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Abstract: Cyberattacks and cybercriminal activities constitute one of the biggest threats in the modern
digital era, and the frequency, efficiency, and severity of attacks have grown over the years. Designers
and producers of digital systems try to counteract such issues by exploiting increasingly robust
and advanced security mechanisms to provide secure execution environments aimed at preventing
cyberattacks or, in the worst case, at containing intrusions by isolation. One of the most significative
examples comes from General Purpose Processor (GPP) manufacturers such as Intel, AMD, and ARM,
which in the last years adopted the integration of dedicated resources to provide Trusted Execution
Environments (TEEs) or secure zones. TEEs are built layer by layer on top of an implicitly trusted
component, the Root-of-Trust (RoT). Since each security chain is only as strong as its weakest link,
each element involved in the construction of a TEE starting from the RoT must be bulletproof as
much as possible. In this work, we revise and propose a design methodology to implement in both
hardware (HW) and software (SW) highly featured and robust security blocks by highlighting the
key points that designers should take care of, and the key metrics that should be used to evaluate the
security level of the developed modules. We also include an analysis of the state of the art concerning
RoT-based TEEs, and we illustrate a case study that documents the implementation of a cryptographic
coprocessor for the secure subsystem of the Rhea GPP from the European Processor Initiative (EPI)
project, according to the presented methodology. This work can be used by HW/SW security module
designers as a cutting-edge guideline.

Keywords: computer security; Trusted Execution Environment; Root-of-Trust; secure boot;
Side-Channel Attack; Crypto-Tile; European Processor Initiative; Rhea general-purpose processor

1. Introduction

In the modern age, due to the pervasive adoption of technology in even more contexts
and aspects of human life, digital systems are becoming more complex and sophisticated
day by day, aiming at ensuring more advanced and efficient services. On the one side,
this trend is bringing unprecedented benefits; on the other hand, the increasing amount
of processed and exchanged data, interconnections, and infrastructures is extending the
attack surfaces for cyberattacks. Indeed, hand in hand with the evolution of technology,
in the last decades the attacks aimed at violating the security of data have become more
elaborate, more frequent, and their consequences more severe [1–3]. The main approach
to counteract this phenomenon relies on equipping digital systems with dedicated and
adequate security mechanisms to prevent attacks by reducing the vulnerabilities and to
contain them or limit their effects with tempest reactions. In this sense, the state of the art
promoted by the main General Purpose Processor (GPP) manufacturers lies in the creation
of Trusted Execution Environments (TEEs). A TEE is a secure and isolated area within
a processor or microcontroller that provides a high level of security for running specific
applications and processing sensitive data. TEEs are designed to protect against various
forms of attacks, including software-based attacks, hardware attacks, and even attacks
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from the operating system or other running applications. Indeed, they provide a safe and
isolated environment where code and data can be executed and processed securely. TEEs
are often built on top of a Root-of-Trust, i.e., a foundational component or process that is
inherently trusted to perform critical security functions [4–6]. This can include tasks like
hardware-based secure boot, key management, and attestation. TEEs typically leverage
the hardware-based security features provided by the RoT to establish and maintain their
security. For example, some TEEs, like ARM TrustZone or Intel Software Guard Extensions
(SGX), rely on a hardware-based RoT to establish a secure boot process and to ensure the
integrity and confidentiality of the TEE’s operation. The construction of a TEE starting
from an RoT consists of several steps. It involves several elements, each of which must
be carefully designed to not introduce security vulnerabilities that might compromise the
overall security of the TEE. This is because TEEs built on top of RoT are essentially security
chains that are only as strong as their weakest link. Indeed, several examples of security
flaws in TEEs of GPP producers can be found in the literature. For instance, in the case of
the ARM TrustZone, cache SCAs have been exploited in [7–10], EMA attacks in [11,12], and
fault attacks in [13].

In this work, we present a comprehensive design methodology and the security design
metrics for the elements (both hardware and software) that are involved in RoT-based
TEEs. The application focus is on embedded security: we aim to provide the hardware–
software infrastructure that can be used by system developers to enforce the security
of their embedded systems. We aim to exploit the lesson learned from the EPI project
(see [14–23] as references to the implementations of the specific HW accelerators) to make
available to the security community the methodology and strategy to design such an
advanced system. The presented methodology builds on the experience acquired during
the design of a cryptographic coprocessor to assist the secure boot process in the Rhea GPP,
which represents the first family of processors born from the European Processor Initiative
(EPI). Our goal is to extract the lessons learned from the design activity and develop a
generic methodology that can be proposed to the security community. The EPI project
is a collaborative effort between various stakeholders, including research institutions,
universities, and industry partners, to drive innovation in processor technologies, and it
is aimed at developing and promoting European-designed and European-manufactured
High-Performance Computing (HPC) processors and accelerators. It represents a strategic
effort that seeks to reduce Europe’s reliance on non-European technologies in the field of
supercomputing and data processing by ensuring that Europe has access to cutting-edge
processor technologies including state-of-the-art security mechanisms.

The remainder of this work is organized as follows: Section 2 provides the main
definitions, principles, and outline of Roots-of-Trust and Trusted Environments, by high-
lighting the mechanisms that involve each other. Section 3 gives a review of the state of
the art concerning RoT-based TEEs from the main GPP manufacturers such as Intel, AMD,
and ARM. Section 4 presents the proposed methodology and the most qualifying security
metrics that should be carefully addressed when designing any of the elements involved in
the construction of a Trusted Environment on top a Root-of-Trust. In Section 5, we present
a case study concerning the development of a cryptographic coprocessor that has been
included in the Security Subsystem of Rhea GPP, according to the proposed methodology
and metrics. Finally, Section 6 summarizes the conclusions of this work.

