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Abstract: Target detection in optical remote sensing images using deep-learning technologies has a
wide range of applications in urban building detection, road extraction, crop monitoring, and forest
fire monitoring, which provides strong support for environmental monitoring, urban planning, and
agricultural management. This paper reviews the research progress of the YOLO series, SSD series,
candidate region series, and Transformer algorithm. It summarizes the object detection algorithms
based on standard improvement methods such as supervision, attention mechanism, and multi-scale.
The performance of different algorithms is also compared and analyzed with the common remote
sensing image data sets. Finally, future research challenges, improvement directions, and issues of
concern are prospected, which provides valuable ideas for subsequent related research.

Keywords: deep learning; optical remote sensing image; object detection; comparative analysis
of performance

1. Introduction

Optical remote sensing image object detection has always been one of the research
hotspots in the field of computer vision, and its main task is to locate and classify the objects
of interest in remote sensing images [1]. As illustrated in Figure 1, the trained deep-learning
algorithm is utilized to identify and predict the object of remote sensing images. The task
of remote sensing image object detection is highly challenging and has broader application
prospects, such as automatic driving [2], face recognition [3], pedestrian detection [4],
medical detection [5], and so on. At the same time, object detection can also be used for
image segmentation [6], image description [7], object tracking [8], action recognition [9],
and other more complex computer vision tasks. Preprocessing, feature extraction, and
object classification are typically the three processes of traditional remote sensing picture
object detection techniques. First, the entire image is scanned using the sliding window
approach, which may be configured with various aspect ratios to improve the capacity to
recognize objects of various forms. This allows for the division of the image into multiple
candidate regions.

Then, each sliding window is subjected to feature extraction. The matching technique
scale-invariant feature transform [10] (SIFT), the [11] histogram of oriented gradient (HOG),
and Haar features are examples of traditional features. These characteristics mainly depend
on the image’s texture, color, and scale. By extracting features, the object can be more
accurately characterized. Finally, the sliding window is classified using conventional
machine-learning classifiers like support vector machines (SVMs) and Adaboost to perform
object detection. Using the retrieved features, the classifier will decide if the object item is
present in the sliding window. Accurate object recognition can be achieved by training the
classifier and learning the feature distribution of the object. In 2001, the birth of V-J detector
was mainly used for face detection. The HOG+SVM approach first surfaced in 2006 and
was primarily used to detect pedestrians. In 2008, Felzenszwalb presented the deformable
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part model (DPM) methodology [12]. For a long time before the deep-learning method
matured, the DPM algorithm has been playing a role in the field of object detection. These
are conventional image processing and computer vision-based item detection techniques.
Traditional object detection algorithms for optical remote sensing images mainly rely
on hand-designed feature extraction and traditional machine-learning classifiers. These
methods have a strong interpretability of features such as texture, color, and scale of the
object. However, traditional methods have some limitations in dealing with complex
scenes, object scale changes, occlusion, and so on. Traditional approaches also have certain
restrictions regarding computational correctness and efficiency due to the high resolution
and broad coverage area of remote sensing images.
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Figure 1. Object detection example diagram (The purpose of this figure is to show that we use the
existing YOLOv8 algorithm model to perform object prediction and recognition in different categories
of remote sensing image sample images of RSOD).

Deep-learning-based object recognition techniques have steadily emerged in recent
years as computer vision and deep learning have advanced, which can better solve the
limitations of traditional methods and have made significant breakthroughs in remote
sensing image object detection.

When compared to the conventional method based on manual features, the object
detection method based on deep learning has significant advantages. Traditional methods
usually require manual designs of feature extractors, and the effect is limited under complex
scenes and highly variable conditions. However, object detection methods based on deep
learning can learn feature representations directly from the original image via end-to-end
training without relying on hand-designed feature extractors. The Convolutional Neural
Network (CNN) deep-learning model can extract rich feature information from images
and capture semantic information at different levels, thus improving the accuracy and
generalization ability of object detection.

