Triboelectric Nanogenerator-Based Electronic Sensor System for Food Applications
Abstract
:1. Introduction
2. Principles and Working Principle of TENG for Food Application
2.1. Vertical Contact-Separation Mode
2.2. Lateral Sliding Mode
2.3. Single-Electrode Mode
2.4. Freestanding Triboelectric-Layer Mode
3. Triboelectric Nanogenerator Applications in Food Quality
3.1. Triboelectric Nanogenerators for Food Quality Testing
3.2. Triboelectric Nanogenerators for Food Monitoring
4. Application of Triboelectric Nanogenerator in Food Improvement
4.1. Triboelectric Nanogenerators for Food Sterilization
4.2. Triboelectric Nanogenerators to Boost Food Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste; FAO: Rome, Italy, 2011. [Google Scholar]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1. [Google Scholar] [CrossRef]
- Jaffee, S.; Henson, S.; Unnevehr, L.; Grace, D.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Low-and Middle-Income Countries; World Bank Publications: Washington, DC, USA, 2018; ISBN 1-4648-1346-9. [Google Scholar]
- Uçar, A.; Yilmaz, M.V.; Çakiroglu, F.P. Food Safety—Problems and Solutions. In Significance, Prevention and Control of Food Related Diseases; INTECH Open: London, UK, 2016; p. 3. [Google Scholar]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Nor, M.Z.M. Applications of Imaging and Spectroscopy Techniques for Non-Destructive Quality Evaluation of Potatoes and Sweet Potatoes: A Review. Trends Food Sci. Technol. 2020, 96, 208–221. [Google Scholar] [CrossRef]
- Lee, T.; Puligundla, P.; Mok, C. Corona Discharge Plasma Jet Inactivates Food-borne Pathogens Adsorbed onto Packaging Material Surfaces. Packaging Technol. Sci. 2017, 30, 681–690. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, G.; Libanori, A.; Chen, J. Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry 2021, 3, 279–290. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Lang, J.; Li, L.; Zhang, Y. Triboelectric Nanogenerator and Artificial Intelligence to Promote Precision Medicine for Cancer. Nano Energy 2022, 92, 106783. [Google Scholar] [CrossRef]
- Jiang, M.; Lu, Y.; Zhu, Z.; Jia, W. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines 2021, 12, 698. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Chen, C.; Gong, Q.; Xie, G.; Yao, M.; Tai, H.; Jiang, Y.; Chen, J. Self-powered Respiration Monitoring Enabled by a Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2101262. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Zhang, W.; Hu, Z.; Li, X.; Liu, J.; Xu, G.; Yang, C. Self-Powered Triboelectric Nanogenerator Driven Nanowires Electrode Array System for the Urine Sterilization. Nano Energy 2022, 96, 107111. [Google Scholar] [CrossRef]
- Xu, J.; Wei, X.; Li, R.; Shi, Y.; Peng, Y.; Wu, Z.; Wang, Z.L. Intelligent Self-Powered Sensor Based on Triboelectric Nanogenerator for Take-off Status Monitoring in the Sport of Triple-Jumping. Nano Res. 2022, 15, 6483–6489. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, J. A Self-Powered Grip Exerciser Based on Triboelectric Nanogenerator for Intelligent Sports Monitoring. Mater. Technol. 2022, 37, 753–759. [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef]
- Shen, F.; Li, Z.; Guo, H.; Yang, Z.; Wu, H.; Wang, M.; Luo, J.; Xie, S.; Peng, Y.; Pu, H. Recent Advances towards Ocean Energy Harvesting and Self-powered Applications Based on Triboelectric Nanogenerators. Adv. Electron. Mater. 2021, 7, 2100277. [Google Scholar] [CrossRef]