2. Definitions, Principles, and Outline of Roots-of-Trust and Trusted Environments

A Root-of-Trust (RoT), sometimes referred to as Trust Anchor, is a fundamental com-
ponent in computer and information security. It is an element, typically implemented
in hardware or firmware, that is considered implicitly trusted and forms the basis for
establishing and verifying the authenticity and integrity of various system components,
software, and data. The primary purpose of an RoT is to provide the secure foundations for
building and maintaining trust within a computing environment. For instance, it is used
for the following:
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• Secure Boot and Initialization. The RoT ensures that a computer system starts up
securely. It verifies the integrity of the bootloader and firmware during the boot
process, ensuring no malicious code has been injected into these critical components.
This helps prevent firmware-level attacks and rootkits from compromising the system.

• Code and Data Authentication. The RoT mechanisms can be used to authenticate and
verify the integrity of software applications and data. This ensures that only trusted
and authorized code and data are executed or accessed on a system.

• Cryptographic Operations. The RoT often includes cryptographic capabilities and
can generate and manage cryptographic keys. This is crucial for secure communi-
cation, data encryption, and authentication between different system components
and devices.

• Secure Storage. Some RoT implementations provide secure storage for sensitive data,
such as cryptographic keys or biometric templates, ensuring that this data cannot be
easily tampered with or stolen.

• Remote Attestation. The RoT can be used for remote attestation, allowing a system to
prove its trustworthiness to remote entities. This is particularly important in scenarios
like cloud computing, where a remote server needs assurance that a client device is
secure before granting access.

• Hardware-Based Security. Many RoT implementations are designed to be tamper-
resistant and are stored in secure hardware modules, making it difficult for attackers
to compromise their integrity.

• Trust in Supply Chain. The RoT can establish trust in the supply chain by ensuring
that hardware components and software are genuine and have not been tampered
with during manufacturing, distribution, or deployment.

• Protecting Against Insider Threats. The RoT can also help protect against insider
threats by limiting access to sensitive information and functions based on authentica-
tion and authorization policies.

The RoT is the key element for building Trusted Execution Environments, typically
through secure boot routines. In this sense, a TEE can be seen as a layered structure in
which each layer is enabled (and configured) upon verification of the previous layer. The
resulting environment constitutes a secure zone where code and data can be executed
and processed securely. Each layer provides specialized security mechanisms that rely on
the ones of the lower layer and support the higher layer. In case of an attack on any of
the elements of a layer, the corresponding layer can attempt to counter the attack with its
security mechanisms, and, in case of failure, that layer can be isolated by leveraging the
lower layer. The highest layer of the security chain is the one connected with the main
operating system, other parts of the processor, and eventually external systems, which
are insecure. In some cases, not only can the highest layer be interfaced with insecure
elements or zones, but also lower layers can, for instance, to provide advanced specialized
services. In the former case, the TEE can be modeled as a Chain-of-Trust (CoT), i.e., the
organization of the layers is purely sequential; in the latter case, the TEE can be modeled as
a Tree-of-Trust (ToT), i.e., some layers concur with each other. A representation of the two
different topologies is given in Figure 1.

The separation between the secure zone and the non-secure zone can be physical or
logical. In the first case, only the secure software can access the hardware security-critical
components, and the insecure software can exchange data with the secure software to
request security services. The most significant example relies on the usage of two distinct
processing units. One of the processing units (e.g., a MicroController Unit, MCU) is
dedicated to all and only the security-related functions and processes, and is eventually
assisted by additional hardware accelerators or specialized circuits; for this reason, such a
microcontroller is called a Secure MCU, and it is provided with its own RAM that is called
Secure RAM (SRAM). The other processing unit (e.g., the main processor) is in charge of
executing the operating system and general-purpose applications. The main processor can
make a request for security services to the Secure MCU through dedicated interconnections
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(e.g., a mailbox system). In the second case, both secure and non-secure software share the
same hardware resources, but only the secure software has access to the resources dedicated
to the security functions. An example can be a unique processor that executes both security-
related software and non-security-related applications, hence exploiting the same RAM for
both of them. Furthermore, some memory spaces are dedicated only to security-related
data and instructions, and their access is forbidden to non-secure applications. Section 3
reports an overview of the state-of-the-art RoT-based Trusted Environments.

Figure 1. Layered organization of TEEs as Chain-of-Trust or Tree-of-Trust.

3. State of the Art of RoT-Based Trusted Environments

Several implementations of hardware security solutions are released by the main GPP
vendors like ARM, Intel, and AMD targeting different uses such as isolated execution
and TEE, acceleration of security functions, random number generation, and memory
protection.

ARM proposes the so-called TrustZone [24,25], which is a system-wide technology
integrating security features into the ARM processors, bus fabric, and peripherals. Instead
of protecting assets in a dedicated hardware block, the TrustZone architecture adds security
functionalities to any part of the System-on-Chip (SoC). The TrustZone strategy is based
on the partitioning of all the SoC resources (both hardware and software) in two worlds:
the Secure world for the Security Subsystem and the Normal world for everything else. At
the hardware level, the division of the world is implemented through different hardware
features: the bus fabric can ensure that no Secure world resources can be accessed by
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the Normal world components. This is accomplished through the Advanced eXtensible
Interface (AXI) bus, which contains a dedicated bit to determine secure and non-secure
read/write operations; hardware extensions are included into the processor in order to
enable it to execute code from both the Normal world and the Secure world in a time-sliced
fashion. This feature removes the need for a dedicated processor for the security part,
so the single processor runs the secure software when its state is secure, and the normal
software when it is in the non-secure state; introduction of a hardware classification of
the memory-mapped devices as secure or non-secure through the TrustZone Address
Space Controller (TZASC) and memory division into secure and non-secure through the
TrustZone Memory Adapter (TZMA); and distinction between secure and non-secure
prioritized processes interrupts through the interrupt controller. Each world manages
the resources for applications belonging to its world’s space. The two different software
stacks (i.e., secure software and non-secure software) are executed one at a time on the
same processor. The context switching between Secure and Normal world is handled by
monitor mode, which is the highest privilege level of the Secure world and can access both
worlds’ system’s resources. ARM TrustZone is integrated inside Cortex-A [26], as well as
in Cortex-M [27] with some differences related mainly to privilege levels of the processor.