Deep-learning-based object identification algorithms like Region-based Convolutional
Neural Networks (Faster RCNN) [13], You Only Look Once (YOLO) [14], Single Shot
MultiBox Detector (SSD) [15], and others have recently been popular research topics.
These algorithms effectively address the balance between accuracy and efficiency in object
detection by introducing different network structures and optimization methods. For
example, Faster RCNN [13] used the Region Proposal Network (RPN) to generate candidate
object frames before classifying and locating objects utilizing a series of convolutional and
fully connected layers. However, YOLO [14] turned the object identification challenge
into a regression issue and used a single CNN model to directly forecast the category and
location of the object.

This paper provides a detailed summary of the research progress based on the YOLO
series, SSD series, candidate region series, and Transformer algorithm. This study also
explores the practical applications of these algorithms in the domain of optical remote
sensing image object detection. This study involves a comparative investigation of various
algorithms’ performance, and the commonly used remote sensing image data sets are used.
Additionally, the influence of common enhancement techniques, including supervised
learning, attention mechanism, and multi-scale on the object detection algorithm is summa-
rized. By conducting these comparisons and analyses, we can enhance our comprehension
of the benefits and constraints associated with different algorithms. This will enable us
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to offer valuable insights and recommendations for future research endeavors, thereby
fostering the advancement and utilization of this particular field.

2. Object Detection Algorithms for Optical Remote Sensing Images
2.1. Remote Sensing Object Detection Algorithm Based on Anchor Frame
2.1.1. YOLO Series Object Detection Algorithms

Due to their quick and precise capabilities, YOLO series object recognition algorithms
have drawn a lot of attention. The first YOLO algorithm to be proposed was YOLOv1 [14].
Using an end-to-end single-stage network, it classified and located objects simultaneously,
greatly increasing detection speed while retaining detection accuracy. YOLOv2 [16] im-
proved YOLOv1 by introducing Darknet-19 as the backbone network and adopting the
Anchor mechanism and multi-scale training strategy while using BN (Batch Normalization)
to accelerate convergence and avoid overfitting. It had better recall and positioning accuracy
and could adapt to multi-size image inputs. Based on YOLOv2, YOLOv3 [17] employed a
more powerful darknet-53 backbone network and introduced the FPN structure to achieve
multi-scale detection. It improved detection accuracy and speed by removing the pooling
and fully connected layers and switching to logistic regression from softmax for classifi-
cation. In addition, YOLOv3 provided a flexible version of tiny-darknet. YOLOv4 [18]
introduced CSPDarknet53 as the backbone network with mosaic data enhancement and
SPP+PAN structure to improve feature representation and cross-scale information fusion
capabilities. It used GIOU_Loss instead of the Smooth L1 Loss function to improve the
detection accuracy. The YOLOv5 [19] adopted CSPDarknet53 and Focus network based
on YOLOv4 with Mosaic data enhancement. It used FPN (Feature Pyramid Network) and
PAN (Pyramid Attention Network) structures for feature fusion and improved loss function
and prediction frame filtering methods. Its lightweight model and high-accuracy object
detection made it an excellent choice. The YOLOX [20] algorithm further improved its
accuracy and speed via clever integration schemes such as data augmentation, anchor-free
detection, and label classification. YOLOv6 [21] used EfficientRep Backbone and Rep-PAN
Neck structure with an anchor-free paradigm and SIoU (Scale-Invariant Intersection over
Union) bounding box regression loss optimization model. At the same time, it also utilized
post-training quantization and quantitative perception training to improve the reason-
ing speed. YOLOv7 [22] was an improved object detection algorithm based on YOLOv5
and YOLOR, which introduced ELAN (Efficient and Lightweight Aggregation Network,
ELAN), Rep (Reparameterization Convolution, Rep), and Auxiliary Head detection and
other new techniques, and used YOLOX’s SimOTA (Sim Optimal Transport Algorithm,
SimOTA) strategy and YOLOV5’s cross-grid search for label assignment. YOLOv7 was
a worthwhile model to learn. YOLOv8 [23] was an improved version of YOLOv5 based
on YOLOv5, which was fast, accurate, and easy to use for various object detection and
tracking, instance segmentation, image classification, and pose estimation tasks. It adopted
the overall structure of the CSPDarknet backbone network, the PAN-FPN neck, and the
decoupled head. It improved the details such as using Context Cascaded Fully Convolu-
tional Network C2f (Context Cascaded Fully Convolutional Network, C2f) module instead
of the C3 (Context Cascaded Convolutional Network, C3) module and removing some
convolutional structures in PAN-FPN. Compared with YOLOv5, YOLOv8 was fundamen-
tally different, which was a model based on the idea of anchor-free. The object detection
algorithm has undergone several iterations and upgrades of YOLOv1, YOLOv2, YOLOv3,
YOLOv4, YOLOv5, YOLOX, YOLOv6, YOLOv7, and YOLOv8, which mainly includes the
use of different backbone networks, the introduction of the Anchor mechanism, multi-scale
training strategy, BN, logistic regression instead of softmax, FPN structure, CSP (CSP, Cross
Stage Partial) Darknet, Mosaic data enhancement, SPP (Spatial Pyramid Pooling, SPP)
and PAN structure, GIoU_Loss (Generalized Intersection over Union Loss, GIoU_Loss),
Focus network, anchor-free detection, and other new technologies and methods, which
significantly improve the speed and accuracy of object detection, and gradually move
towards lightweight and efficient. Among them, YOLOv5 and YOLOX are relatively novel
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and excellent models, while YOLOv8 is an improved model based on an anchor-free idea.
Table 1 provides a summary of the features, benefits, and drawbacks of YOLOv1-v8:

Table 1. Comparison of YOLOv1-v8 versions.

Version Time Characteristics Weakness Advantage

YOLOv1 [14] 2015
Fully convolutional

networks, high real-time,
simple, and effective.

Poor positioning accuracy, and
poor detection of small objects.

Fast, easy to implement
and deploy.

YOLOv2 [16] 2016

Anchor box, multi-scale
prediction, and Darknet-19

are used as the basic
network with significant
accuracy improvement.

Detection of small objects
remains difficult.

Fast speed, high overall
accuracy, and

good robustness.

YOLOv3 [17] 2018 Multi-scale prediction,
FPN, better objecting

Relatively slow,
higher computing resources

are needed.

High detection accuracy,
the effect of small object
detection is improved,
and strong robustness.

YOLOv4 [18] 2020

Powerful detection
performance, faster speeds,

higher accuracy,
CSPDarknet53 network.

Requires higher computational
resources and

higher complexity.

Excellent detection
accuracy, good detection

effect on small objects and
occluded objects, and

strong robustness.

YOLOv5 [19] 2020
Lightweight network, fast
speed, high precision, easy

to train and deploy.

Relatively new, there may be
some instability and room

for improvement.

High speed and high
accuracy, efficient

performance and training
deployment efficiency,

multi-language support,
and smaller model volume.

YOLOX [20] 2021 Decoupled head,
anchor-free, and SimOTA.

Currently, there are only
640 × 640 pre-trained weights.

Better performance at
lower image resolutions.

YOLOv6 [21] 2022

Support model training,
reasoning, and
multi-platform

deployment, improvement,
and optimization of

network structure and
training strategy.

High false detection rate,
version maintenance update

speed is too slow, not suitable
for industrial fields.

Full-chain industrial
application requirements,
improved and optimized
network structure, and

algorithm level.

YOLOv7 [22] 2023
Better precision and rate,

with high accuracy and fast
detection speed.

Newer knowledge may be
difficult for some users

to learn.

It has better accuracy and
speed while ensuring

accuracy and can process
video and images in

real time.

YOLOv8 [23] 2023

Fast and efficient, high
accuracy, supports

multi-category object
detection, suitable for
real-time applications.

Poor detection of small objects,
A large amount of training

data, and training time
are required.

Fast speed, high accuracy,
fitting real-time scenarios,
supporting multi-category

object detection.