- Matin Nazar, A.; Idala Egbe, K.-J.; Abdollahi, A.; Hariri-Ardebili, M.A. Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization. Energies 2021, 14, 5600. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: State of the Art and Future Perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Wang, F.; Tong, D.; Gao, L.; Li, D.; Wu, L.; Mu, X.; Yang, Y. Boosting Output Performance of Triboelectric Nanogenerator via Mutual Coupling Effects Enabled Photon-Carriers and Plasmon. Adv. Sci. 2022, 9, 2103957. [Google Scholar] [CrossRef]
- Jin, Z.; Zhao, F.; Li, L.; Wang, Y.-C. Tribo-Sanitizer: A Portable and Self-Powered UV Device for Enhancing Food Safety. Nano Energy 2023, 115, 108675. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, F.; Tian, J.; Li, S.; Fu, E.; Nie, J.; Lei, R.; Ding, Y.; Chen, X.; Wang, Z.L. Self-Powered Electro-Tactile System for Virtual Tactile Experiences. Sci. Adv. 2021, 7, eabe2943. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Cheng, R.; Ning, C.; Jiang, Y.; Zhang, Y.; Wang, Z.L. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. Adv. Mater. 2022, 34, 2109355. [Google Scholar] [CrossRef]
- Sun, M.; Lu, Q.; Wang, Z.L.; Huang, B. Understanding Contact Electrification at Liquid–Solid Interfaces from Surface Electronic Structure. Nature Commun. 2021, 12, 1752. [Google Scholar] [CrossRef]
- Lu, Y.; Mi, Y.; Wu, T.; Cao, X.; Wang, N. From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors 2022, 12, 323. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Nashalian, A.; Chen, J. Advances in Self-Powered Chemical Sensing via a Triboelectric Nanogenerator. Nanoscale 2021, 13, 2065–2081. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, W.; Han, C.; Fan, F.; Wang, Z.L. Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Adv. Materials 2014, 26, 3580–3591. [Google Scholar] [CrossRef]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Xia, K.; Zhu, Z.; Zhang, H.; Du, C.; Fu, J.; Xu, Z. Milk-Based Triboelectric Nanogenerator on Paper for Harvesting Energy from Human Body Motion. Nano Energy 2019, 56, 400–410. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a Porous Wood-Based Triboelectric Nanogenerator and Gas Sensor for Real-Time Wireless Food-Quality Assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Wang, P.; Peng, Y.; Wang, C.; Wang, J.; Zhang, D. Utilizing Breakdown Discharge of Self-Powered Triboelectric Nanogenerator to Realize Multimodal Sterilization. Adv. Sustain. Syst. 2023, 7, 2200383. [Google Scholar] [CrossRef]
- Zhu, G.; Peng, B.; Chen, J.; Jing, Q.; Lin Wang, Z. Triboelectric Nanogenerators as a New Energy Technology: From Fundamentals, Devices, to Applications. Nano Energy 2015, 14, 126–138. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, J.; Chu, P.K.; Shin, D.-M.; Luo, Y.; Feng, S.-P. Hybrid Photovoltaic-Triboelectric Nanogenerators for Simultaneously Harvesting Solar and Mechanical Energies. Nano Energy 2021, 89, 106376. [Google Scholar] [CrossRef]
- Parida, K.; Xiong, J.; Zhou, X.; Lee, P.S. Progress on Triboelectric Nanogenerator with Stretchability, Self-Healability and Bio-Compatibility. Nano Energy 2019, 59, 237–257. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, F.; Du, W.; Han, C.; Zhang, C.; Wang, Z. Transparent Paper-Based Triboelectric Nanogenerator as a Page Mark and Anti-Theft Sensor. Nano Res. 2014, 7, 1215–1223. [Google Scholar] [CrossRef]