The Intel Software Guard eXtensions (SGX) is an isolation technology included in
almost all the 6th generation of Intel processors, which virtually creates a secure zone for
secure code. This technology, unlike the ARM TrustZone, does not divide the execution
process into two worlds (i.e., Secure and Normal world) but creates a secure computing
space within the untrusted application: the Enclave. The Enclave is a protected container
the applications can instantiate, which ensures confidentiality and integrity by using
memory access checks and by encrypting data and code that goes outside the CPU. At the
hardware level, the architectures supporting SGX are equipped with a set of security-related
instructions and dedicated hardware components like the Enclave Page Cache (EPC) to
support the multitasking of different Enclaves and the Enclave Page Cache Map (EPCM) to
track page space of each Enclave. As discussed in [28], a user application can instantiate an
Enclave using a trusted process. Such a process communicates with the EPC to assign an
enclave page to the application, and the page information is checked by the EPCM. The
target process is executed thanks to the Enclave and after its completion, the Enclave is
destroyed and the page space released. Further information about the Intel SGX technology
can be found in [29–33].

AMD proposes the Platform Security Processor (PSP) [34], which is a standalone
coprocessor embedded inside the main AMD CPU. It is responsible for creating, moni-
toring, and maintaining the security environment, including managing the boot process,
initializing security-related mechanisms, monitoring the system for any suspicious activity,
and implementing an appropriate response. The PSP consists of an ARM microcontroller,
cryptographic coprocessors, local memory, local registers, and interfaces to interact with
the system memory, IOs, and configuration registers. The primary function of the PSP is
to protect the main AMD core and to provide the hardware RoT; the PSP is in charge of
the boot sequence using its own ROM and SRAM using the Unified Extensible Firmware
Interface (UEFI) Secure Boot process. The communication mechanism between the PSP and
the main CPU is implemented by interrupts: the PSP processor can generate interrupts to
the CPU using PCI-compliant messages and the main CPU can raise interrupts to the PSP
as well. This is accomplished via a PSP–CPU mailbox mechanism.

The CryptoManager Root-of-Trust (CMRT) [35,36] is a family of hardware-based RoT
IPs developed by Rambus. It includes a 32-bit RISC-V processor, a ROM unit, and hardware
resources dedicated to accelerating the security algorithms and managing the security assets.
It also features private buses and interfaces for the integration of One-Time Programmable
(OTP) memories and SRAMs within the Trusted Environment. It was developed to assist
general-purpose processing units for Internet-of-Things (IoT), automotive, connectivity,
and sensor applications.
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Another commercial solution for hardware RoT is the Synopsys tRoot Hardware
Security Module (HSM) [37]. The tRoot HSMs are designed to be integrated into SoCs, and
the architecture can be customized depending on the application. The tRoot includes a
CPU with secure instructions and data controllers for external storage, hardware key man-
agement and protection, hardware accelerators for cryptographic functions, and different
interfaces (e.g., UART, GPIO, etc). The main goal of the tRoot is to provide a TEE to protect
sensitive information and processing and implement security-critical functions such as
secure boot, storage, debugging, anti-tampering, and key management.

For what concerns academic solutions, the work in [38], named Bastion architecture, is
a hardware–software architecture for protecting security software modules in an untrusted
software stack. At the hardware level, Bastion features dedicated instructions and registers
inside the CPU, dedicated registers external to the CPU for storing hash values and keys,
and dedicated engines for encryption, hash functions, and random number generation.
The strategy in the Bastion architecture is to provide direct hardware protection of the
hypervisor before employing it to protect the operating system and application modules.
A similar solution has been proposed in [39], where the authors present an architecture
named HyperWall to provide hypervisor-secure virtualization through hardware support.
Also in this case, the solution of [39] proposes a hardware extension applied to a standard
processor rather than dedicated and isolated hardware for security. The hardware extension
includes new instructions, dedicated registers for the virtualization and key materials, and
crypto-engines for random number generation, encryption, and hash functions. Other
academic solutions can be found in [40–42].

The review of the state-of-the-art commercial solutions for TEEs is summarized
in Table 1.

Table 1. Comparison of state-of-the-art TEEs.

Rambus CMRT ARM TrustZone Intel SGX AMD PSP Synopsis tRooT

Implementation
Strategy Discrete Integrated Integrated Integrated Discrete

Isolation approach Physical Logical Logical Physical Physical

Platform(s) SoC IP Cortex CPUs from 6th generation
of Intel CPUs Ryzen CPUs SoC IP

4. Design Methodologies and Key Aspects for Security Modules in Secure Zones

According to how much was highlighted by the review of the state of the art (Section 3),
each of the proposed Trusted Environments relies on different and multiple components
such as microcontrollers, OTPs, and coprocessors. As each of these elements is involved in
the construction and maintenance of the TEE, each of them must offer an adequate level of
security and adequate characteristics to carry out such purposes. Any flaw or vulnerability
in any of the elements involved in these processes can severely compromise the security of
the whole TEE. From a security point of view, any system integrating or adopting a Trusted
Environment can be modeled as illustrated in Figure 2, by separating the security-related
functions resources (Secure zone, green box) and non-secure-related resources (Non-secure
zone, red box). The block that connects the zones is the representation of all the mechanisms
through which the two zones can interact. It must integrate robust security policies that
define how the assets of the secure zone may be accessed. For instance, it must regulate the
content and the transfer methods of data from one zone to the other one and vice versa.

According to the model in Figure 2, three key aspects must be addressed in the
implementation of the secure zone to guarantee such an environment is trusted. The three
aspects are:

1. the Security Services and Functions;
2. the Interface Security Policy;
3. the Physical Implementation.
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Secure 
zone

RoT

Interface security policy

Non-secure   
zone

Figure 2. Security partitioning model of a generic system integrating a TEE.