2.1.2. Remote Sensing Object Detection Algorithm of the YOLO Series

The architecture of the optical remote sensing object recognition algorithm based on
regression analysis is shown in Figure 2. Due to its benefits of lightweight deployment,
the YOLO series of object identification algorithms has the potential for a wide range
of applications in the field of remote sensing. To increase the functionality of YOLO
in the area of remote sensing photos, researchers have experimented with a variety of
improvement and optimization techniques. For example, Tang et al. [24] proposed a moving
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object detection method based on dual-beam SAR that utilized two independent YOLO
networks to fuse the sub-image results and improve detection accuracy. In tasks like aircraft
detection in remote sensing photos [25], multi-source underwater object wake [26], and
remote sensing building detection, the technique based on YOLOv5 proved accurate and
effective [27]. FRN (Feature Refinement Network, FRN)-YOLO [28] was a feature refusion
network for remote sensing object detection with high accuracy and robustness. In addition,
there are some studies devoted to improving the performance of small object detection. Wei
et al. [29] improved YOLOX and introduced a bilateral attention mechanism to effectively
detect small-sized objects and reduce the false detection rate. A lightweight YOLOv4
algorithm with excellent efficiency and accuracy in remote sensing image recognition was
proposed by Ma et al. [30]. It extracted feature information using the residual module and
FPN and further improved performance via data enhancement and transfer learning. In
addition, some researchers have considered the characteristics and application requirements
of remote-sensing images. Li et al.’s [31] accurate and effective identification was made
possible by tailoring the network structure and loss function to the properties of remote
sensing images. The performance was then further enhanced using methods such as data
augmentation and a priori box optimization. In order to improve performance, Hong
et al. [32] accomplished multi-scale ship detection in synthetic aperture radar (SAR) and
optical pictures and introduced multi-scale feature fusion. Yang et al. [33] improved the
accuracy and robustness by redesigning the network structure and adjusting the loss
function. In addition to the above methods, there are many improvements and applications
based on the YOLO algorithm [34–42]. The related ideas of the above algorithms are shown
in Table 2. Although the YOLO series algorithms have achieved significant advancements
in the field of remote sensing image object detection, they encounter challenges due to the
limited accuracy in detecting small objects, distant objects, and objects with typical contrast.
Furthermore, these algorithms struggle to adapt to variations in data across different areas,
seasons, and weather conditions. This paper discusses the various challenges that arise in
ensuring the robustness and generalization capabilities of algorithms. In addition, in some
application scenarios, it may be imperative to further improve and optimize the algorithm
to improve the detection accuracy and reduce the false detection rate. Therefore, further
research is needed to solve these problems and improve the performance of the algorithm.
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Table 2. Comparison of object detection algorithms for remote sensing images based on YOLO series.

Literature Paper Highlights Applicability

Tang et al. [24] Moving object detection method based on the YOLO,
processing of dual-beam SAR images

Applying for moving object detection in
dual-beam SAR images.

Jindal et al. [25] Using the YOLOV5 architecture to realize aircraft
detection in remote sensing images. Applying for aircraft inspection tasks.

Shi et al. [26] The improved YOLOv5 realizes the wake detection of
underwater objects based on multi-source images.

Applying for the field of underwater object
wake detection and having certain

practical value.

Ding et al. [27] Remote sensing image building detection with high
accuracy and robustness.

Applying for remote sensing image building
detection and using in urban planning,
resource management, and other fields.

Sun et al. [28] Feature re-fusion extracts details, reducing
false detections.

Fast and accurate detection of the object,
providing important data support.

Wei et al. [29]
Utilizing bilateral attention, detailed information
about small objects in remotely sensed images is

effectively captured.

The network focuses on improving small
object detection.

Ma et al. [30] Optimizing the network structure and parameters and
achieving a lightweight. Providing accurate object detection results.

Li et al. [31] Data enhancement techniques are employed. Real-time monitoring of ships, improving
collection efficiency and safety.

Hong et al. [32] Multi-scale detection, improved network structure and
loss function, etc.

Maritime traffic monitoring, maritime patrol
and island defense, marine resource

management, and other areas.

Yang et al. [33] The GIoU evaluation metric is introduced in the
loss function.

Applying for aviation monitoring, military
reconnaissance, disaster monitoring, and

other fields.

Xin et al. [34]
Optimizing the characteristics of remote sensing

images, such as high resolution and
complex backgrounds.

Large-scale and complex remote sensing
image data, with the ability to detect

multiple objects simultaneously.

Wang et al. [35] A saliency adjustment mechanism to weight the input
image for saliency.

For efficient and accurate detection of ship
objects in optical satellite images.

Zhang et al. [36] Optimizing the network architecture, designing the
loss functions, adjusting the prior frames, etc.

Processing large-scale image data for
real-time ship inspection.

Zhang et al. [37] Hybrid attention mechanism of similarity mask. Efficient and accurate detection of small ship
objects in optical remote sensing images.

Zhu et al. [38]
Methods such as introducing attention mechanisms,
adapting feature fusion strategies, and optimizing

feature propagation paths.