- Miao, P.; Ma, X.; Xie, L.; Tang, Y.; Sun, X.; Wen, Z.; Wang, Z. Tetrahedral DNA Mediated Direct Quantification of Exosomes by Contact-Electrification Effect. Nano Energy 2022, 92, 106781. [Google Scholar] [CrossRef]
- Song, Y.; Wang, N.; Hu, C.; Wang, Z.L.; Yang, Y. Soft Triboelectric Nanogenerators for Mechanical Energy Scavenging and Self-Powered Sensors. Nano Energy 2021, 84, 105919. [Google Scholar] [CrossRef]
- Liao, J.; Zou, Y.; Jiang, D.; Liu, Z.; Qu, X.; Li, Z.; Liu, R.; Fan, Y.; Shi, B.; Li, Z. Nestable Arched Triboelectric Nanogenerator for Large Deflection Biomechanical Sensing and Energy Harvesting. Nano Energy 2020, 69, 104417. [Google Scholar] [CrossRef]
- Jiang, T.; Yao, Y.; Xu, L.; Zhang, L.; Xiao, T.; Wang, Z.L. Spring-Assisted Triboelectric Nanogenerator for Efficiently Harvesting Water Wave Energy. Nano Energy 2017, 31, 560–567. [Google Scholar] [CrossRef]
- Luo, J.; Gao, W.; Wang, Z.L. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 33, 2004178. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, H.; Miao, L.; Chen, X.; Song, Y.; Guo, H.; Xu, C.; Ren, Z.; Zhang, H. A Flexible Hybridized Electromagnetic-Triboelectric Nanogenerator and Its Application for 3D Trajectory Sensing. Nano Energy 2020, 74, 104878. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Yu, X.; Xu, Y.; Yang, Y.; Liu, S.; Cheng, T.; Wang, Z.L. Breeze-Driven Triboelectric Nanogenerator for Wind Energy Harvesting and Application in Smart Agriculture. Appl. Energy 2022, 306, 117977. [Google Scholar] [CrossRef]
- Su, Y.; Yang, T.; Zhao, X.; Cai, Z.; Chen, G.; Yao, M.; Chen, K.; Bick, M.; Wang, J.; Li, S. A Wireless Energy Transmission Enabled Wearable Active Acetone Biosensor for Non-Invasive Prediabetes Diagnosis. Nano Energy 2020, 74, 104941. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, S.; Lin, L.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical Investigation and Structural Optimization of Single-electrode Triboelectric Nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340. [Google Scholar] [CrossRef]
- Yang, Y.; Mu, B.; Wang, M.; Nikitina, M.A.; Zafari, U.; Xiao, X. Triboelectric Nanogenerator–Based Wireless Sensing for Food Precise Positioning. Mater. Today Sustain. 2022, 19, 100220. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Yin, M.; Wang, J.; Gao, Q.; Yu, Y.; Cheng, T.; Wang, Z.L. Gravity Triboelectric Nanogenerator for the Steady Harvesting of Natural Wind Energy. Nano Energy 2021, 82, 105740. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Zhang, B.; Yang, O.; Yuan, W.; He, L.; Wei, X.; Wang, J.; Wang, Z.L. Harvesting Wind Energy by a Triboelectric Nanogenerator for an Intelligent High-Speed Train System. ACS Energy Lett. 2021, 6, 1490–1499. [Google Scholar] [CrossRef]
- Meng, W.; Yang, Y.; Zhang, R.; Wu, Z.; Xiao, X. Triboelectric-Electromagnetic Hybrid Generator Based Self-Powered Flexible Wireless Sensing for Food Monitoring. Chem. Eng. J. 2023, 473, 145465. [Google Scholar] [CrossRef]
- Barlow, S.M.; Boobis, A.R.; Bridges, J.; Cockburn, A.; Dekant, W.; Hepburn, P.; Houben, G.F.; König, J.; Nauta, M.J.; Schuermans, J. The Role of Hazard-and Risk-Based Approaches in Ensuring Food Safety. Trends Food Sci. Technol. 2015, 46, 176–188. [Google Scholar] [CrossRef]