The first aspect concerns the definition of which security function, service, or mech-
anism is included (e.g., confidentiality, integrity, authentication), how it is implemented
(e.g., symmetric-key cryptography, hash functions, public-key cryptography, or other so-
lutions), and the level of security required. In particular, this last point regards the usage
of cryptographic algorithms. Indeed, the National Institute of Standards and Technology
(NIST), which is one of the most important organizations in the matter of cybersecurity
and standardized most of the cryptographic algorithms used, defined different levels of
security. The security level (or strength) is expressed in bits, and the minimum accepted
level for long-term protection is 128 bits. The quantification of the security strengths offered
by the most diffused cryptographic algorithm is reported by the NIST in [43]. In addition,
the used cryptographic algorithm(s) must also be verified at the functional level, ensur-
ing its compliance with the corresponding standard. For this purpose, the NIST releases
test vectors for each of its standardized algorithms through the Cryptographic Algorithm
Validation Program (CAVP).

The second aspect focuses on the mechanisms aimed at managing and regulating
the access and the life cycle of the security-critical assets. Once the security service and
the cryptographic functions are defined at the first point, it is possible to individuate the
security-related material and sensitive data that will be processed such as the cryptographic
keys. In this case, the interface security policy may integrate dedicated mechanisms for the
establishment or installation, the secure storage, and the maintenance of keys. Seal/unseal
mechanisms can be used to protect keys from unauthorized access (by supporting different
privilege levels), to bind the key for a specific usage (e.g., a specific cryptographic operation),
and/or to limit its usage (e.g., for one, tens, or hundreds of times). Also, data access must
be regulated. In this sense, an interface security policy mechanism may rely on a dedicated
Finite State Machine (FSM) that strictly handles the data processing phases and allows
access only once the cryptographic operation is completed. Any access attempt before the
conclusion of the cryptographic operation may be logged and reported as a warning or as
an alert.

The third and last aspect, which is equally important, concerns the physical imple-
mentation. Indeed, also the physical implementation of a secure system or module can
introduce vulnerabilities, even if the chosen security algorithm is robust and cannot be
violated from a numerical or mathematical point of view. When the module executes
the chosen algorithm, the physical level may emit sensitive information through physical
quantities, such as time, power consumption, electromagnetic radiation, or sound. This
constitutes an unintentional leakage of information through a secondary channel (or side
channel), i.e., the physical one, and it can be exploited to perform an attack bypassing
the interface security policy level. To give a more intuitive explanation, for example, it is
enough to consider the physical processes involved in the usage of transistors implemented
in CMOS technology. When these hardware elements treat digital information formed by 0s
and 1s, they can be assimilated into a capacitor which is charged or discharged, according
to the digit value. Therefore, by measuring the power consumption of transistors, it could
be possible to recover the value of the processed data. Due to their nature, such attacks take
the name Side-Channel Attacks (SCAs), and Figure 3 depicts their scheme of operation.



Electronics 2023, 12, 4843 8 of 22

Cryptographic algorithm

Input data

(e.g. plaintext)

Output data

(e.g. ciphertext)

(Key-dependent data)

Main channel

Side-channel 

leakage

Power

Time

EM

Acoustics

Figure 3. Scheme of operations of SCAs. By analyzing the leakage of information emitted through a
side channel such as power, time, Electromagnetic Emissions (EM), or acoustics, an adversary is able
to retrieve the secret key.

SCAs are widely documented in the literature and constitute one of the hottest topics
in the cybersecurity field. An exhaustive and systematic review of SCAs can be found
in [44–46], while [47–63] report several examples of the most diffused categories of attacks
that exploit the physical implementation of a device, which are listed below:

• Cache attack [47–49]: This class of attacks is based on monitoring cache accesses in
a shared physical system and, as the name suggests, it is mostly applied to software
contexts. The protection strategies usually consist of replacing the LUTs with a series of
equivalent logical operations, using alternative forms of LUTs, or creating an obvious
memory access pattern (i.e., reading all LUT values in a fixed order and using only
the one needed) [47,48].

• Timing attack [50–53]: This category of attacks concentrates on measuring the exe-
cution time of routines, targeting software implementations in which different in-
structions, branches, RAM cache hits, etc., cause time variation in the process. The
protection mechanisms typically involve techniques for time equalization and re-
duction of unpredictable events (such as cache misses, etc.), or insertion of random
delays [51–53].

• Power analysis [53–61,64,65]: This family of attacks is one of the most effective on
both hardware and software implementations, and it exploits the power consumption
of underlying physical circuits. Concerning the software case, if each opcode of the
instruction set architecture can be associated with a different and specific power
trace shape, then the series of operations performed by a routine is revealed; on the
hardware side, data dependencies over different power traces can be analyzed to
recover secret information. The most notorious attack classes of this group are Single
Power Analysis (SPA), Differential Power Analysis (DPA), and Correlation Power
Analysis (CPA). The first one consists of recovering data values by just observing the
shape of a power trace; for instance, in a branched architecture where a certain value
of processed information activates a certain branch rather than another one, isolating
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the branch-specific power profile within a power trace makes it possible to recover the
sequence of 0s and 1s. DPA and CPA attacks instead are more sophisticated, and they
employ statistical methods to disclose secret information. As can be intuited from
what has been expressed so far, each of these attacks requires a certain knowledge
of architecture, especially in the case of DPA and CPA, which typically make use of
a power consumption model to make a guess of the value of processed data: the
further the model from the real architecture, the weaker the guess. For power analysis
attacks, the countermeasures usually are implemented by adopting two techniques,
masking or hiding, or a mix of both. The former is aimed to reduce or eliminate the
dependencies between data and power consumption; the latter instead is aimed to
jam the Side-Channel with noise in order to reduce the signal-to-noise ratio of leaked
information. Masking typically introduces significant overhead in terms of area and
critical path, by requiring up to 5 times the amount of logic resources employed by
the unprotected module, and lowering the maximum frequency of the circuit up to
2/3 times [53,56,59,61,65]. On the other hand, hiding usually is realized by coupling
the unprotected module in parallel to a block dedicated to noise generation, thus the
critical path of the circuit is not affected and the overhead of resources is limited. In
that case, the most significant cost concerns are the power consumption, which can
introduce an overhead of up to 5 times larger [54,55,57].