Handling the task of object detection in
remote sensing images.

Zhou et al. [39] A multi-scale feature fusion mechanism is introduced.
Handling vehicle detection tasks and
combining multi-scale information to

improve detection performance.

Liu et al. [40] Specific training strategies and optimization methods
for aircraft.

Handling the tasks of aircraft inspection and
optimizing aircraft-specific problems.

Sharma et al. [41] Designing a lightweight object detection model.

Handling real-time object detection tasks can
be deployed for use on devices with

restricted resources or limited
computing power.

Wang et al. [42] Adjusting the network structure, mining, and fusion
of ship characteristics.

Handling the task of ship detection in remote
sensing images and high detection accuracy

can be obtained.
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2.1.3. Application of SSD Framework in Remote Sensing Detection

SSD [15] is an efficient single-stage object detection algorithm for object detection
tasks in real-time scenarios. It realized object detection at different scales and categories
by designing multi-scale feature maps and priori boxes and achieved good performance.
In addition to remote sensing images, the SSD algorithm has also been applied to object
detection in SAR images [43]. The SSD-based SAR object detection technique improved
accuracy and resilience by integrating data augmentation and migration learning, and
it also offered fresh suggestions for enhancing the SAR object detection algorithm. In
addition, some other methods have achieved specific results in remote sensing image
object detection, such as anchor-free methods [44], sparse anchor-guided capsule network
method [45], etc. These approaches introduced many technologies, such as adaptive
feature selection, channel filter fusion, and attention mechanism [46], to increase the
precision and dependability of remote sensing picture object detection. In remote sensing
image change detection, Yang et al. [47] proposed an end-to-end deep-learning framework
that realized automatic, high-precision, and high-efficiency change detection and had
better generalization performance. Additionally, certain enhanced techniques for object
detection in remote sensing images were used. For example, the algorithm improved with
the attention mechanism and feature fusion achieved excellent performance [48]. When
employed to detect small objects in remote sensing photos, the SSD network with dilated
convolution and feature fusion [49] produced great results. Meanwhile, Suidong et al. [50]
proposed a multi-scale feature fusion and adaptive positive and negative sample filtering
mechanism to improve the detection accuracy and performance of small objects in remote
sensing images [51]. In conclusion, the SSD algorithm and its upgraded approaches
for object detection in remote sensing photos have obtained good performance in many
circumstances [52–55], which is of considerable significance and wide application value.
However, further research is still needed to solve the specific challenges in remote sensing
images, such as the low detection accuracy of small objects, remote objects, and low-contrast
objects, in order to improve the performance and robustness of the algorithm.

2.2. Remote Sensing Object Detection Algorithm Based on Candidate Box and Regional
Convolutional Neural Network

In the field of object detection, the RCNN series [56–58] algorithms dominated before
the advent of YOLOv1. The architecture of the optical remote sensing object recognition
algorithm based on the candidate region is shown in Figure 3. The spatially oriented
object detection framework that Yu et al. [59] developed had the highest accuracy and
resilience in remote sensing images and showed significant application potential in remote
sensing image analysis. While this was going on, the upgraded Mask-RCNN model [60]
was used to recognize objects in remote sensing images, and the segmentation accuracy
and precision were enhanced using new techniques for multi-scale feature fusion, region-
generating networks, and segmentation precision optimization. In addition, the aircraft
detection method based on multi-scale Faster-RCNN successfully dealt with complex
scenes and images of different scales by introducing multi-scale feature pyramids and RoI
(region of interest, RoI) complete utilization strategy [61] and achieved excellent detection
performance. Sha et al. [62] proposed a multi-scale aircraft object detection method for
remote sensing images that improved object detection performance and had significant
applications in the fields of aviation monitoring, military investigation, and other areas.
In addition, using a multi-scale feature pyramid network and an adaptive label mapping
strategy [63], In low-altitude UAV images, Singh et al. [64] proposed an efficient instance
segmentation method for railroad sleepers, which was based on the Mask RCNN model and
achieved accurate localization and segmentation with high accuracy and efficiency via pixel-
level segmentation and optimization strategies. Further, He et al. [65] proposed a seismic
wave P-wave arrival pickup method based on the Faster-RCNN model, which improved the
picking accuracy by detecting the local window via the object orientation. This way, it can
accurately detect the P-wave arrival time and has high computational efficiency. Regarding
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small object detection in optical remote sensing video, Feng et al. [66] proposed a motion-
guided RCNN-based method that achieved high accuracy and robustness by combining
motion and appearance features, providing an effective solution for small object detection.
In summary, the RCNN series algorithms had a dominant position until the emergence
of YOLOv1 and have been widely used in remote sensing image object detection. These
methods include candidate region-based algorithms, spatial directional object detection
frameworks, and improved Mask-RCNN and Faster-RCNN models. They improve the
accuracy, robustness, and segmentation accuracy of object detection by introducing spatial
context, direction information, multi-scale feature fusion, and region of interest strategy.
However, these methods may face limitations such as high computational complexity and
limited detection performance for small objects and complex scenes and need to be further
improved and optimized to meet specific application requirements.
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2.3. End-to-End Remote Sensing Object Detection Algorithm Based on Transformer Network