- Tiede, K.; Boxall, A.B.; Tear, S.P.; Lewis, J.; David, H.; Hassellöv, M. Detection and Characterization of Engineered Nanoparticles in Food and the Environment. Food Addit. Contam. 2008, 25, 795–821. [Google Scholar] [CrossRef]
- Farré, M.; Barceló, D. Introduction to the Analysis and Risk of Nanomaterials in Environmental and Food Samples. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; Volume 59, pp. 1–32. ISBN 0166-526X. [Google Scholar]
- Lin, C.; Zhao, H.; Huang, H.; Ma, X.; Cao, S. PEO/Cellulose Composite Paper Based Triboelectric Nanogenerator and Its Application in Human-Health Detection. Int. J. Biol. Macromol. 2023, 228, 251–260. [Google Scholar] [CrossRef]
- Huang, T.; Sun, W.; Liao, L.; Zhang, K.; Lu, M.; Jiang, L.; Chen, S.; Qin, A. Detection of Microplastics Based on a Liquid–Solid Triboelectric Nanogenerator and a Deep Learning Method. ACS Appl. Mater. Interfaces 2023, 15, 35014–35023. [Google Scholar] [CrossRef]
- Singh, P.; Gandhi, N. Milk Preservatives and Adulterants: Processing, Regulatory and Safety Issues. Food Rev. Int. 2015, 31, 236–261. [Google Scholar] [CrossRef]
- Li, W.C.; Chow, C.F. Adverse Child Health Impacts Resulting from Food Adulterations in the Greater China Region. J. Sci. Food Agric. 2017, 97, 3897–3916. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, N.; Xu, Y.; Chen, S.; Willander, M.; Cao, X.; Wang, Z.L. Triboelectric Nanogenerators Based on Melamine and Self-Powered High-Sensitive Sensors for Melamine Detection. Adv. Funct. Mater. 2016, 26, 3029–3035. [Google Scholar] [CrossRef]
- Karakuş, S.; Baytemir, G.; Özeroğlu, C.; Taşaltın, N. An Ultra-Sensitive Smartphone-Integrated Digital Colorimetric and Electrochemical Camellia Sinensis Polyphenols Encapsulated CuO Nanoparticles-Based Ammonia Biosensor. Inorg. Chem. Commun. 2022, 143, 109733. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV Illumination-Enhanced Ultrasensitive Ammonia Gas Sensor Based on (001) TiO2/MXene Heterostructure for Food Spoilage Detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef]
- Maes, S.; Heyndrickx, M.; Vackier, T.; Steenackers, H.; Verplaetse, A.; De Reu, K. Identification and Spoilage Potential of the Remaining Dominant Microbiota on Food Contact Surfaces after Cleaning and Disinfection in Different Food Industries. J. Food Prot. 2019, 82, 262–275. [Google Scholar] [CrossRef]
- Holzapfel, W.H. The Gram-Positive Bacteria Associated with Meat and Meat Products. Microbiol. Meat Poult. 1998, 25, 35–84. [Google Scholar]
- Rajkovic, A.; Jovanovic, J.; Monteiro, S.; Decleer, M.; Andjelkovic, M.; Foubert, A.; Beloglazova, N.; Tsilla, V.; Sas, B.; Madder, A. Detection of Toxins Involved in Foodborne Diseases Caused by Gram-positive Bacteria. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1605–1657. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-Powered Biosensing System Driven by Triboelectric Nanogenerator for Specific Detection of Gram-Positive Bacteria. Nano Energy 2022, 93, 106828. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Demiray, S.; Pintado, M.E.; Castro, P.M.L. Evaluation of Phenolic Profiles and Antioxidant Activities of Turkish Medicinal Plants: Tiliaargentea, Crataegi Folium Leaves and Polygonum Bistorta Roots. Int. J. Pharmacol. Pharm. Sci. 2009, 3, 74–79. [Google Scholar]