• Electromagnetic analysis [62]: This category of attacks relies on leaked electromagnetic
radiation. It is usually assimilated to the class of power analysis attack, under the
rough assumption that electromagnetic radiation is highly correlated (or proportional)
to power consumption. Therefore, attacks and defense mechanisms are developed
accordingly to the one of power analysis, using electromagnetic probes, instead of an
instrument to measure the current.

• Differential fault analysis [63]: This type of attack has the purpose of discovering
secrets by introducing faults while the system is running normally. The corresponding
protection mechanisms typically involve architectural redundancy approaches and
techniques for concurrent error detection.

Confirmations of the severity of SCAs can be found, for example, in [66]. It analyzes
the resistance of ARM TrustZone with respect to Side-Channel leakages and reports several
violations of security due to fault attacks [67–69], cache attacks, [7–10], and EMA [11–13].

According to the key aspects to be addressed for the development of a secure module,
the security partitioning model illustrated in Figure 2 should be applied recursively to each
layer and to each element of the chain involved in the construction of the TEE by dividing
it into both trusted and non-trusted components. The results of this approach converge
in the definition of a more accurate partitioning model that is represented in Figure 4.
Such a model counts four abstraction layers that are, respectively from the top to the
bottom, the protocol level, the software architecture level, the hardware micro-architecture
level, and the circuit level. Each of these levels is characterized by the separation between
security-related and non-security-related resources and a specific interface security policy
between them. In addition, the interconnection between each level and the higher one is
characterized by a specific class of SCA. Respectively, from the top to the bottom, they
are interpreter-level attacks (such as fault attacks), timing analysis and cache attacks, and
power analysis attacks (such as SPA, DPA, and CPA).

In conclusion, when designing a secure module to be integrated into a Trusted Environ-
ment (for its construction and maintenance), the three highlighted security aspects must be
carefully addressed. According to the implementation methodology (only hardware, only
software, or mixed hardware–software), the security module must be modeled according
to the scheme presented in Figure 4, and the corresponding security mechanisms must be
developed including the interface security policy and resistance measures against SCAs.
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Figure 4. Recursive application of security partitioning model to the chain of elements forming
the TEE.

5. Case Study: Cryptographic Hardware Coprocessor for the Secure Subsystem of
Rhea GPP

Similarly to the AMD PSP, the decision for the isolation strategy of the TEE inside
the Rhea GPP was to isolate it from the main processing unit(s) at the physical level by
implementing a Security Subsystem dedicated to all and only the security services. The
outline of the Rhea GPP developed in the framework of the EPI project is illustrated in
Figure 5, while Figure 6 focuses on the internal architecture of the Trusted Environment
(i.e., the Security Subsystem).

Figure 5. Simplified outline of Rhea GPP [14].

Our research group was involved in the development of the cryptographic hardware
coprocessor (the blue box in Figure 6) that has the purpose of assisting the secure boot
routine for enabling the Security Subsystem and providing high-performance security
mechanisms [20]. The implemented module was named Crypto-Tile and offers cutting-edge
security services [14]. According to the presented design methodology in Sections 5.1–5.3,
we described the features integrated within the developed security module, respectively, at
the security service level, interface security policy level, and physical implementation level.
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Figure 6. Outline of Security Subsystem within Rhea GPP [14].

5.1. Security Services

In order to support both the secure boot routine and high-performance security func-
tions at run-time, we embedded in the Crypto-Tile four independent and specialized
cryptographic coprocessors, with each one for a different family of cryptographic opera-
tions. With reference to the architecture outline of the Crypto-Tile that is shown in Figure 7,
our module embeds:

• A coprocessor for symmetric-key cryptography based on the Advanced Encryption
Standard (AES) algorithm [17]. This coprocessor offers:

– Confidentiality, through the AES modes operation Electronic CodeBook (ECB),
Cipher Block Chaining (CBC), Cipher FeedBack (CFB), Output FeedBack (OFB),
and CounTeR (CTR) [70];

– Authenticated Integrity, through the AES mode of operation Cipher-based Mes-
sage Authentication Code (CMAC) [71];

– Authenticated Encryption, through the AES modes of operation Counter with
CBC-MAC (CCM) [72] and Galois Counter Mode (GCM) [73,74];

– Disk encryption, through the AES mode of operation XEX encryption mode with
Tweak and ciphertext Stealing (XTS) [75].

For each of the listed modes of operation, the AES coprocessor supports both 128-bit
and 256-bit keys, respectively providing a corresponding security level of 128 and
256 bits [43].

• A coprocessor for public-key cryptography based on Elliptic Curve Cryptography
(ECC) [16]. This coprocessor offers:

– Acceleration of computationally intensive arithmetic operations over elliptic
curves, such as Point Addition and Point Doubling;

– Generation of private keys, key pairs (both private and public), and derivation of
corresponding public keys starting from private keys;

– Authentication and non-repudiation, through the Elliptic Curve Digital Signature
Algorithm (ECDSA) [76].
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For each of the listed functions, the ECC coprocessor supports both 256-bit and 521-
bit elliptic curves, in particular the NIST P-256 and the NIST P-521, that provide,
respectively, a corresponding security strength of 128 and 256 bits [43].

• A coprocessor for hash functions based on the Secure Hash Algorithm (SHA) [18].
This coprocessor offers integrity through the algorithms SHA2 [77] and SHA-3 [78].
For both the SHA functions, the supported digest sizes are 224, 256, 384, and 512 bits,
providing a corresponding security level of 128 (256-bit digest) and 256 (384-bit digest)
bits [43].