The end-to-end remote sensing object detection algorithm based on the Transformer
network is an emerging method in the field of object detection and shows potential ad-
vantages in remote sensing images. These algorithms extract global context information
by introducing a Transformer encoder and using a self-attention mechanism for object
detection and object relationship modeling. Some specific methods include a multi-scale
visual Transformer based on angle segmentation in Reference [67] and Efficient-Matching-
Oriented Object Detection Transformer (EMO2-DETR) in Reference [68]. These methods
can handle objects of different scales and directions and achieve high accuracy and ro-
bustness in remote sensing images. Compared with the traditional two-stage method, the
end-to-end algorithm based on Transformer has the advantages of reducing computational
complexity, processing scale changes and complex backgrounds, and providing more global
context information, which is conducive to accurate positioning and classification of objects.
However, these algorithms still face some challenges. Firstly, transformer-based algorithms
usually have high computational complexity and require more computing resources. Sec-
ondly, due to the need for a large amount of training data to train the Transformer model,
the data demand is enormous, especially in the field of remote sensing images.

Therefore, future research needs to explore further and improve the end-to-end remote
sensing object detection algorithm based on Transformer to improve its performance
and meet the practical application requirements. This includes research on reducing
computational complexity, optimizing the training process, and introducing more domain-
specific technologies. In general, the end-to-end remote sensing object detection algorithm
based on the Transformer network has broad development prospects and application
potential, but it still needs further improvement and research. As shown in Figure 4,
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the process of optical remote sensing object detection algorithm is based on a Vision
Transformer (ViT).
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2.4. Remote Sensing Object Detection Method for Specific Scenes
2.4.1. Object Detection in Remote Sensing Images Based on Supervision

Deep learning and other technical methods can be used to detect objects in remote
sensing photos accurately, and this technique has potential applications in many different
fields. For example, Li et al. [69] used deep-learning techniques to detect airports in a
real remote sensing environment, extracted features via convolutional neural networks,
and used multi-layer perceptrons for classification. With the help of transfer learning and
data enhancement technology, satisfactory performance has been achieved. Wu et al. [70]
proposed an end-to-end multi-side output fusion deep supervised network for change
detection of remote sensing images, which achieved automated and accurate detection with
high accuracy and consistency. In addition, there were several studies that used optimized
data processing and feature extraction methods [71] to efficiently and accurately extract
information from large-scale remote sensing data, which had potential value for remote
sensing applications. Meanwhile, some studies based on weakly supervised learning
and hierarchical fusion techniques [72] can effectively detect various types of objects and
achieve good performance in complex contexts and backgrounds. In addition, the methods
based on semi-supervised learning and object-first mixup techniques [73] have also been
applied to remote sensing image object detection, which can effectively detect and locate
objects with high accuracy and robustness. These studies also explored the application of
semi-supervised learning in specific domains, such as power transmission tower object
detection and SAR image object detection [74]. These techniques have a wide range of
applications and can enhance the effectiveness of object detection by combining both a
small amount of labeled data and a large amount of unlabeled data. Among them, the
method of introducing semi-supervised migration learning and multi-layer feature fusion
mechanisms [75] showed better performance in infrared object detection tasks. In contrast,
the SAR object detection network method based on semi-supervised learning [76] improved
the detection performance using unlabeled SAR image data to assist training. Finally, the
semi-supervised SAR ship object detection method based on a graph attention network had
better performance and robustness in ship object detection by constructing a graph structure
and applying an attention mechanism [77]. Important application solutions for the fields
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of marine monitoring and safety prevention were supplied by these studies. The research
shows that the method based on deep learning has achieved satisfactory performance in
the fields of airport detection, change detection, and information extraction and shows the
characteristics of high accuracy, robustness, and automation. However, remote sensing
image object detection still faces some challenges, such as high computational complexity,
processing requirements for large-scale data, and performance in complex backgrounds.
Therefore, future research needs to improve further and optimize the algorithm to improve
efficiency, accuracy, and adaptability to meet the needs of practical applications.