- Li, X.; Li, J.; Ji, W.; Ou, Y.; He, R.; Xu, X.; Wang, B. Modeling the Risk of Acetone Emission from a Storage Tank in Summer and Winter. Process Saf. Prog. 2023, 42, 155–161. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Yuan, Z.; Duan, Z.; Zhao, Q.; Zhang, Y.; Su, Y.; Jiang, Y.; Xie, G.; Tai, H. Novel Chitosan/ZnO Bilayer Film with Enhanced Humidity-Tolerant Property: Endowing Triboelectric Nanogenerator with Acetone Analysis Capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Tang, Y.; Li, J.; Zhang, B.; Liang, E.; Mao, Y.; Wang, X. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring. ACS Nano 2018, 12, 6156–6162. [Google Scholar] [CrossRef]
- Reba, M.; Seto, K.C. A Systematic Review and Assessment of Algorithms to Detect, Characterize, and Monitor Urban Land Change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef]
- Chen, S.; Brahma, S.; Mackay, J.; Cao, C.; Aliakbarian, B. The Role of Smart Packaging System in Food Supply Chain. J. Food Sci. 2020, 85, 517–525. [Google Scholar] [CrossRef]
- Pang, Y. Intelligent Belt Conveyor Monitoring and Control; Citeseer: State College, PA, USA, 2010; ISBN 90-5584-134-X. [Google Scholar]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible Coatings and Antimicrobial Nanoemulsions for Enhancing Shelf Life and Reducing Foodborne Pathogens of Fruits and Vegetables: A Review. Sustain. Mater. Technol. 2020, 26, e00215. [Google Scholar] [CrossRef]
- Du, J.; Jiao, C.; Li, C.; Tao, Y.; Lu, J.; Cheng, Y.; Xia, X.; Tan, M.; Wang, H. Eco-Friendly and Humidity-Sensitive Cellulosic Triboelectric Materials Tailored by Xylanase for Monitoring the Freshness of Fruits. Nano Energy 2023, 116, 108803. [Google Scholar] [CrossRef]
- Pang, Y.; Huang, Z.; Fang, Y.; Xu, X.; Cao, C. (Chase) Toward Self-Powered Integrated Smart Packaging System−Desiccant-Based Triboelectric Nanogenerators. Nano Energy 2023, 114, 108659. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.; Khan, M.S. A Review on Mechanisms and Commercial Aspects of Food Preservation and Processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Farkas, D. High-Pressure Food Processing. Food Sci. Technol. Int. 2008, 14, 413–418. [Google Scholar] [CrossRef]
- López, M.A.; Palou, E. Ultraviolet Light and Food Preservation. In Novel Food Processing Technologies; Barbosa-Canovas, V.G., Tapia, M.S., Cano, M.P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 405–421. [Google Scholar]
- Naito, S.; Takahara, H. Ozone Contribution in Food Industry in Japan. Ozone Sci. Eng. 2006, 28, 425–429. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Li, J.; Wang, C.; Wang, J.; Zhang, D.; Peng, Y.; Wang, B.; Wu, Z. Self-Powered Antifouling UVC Pipeline Sterilizer Driven by the Discharge Stimuli Based on the Modified Freestanding Rotary Triboelectric Nanogenerator. Nano Energy 2022, 95, 106969. [Google Scholar] [CrossRef]
- He, J.; Guo, X.; Pan, C.; Cheng, G.; Zheng, M.; Zi, Y.; Cui, H.; Li, X. High Output Soft-Contact Fiber-Structure Triboelectric Nanogenerator and Its Sterilization Application. Nanotechnology 2023, 34, 385403. [Google Scholar] [CrossRef]
- Hanes, D. Nontyphoid Salmonella. In International Handbook of Foodborne Pathogens; CRC Press: Boca Raton, FL, USA, 2003; pp. 157–170. [Google Scholar]