• A coprocessor for Random Number Generation (RNG). This coprocessor offers:

– Generation of high-entropy key-related material and seeds, through a True Ran-
dom Number Generator (TRNG) [19];

– Generation of key-related material, non-repeating values, and initialization vec-
tors through a Cryptographically Secure Pseudo-Random Number Generator
(CSPRNG) [79], which is seeded thanks to the TRNG.

Crypto-Tile

ECC

cryptoprocessor

SHA

cryptoprocessor

RNG

cryptoprocessor

Global Configuration (Cfg), Control (Ctrl) and Status regsisters

AES

cryptoprocessor

Cfg, Ctrl, 

Status

FSM

AES engine

Cfg, Ctrl, 

Status

FSM

Cfg, Ctrl, 

Status

FSM

Cfg, Ctrl, 

Status

FSM

Data

ECC engine SHA engine RNG engine

Data Data Data

3
2

-b
it

 A
X

I4
 I

/F

128-bit AXI4 

I/F

128-bit AXI4 

I/F

128-bit AXI4 

I/F

128-bit AXI4 

I/F

To/from Data bus (128-bit AXI4)

To/from Configuration bus (32-bit AXI4)

Key slots Key slots

Figure 7. High-level architecture of Crypto-Tile [14].

The ECC and SHA cryptoprocessors support the secure boot routine to verify, respec-
tively, the authenticity and the integrity of the first bootloader stage. Indeed, at the boot,
the Secure Element in Figure 6 loads the software code from the OTP into the SRAM of the
Master Secure MCU, enables the corresponding hardware acceleration unit (Crypto-Tile),
and uses it to verify the integrity and the authenticity of the software code. Upon the
success of this step, consequently, the Master Secure MCU performs similar operations by
enabling the other Security Domains (triplets of Secure MCU, SRAM, and Crypto-Tile).
After this process, the Secure Subsystem of Rhea GPP is fully enabled and can provide



Electronics 2023, 12, 4843 13 of 22

run-time security services that are accelerated in the hardware by the instances of the
Crypto-Tile and all the embedded cryptoprocessors.

All the implemented algorithms have been tested and verified at the functional level
with the corresponding suite of test vectors provided by the NIST through the CAVP.

The implemented cryptographic coprocessors were developed to find the best solution
in terms of the trade-off between performance, resource consumption, and security strength.
Indeed, according to [43] the minimum level of security for long-term protection is 128 bits,
and it corresponds to the usage of 128-bit keys for the AES algorithms, 256-bit elliptic curves
for ECC functions and schemes, and 256-bit digests for the SHA2 and SHA-3 functions.
In addition, we also integrated security levels for supporting protection in terms of Post-
Quantum Cryptography (PQC) to enhance the security level of the Crypto-Tile. According
to [80,81], this requires the usage of 256-bit keys for the AES algorithms and 384-bit digests
in the hash functions. Since the logic resources to implement the hash functions for the
generation of 224-bit and 512-bit digests are the same as the ones required for the generation
of 256-bit and 384-bit digests, respectively, we integrated the generation mechanisms for
all the digest sizes in the hash cryptographic coprocessors, improving its flexibility and
without increasing the cost in terms of logic resources.

The synthesis results on a 7 nm standard-cell technology for the Crypto-Tile and
the embedded cryptographic engines are illustrated in [14,16–19], in which we reported
the area complexity expressed in Gate Equivalent (GE), the throughput, and the power
consumption. In general, all the proposed engines outperform the existing solutions doc-
umented in the corresponding literature in terms of efficiency expressed as throughput
per area and in terms of energy consumption. In particular, the AES engine, refs. [14,17],
requires an area complexity of 56.01 kGE and supports a maximum frequency of 2.425 GHz,
offering a throughput higher than 30 Gbps at the cost of 10.9 mW of dynamic power con-
sumption. Concerning the engine for the public-key cryptographic functions, refs. [14,16],
we opted for the ECC-based cryptography instead of the Rivest–Shadir–Adleman (RSA)
cryptographic scheme, because it offers the same security level while requiring much lower
resources [43]. Hence, the developed ECC engine occupies an area of 658.9 kGE, supports a
maximum frequency of 1.525 GHz, and shows an average dynamic power consumption of
170 mW for signatures generation and 130 mW for signatures verification. It is interesting
to signal that the ECC engine itself occupies about 50% of the area of the whole Crypto-Tile:
this confirms that the choice of implementing public-key cryptographic functions based
on the ECC algorithm was the best solution because the usage of the RSA-based coun-
terpart would have required a much higher amount of resources, making the public-key
coprocessor consume almost all the logic resource required to implement the Crypto-Tile.
In addition, the ECC coprocessor has been designed with a specific interface to support
higher-level ECC-based schemes such as the Elliptic-Curve Diffie–Hellman (ECDH) [82],
the Elliptic-Curve Menezes–Qu–Vanstone (ECMQV) [82,83], and the Elliptic-Curve Inte-
grated Encryption Scheme (ECIES) [83,84], which can be implemented in software. Thanks
to the specialized mechanisms for the interface security policy (Section 5.2), the ECC copro-
cessor can accelerate in hardware the most computationally intensive parts of such schemes
by assisting the dedicated secure software routines implementing them. Similarly, the SHA
coprocessor, refs. [14,18], which occupies an area of 128.32 kGE, supports a maximum
frequency of 3.725 GHz and shows average dynamic power consumption of 100 mW and
70 mW for the SHA2 and the SHA-3 functions, respectively, and is able to assist in hardware
secure software routines dedicated to the HMAC scheme [85]. Finally, the RNG engine,
refs. [14,19], requires an area complexity of 127.16 kGE and shows an average dynamic
power consumption of 130 mW at the frequency of 4.325 GHz. This engine was character-
ized not only in terms of performance but it was also validated by using dedicated statistical
test suites to evaluate the levels of entropy and randomness offered by the generated bit-
streams [86]. All the tests were successful, satisfying the security requirements defined by
the NIST and the Bundesamt für Sicherheit in der Informationstechnik (BSI) [19].



