improved
Transformer to extract rich temporal information.

Our method has satisfactory results in short-term prediction, but only the transformer
module handles temporal information in our method, and our multi-scale hypergraph
structure is only concerned with the processing of spatial features, which leads to poor
results in long-term prediction.

6. Conclusions

We tackled the problem that intangible cultural heritage dance platoon characteristics
have a lack of interaction of remote joints, which leads to the low accuracy of current
human motion prediction methods. Compared to previous methods that only consider
extracting rich-scale information while ignoring cross-joint interaction information, this
paper proposes a human motion prediction method based on multi-scale hypergraphical
convolutional networks for intangible cultural heritage dance videos. We input the in-
tangible cultural heritage dance video, and the 3D pose sequence is extracted by the 3D
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pose estimation algorithm MHFormer. Motion prediction is performed on the extracted
3D pose sequence of the dance action video. Firstly, we input the 3D human posture se-
quence of the intangible cultural heritage dance video, and designed the spatial hypergraph
structure according to the interaction relationship of multiple human joints in the dance
video, to enrich the connection between the 3D skeletal joint points. Then, we constructed
a multi-scale hypergraph convolutional network by means of a spatial hypergraph, using
the scale transformation operator to replace the simple way of taking a certain node to
replace the part information, the extract spatial features in 3D human posture sequences.
Finally, Temporal Graph Transformer network was introduced to extract the temporal
features in the 3D human posture sequence and output the predicted 3D human posture
coordinate sequence. It was experimentally verified that this method can obtain more
accurate predicted 3D human posture sequence results in the case of intangible cultural
heritage dance videos where there are isotropic extensions of the upper and lower limbs.

The next phase of research will be to reduce the computational complexity by adopting
a lighter weight network structure. For example, alleviating some redundant layers of
Temporal Graph Transformer, streamlining the number of multi-scale hypergraph modules,
etc. In addition, the algorithm will be extended to multi-person dance videos, and a 3D
human movement prediction system for dance videos will be developed and promoted for
more convenient application in the field of non-heritage dance teaching.
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