- Rodriguez-Lazaro, D.; Gonzalez-García, P.; Delibato, E.; De Medici, D.; García-Gimeno, R.M.; Valero, A.; Hernandez, M. Next Day Salmonella Spp. Detection Method Based on Real-Time PCR for Meat, Dairy and Vegetable Food Products. Int. J. Food Microbiol. 2014, 184, 113–120. [Google Scholar] [CrossRef]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Merlos, F.A.; Monzon, J.P.; Mercau, J.L.; Taboada, M.; Andrade, F.H.; Hall, A.J.; Jobbagy, E.; Cassman, K.G.; Grassini, P. Potential for Crop Production Increase in Argentina through Closure of Existing Yield Gaps. Field Crops Res. 2015, 184, 145–154. [Google Scholar] [CrossRef]
- D’Amelia, V.; Docimo, T.; Crocoll, C.; Rigano, M.M. Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes 2021, 12, 936. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Yang, H.; He, W.; Long, L.; Wu, M.; Zhang, X.; Xi, Y.; Hu, C.; Wang, Z.L. Ultra-Stability High-Voltage Triboelectric Nanogenerator Designed by Ternary Dielectric Triboelectrification with Partial Soft-Contact and Non-Contact Mode. Nano Energy 2021, 90, 106585. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Han, K.; Shi, X.; Ren, Z.; Xi, Y.; Ying, Y.; Ping, J.; Wang, Z.L. Stimulation of Ambient Energy Generated Electric Field on Crop Plant Growth. Nat. Food 2022, 3, 133–142. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Q.; He, C.; Zhang, C.; Feng, X.; Li, X.; Zhao, Q.; Ying, Y.; Ping, J. Plant-Protein-Enabled Biodegradable Triboelectric Nanogenerator for Sustainable Agriculture. Fundam. Res. 2022, 2, 974–984. [Google Scholar] [CrossRef]
- Lei, D.; Wu, J.; Zi, Y.; Pan, C.; Cui, H.; Li, X. Self-Powered Sterilization System for Wearable Devices Based on Biocompatible Materials and Triboelectric Nanogenerator. ACS Appl. Electron. Mater. 2023, 5, 2819–2828. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.; Xu, J.; Yin, Y.; Cao, J.; Yu, R.; Wang, B.; Li, R.; Zhu, G. Triboelectric Nanogenerator Based on Direct Image Lithography and Surface Fluorination for Biomechanical Energy Harvesting and Self-Powered Sterilization. Nano Energy 2022, 98, 107279. [Google Scholar] [CrossRef]
- Huo, Z.-Y.; Lee, D.-M.; Jeong, J.-M.; Kim, Y.-J.; Kim, J.; Suh, I.-Y.; Xiong, P.; Kim, S.-W. Microbial Disinfection with Supercoiling Capacitive Triboelectric Nanogenerator. Adv. Energy Mater. 2022, 12, 2103680. [Google Scholar] [CrossRef]
- Sun, X.; Dong, L.; Liu, Y.; Li, X.; Liu, J.; Wang, N.; Liu, Y.; Li, X.; Wang, D.; Chen, S. Biomimetic PVA-PVDF-Based Triboelectric Nanogenerator with MXene Doping for Self-Powered Water Sterilization. Mater. Today Nano 2023, 24, 100410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jin, W.; Wang, L.; Zhu, Z. Triboelectric Nanogenerator-Based Electronic Sensor System for Food Applications. Electronics 2023, 12, 4880. https://doi.org/10.3390/electronics12234880
Wang Y, Jin W, Wang L, Zhu Z. Triboelectric Nanogenerator-Based Electronic Sensor System for Food Applications. Electronics. 2023; 12(23):4880. https://doi.org/10.3390/electronics12234880
Chicago/Turabian StyleWang, Yutong, Weifeng Jin, Langhong Wang, and Zhiyuan Zhu. 2023. "Triboelectric Nanogenerator-Based Electronic Sensor System for Food Applications" Electronics 12, no. 23: 4880. https://doi.org/10.3390/electronics12234880
APA StyleWang, Y., Jin, W., Wang, L., & Zhu, Z. (2023). Triboelectric Nanogenerator-Based Electronic Sensor System for Food Applications. Electronics, 12(23), 4880. https://doi.org/10.3390/electronics12234880