Electronics 2023, 12, 4843 14 of 22

To evaluate the performance of the Crypto-Tile and its cryptographic engines, we
also implemented a demoboard on a VCU128 board by Xilinx/AMD. The implemented
system was aimed at emulating a Security Domain (Figure 6) by integrating the Crypto-Tile
together with a 64-bit RISC-V processor CVA6 [87] as Secure MCU, a DDR controller to
exploit the DDR4 memory onboard and implement the SRAM, and an AXI4 bus as system
bus. The results showed that the Crypto-Tile is able to accelerate the security services and
functions up to 400 times [14].

5.2. Interface Security Policy

According to the security functionalities included in the Crypto-Tile and described
in Section 5.1, it is possible to individuate the main security-critical assets that require
additional protection mechanisms when they are installed, used, and erased. We targeted
the security-critical assets at three different levels:

• Global Crypto-Tile level: this level concerns the global configuration of the Crypto-Tile;
• Cryptographic Operation level: this level concerns data that are processed during the

execution of the cryptographic operations;
• Key material level: this level concerns the keys, their installation in dedicated registers

inside the Crypto-Tile, and their storage, access, and utilization statistics.

At the Global Crypto-Tile level, we integrated seal/unseal mechanisms that rely on a
unique identifier that is configured during the secure boot process and the support of two
authorization levels for access to the Crypto-Tile: a privileged level and an unprivileged
level. For the cryptographic operation level, we integrated dedicated resources that strictly
regulate the execution of each cryptographic operation and the access to the related data.
For instance, Figure 8 shows the state diagram of the FSM that handles the cryptographic
operations for the AES cryptoprocessor and manages access to the processed data. The aux-
iliary data such as initialization vectors can be provided in input only in the CONFIGURED
state, while the input data to be encrypted can be written only in the RUNNING state, only
once and only after the encryption of the previous data block is completed. In addition, the
corresponding output data can be read only once and only in the RUNNING or ENDED
state depending on the executed cryptographic operation. Similarly, the commands that
can be provided to the AES cryptoprocessor strictly rely on the current state of the FSM.

AVAILABLE

CONFIGURED

READY

RUNNING

ENDED CANCELLEDHALTED

ERROR

Configuration Reset

Cancel

Reset

Reset

Cancel

End
Halt

Start

Reset

Auxiliary data written

Error

Error

Error

Error

Error Error Error

Cancel

Figure 8. FSM regulating the data access during the execution of a cryptographic operation.
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Concerning the key material level, the Crypto-Tile embeds dedicated seal/unseal
mechanisms similar to the ones used for the Global Crypto-Tile level. A dedicated FSM for
each key regulates its usage similarly to how it is illustrated for the cryptographic operations
in Figure 8. Counters and configuration registers limit the key utilization according to
the target operation. For instance, the usage of cryptographic keys can be configured for
specific AES operations such as the GCM one or only for encryption processes. In such
a case, the usage of that key in other AES operations different from the GCM one or in
decryption processes is not permitted.

In addition, each level presents logging and alerting resources to check unauthorized
access and interrupt all the ongoing operations in case of misusage, as well as triggers for
two distinct levels of panic mode. According to the severity of the panic mode, the key
material can be preserved to allow for retrieving it after the termination of the panic mode,
or it can be flushed to prevent an attacker from taking it over.

5.3. Physical Implementation

Regarding the physical implementation and according to the security partitioning
model in Figure 4, the Crypto-Tile has an impact on both the circuit level and the hardware
micro-architecture level. For this reason, we provided our module with countermeasures
for both timing and power analysis attacks.

We integrated a clock randomization mechanism to counteract timing attacks [54,55].
In this way, the execution of each cryptographic operation is unpredictable and an attacker
cannot gain information by observing it. For instance, the usage of 128-bit or 256-bit
keys in the AES operations determines a different execution time, because the former
requires 10 processing rounds, while the latter requires 14 processing rounds. With the
clock randomization approach, an attacker is no longer able to distinguish between the
key size from the execution time of an AES operation. In addition, such a mechanism
aids also in lowering the success rate of power analysis because DPA and CPA require
the time alignment of the power traces [88]. It is worth pointing out that the utilization
and the configuration of the clock randomization mechanism are strictly regulated by
specific authorization procedures at the interface security policy level because its usage has
direct effects on the security strength of the cryptographic coprocessors, hence also it must
considered as a security-critical asset.

Concerning power analysis attacks, we integrated also other dedicated protections to
make them ineffective. For instance, the ECC operations are very vulnerable to SPA, i.e., by
observing just one power trace, an attacker can retrieve the secret key without additional
statistical computations such as in DPA and CPA [16]. Thanks to the methodology described
in [88], we were able to analyze and evaluate the resistance of our ECC coprocessor against
Single Power Analysis (SPA) without the necessity of the physical chip and using gate-
level simulations, concluding that the dedicated countermeasures are able to guarantee
the required protection and defeat successfully these kinds of attacks [16]. Indeed, by
exploiting the same gate-level simulations on the netlist that we used to measure the power
consumption of the Crypto-Tile (Section 5.1), we were able to gather and analyze the power
consumption profile of the engines during the execution of the cryptographic operations.
As an example, in Figure 9 we report the power consumption profile of the ECC engine
before the integration of dedicated security mechanisms against power analysis attacks.

As illustrated in Figure 9, without equipping the cryptographic ECC engine with
specialized countermeasures, it is possible to distinguish if the bit of the key processed by
the engine is 0 or 1, because according to its values, the engine shows a different power
profile. Hence, an attacker can retrieve the value of the secret private key with a single
SPA attack, i.e., by analyzing only a single power trace. In Figure 10, it can be noted
how the power profile of the ECC engine changed after the integration of the dedicated
countermeasures; after the modifications, the power profile is invariant with respect to the
value of the key bits.
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Figure 9. Power trace of the ECC engine acquired during the execution of a signature generation,
before the integration of countermeasures against power analysis attacks. Extracted from [16].

Figure 10. Power trace of the ECC engine acquired during the execution of a signature generation,
after the integration of countermeasures against power analysis attacks. Extracted from [16].

5.4. Comparison with Existing TEEs

According to the results of the case study illustrated in Sections 5.1–5.3, we propose
a brief comparison between the hardware-based security solutions analyzed so far and
the proposed hardware coprocessor for the Rhea GPP. The isolation approach adopted
in the Rhea chip is similar to the one proposed in the AMD PSP, Rambus CMRT family,
and Synopsis tRoot products, that is the physical and complete isolation of the security
functions in a dedicated zone of the chip that is separated from the main computational
unit of the system. All the analyzed solutions include programmable units (e.g., micro-
processors or microcontrollers), secure memories, and hardware accelerators for the most
computationally intensive cryptographic algorithms. It is difficult to fully characterize the
communication mechanism between the secure zone and the non-secure zone for each
solution. The AMD PSP adopts a mailbox-based mechanism to exchange requests of secu-
rity services from the main CPU (i.e., non-secure zone) to the secure zone, and a similar
approach is adopted in the Rhea chip. Instead, this kind of information cannot be extracted
for the Rambus CMRT family and the Synopsis tRoot. The solution proposed by ARM
(i.e., the ARM TrustZone) and Intel (i.e., the Intel SGX) is opposite to the previous ones.
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The execution of the secure software is allotted to the main processing unit(s) together
with the normal software, and the isolation between the Normal world (non-secure zone)
and the Secure world (secure zone) relies on software assets aided by dedicated hardware
extensions: for instance, such software assets take the name of Enclave in the Intel SGX.
On the one hand, this latter solution lowers the cost in terms of physical resources; on the
other hand, the former approach guarantees a stronger isolation between the two zones.
Indeed, as an example, the work in [89] demonstrates that Hardware-assisted Isolated
Execution Environments (HIEEs) like the ARM TrustZone and the Intel SGX are suscepti-
ble to Denial-of-Service (DoS) and spoofing attacks. By contrast, such attacks cannot be
performed against the AMD PSP and the Security Subsystem of the Rhea GPP because the
physical isolation between the secure zone and the non-secure zone makes them immune.

6. Conclusions

In this work, we explored the critical aspects of designing robust and highly qualified
security modules for Trusted Environments. We discussed the need for security modules
that can withstand sophisticated attacks and ensure the integrity, confidentiality, and au-
thenticity of sensitive information. Our research focused on developing a comprehensive
design methodology and a set of metrics that can guide the creation of such security mod-
ules. The proposed methodology places a strong emphasis on the identification of potential
vulnerabilities at different and various levels and the application of security principles
in every aspect of the design process. We showed that our approach results in modules
that are fully equipped to withstand both known and emerging threats, according to the
presented case study. Furthermore, we introduced a set of metrics to assess the security
modules. These metrics provide a structured way to evaluate the robustness, efficiency,
and effectiveness of the modules, ensuring that they meet the stringent requirements of
Trusted Environments. Our study has also highlighted the strict connection between such
metrics through the case study. Indeed, it shows how the security services provided by
the developed security module and the implementation platform (hardware or software)
concur to the definition of security-critical assets, whose access must be regulated by means
of dedicated and specialized procedures and resources at the interface security policy level.

In conclusion, our research offers a valuable contribution to the field of TEE security.
We have provided a systematic methodology and a set of metrics to guide the design and
evaluation of security modules. By following these guidelines, developers and security
professionals can create solutions that are more resilient and trustworthy. As Trusted Envi-
ronments become increasingly vital in today’s interconnected world, the principles outlined
in this paper are instrumental in achieving the highest level of security and reliability.
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Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
AI Artificial Intelligence
AXI Advanced eXtensible Interface
BSI Bundesamt für Sicherheit in der Informationstechnik
CAVP Cryptographic Algorithm Validation Program
CBC Cipher Block Chaining
CFB Cipher FeedBack
CCM Counter with CBC-MAC
CMAC Cipher-based Message Authentication Code
CMRT CryptoManager Root-of-Trust
CoT Chain-of-Trust
CPA Correlation Power Analysis
CPU Central Processing Unit
CTR CounTeR
CSPRNG Cryptographically Secure Pseudo-Random Number Generator
DoS Denial-of-Service
DPA Differential Power Analysis
ECB Electronic CodeBook
ECC Elliptic Curve Cryptography
ECIES Elliptic Curve Integrated Encryption Scheme
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
ECMQV Elliptic Curve Menezes-Qu-Vanstone
EM Electromagnetic Emission
EMA Electromagnetic Emission Analysis
EPC Enclave Page Cache
EPCM Enclave Page Cache Map
EPI European Processor Initiative
FSM Finite State Machine
GCM Galois Counter Mode
GE Gate Equivalent
GPIO General Purpose Input/Output
GPP General Purpose Processor
HIEE Hardware-assisted Isolated Execution Environment
HMAC Hash-based Message Authentication Code
HPC High-Performance Computing
HSM Hardware Security Module
HW Hardware
IEEE Institute of Electrical and Electronics Engineers
IoT Internet-of-Things
LUT Look-Up Table
MAC Message Authentication Code
MCU Master Control Unit
NIST National Institute of Standard and Technology
OFB Output FeedBack
OTP One-Time Programmable
PQC Post-Quantum Cryptography
PSP Platform Security Processor
RISC Reduced Instruction Set Computer
RNG Random Number Generator
RoT Root-of-Trust
SCA Side-Channel Attack
SGX Software Guard eXtensions
SoC System-on-Chip
SHA Secure Hash Algorithm
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SPA Simple Power Analysis
SRAM Secure RAM
SW Software
TEE Trusted Execution Environment
TZASC TrustZone Address Space Controller
TZMA TrustZone Memory Adapter
UART Universal Asynchronous Receiver-Transmitter
UEFI Unified Extensible Firmware Interface
XTS XEX encryption mode with Tweak and ciphertext Stealing
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