2.4.2. Remote Sensing Image Object Detection Method Based on Attention Mechanism

Performance can be increased using the attention mechanism in remote sensing image
object detection. It improves the accuracy and robustness of object detection by assigning
different attention weights to different regions in remote sensing images so that the network
can pay more attention to the object region. Numerous fields, including remote sensing
picture processing, geological research, agricultural monitoring, and others can use this
technique. Wang et al. [78] proposed an improved model of Double U-Net for remote
sensing image change detection. The model adopted a double-head structure and utilized
multi-scale feature fusion and separable convolution techniques to efficiently process the
images of the current and previous moments to achieve efficient change detection. The
experiment proves that the Double U-Net model is superior to the traditional U-Net model
with better performance and anti-interference ability, which is expected to be widely pro-
moted in practical applications. A cross-modal attention feature fusion method for object
detection in multispectral remote sensing images was proposed by Qingyun et al. [79]. In
order to increase the reliability and accuracy of object identification, the technique com-
bined a feature fusion network with a cross-modal attention mechanism. Experiments
demonstrated that the method performed well in multispectral remote sensing images and
could accurately detect and locate objects, which was of potential application. A quick
self-attentive cascade network method for object detection in vast scene remote sensing
photos was proposed by Hua et al. [80]. The method utilized the self-attention mechanism
to extract features by combining cascade modules and performed object prediction via a
classification regression module. Experiments proved that the method had good perfor-
mance and high detection speed in large scene remote sensing image object detection. A
dual-branch network approach for remote sensing image change detection was proposed
by Ma et al. [81]. By considering the information and self-attention mechanism of the two
moments at the same time, it can accurately detect the changing area and have application
value. Zhang et al. [82] proposed a global context detection model using an attention mech-
anism and multi-scale feature fusion for optical remote sensing image object detection. By
concentrating on region formation and feature fusion, our technique enhanced the detection
efficiency and accuracy and completed the mission successfully. Nong et al. [83] proposed
a method that utilized graph convolutional neural networks and attention mechanisms to
achieve spatial relationship detection of remote sensing objects. The method’s ability to
efficiently gather object connection information and enhance the object detection process’s
robustness and accuracy was crucial in this field. An attention-guided twin network for
change detection in high-resolution remote sensing images was proposed by Yin et al. [84]

The application of attention mechanisms in remote sensing image object detection has
shown the potential to improve performance and superior performance in many application
fields. In particular, by introducing attention mechanisms, such as cross-modal attention,
self-attention, and global context attention, the detection accuracy and robustness of the
object can be enhanced. However, the application of attention mechanisms in remote
sensing image object detection still faces challenges, such as high computational complexity,
processing requirements for large-scale data, and performance optimization in complex
scenes. Therefore, future research needs to improve further and optimize the design of
attention mechanisms to enhance efficiency, stability, and adaptability to meet practical
applications’ needs better.
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2.4.3. Remote Sensing Image Object Detection Method Based on Multi-Scale Processing

By processing remote sensing images at various scales, the multi-scale remote sensing
image object detection approach can increase the detection accuracy and rate. In the
specific study, Han et al. [85] proposed a contextual scale-aware detector that enhanced the
perception of small and weak objects by introducing context information and scale-aware
modules. Dong et al. [86] proposed a multi-scale building detection method based on
boundary protection, which effectively solved the problems of missed and false detection
in traditional methods. A quick and accurate approach to object detection in remote
sensing images was proposed by Zhang et al. [87] and is based on aerial optical sensors.
Song et al. [88] proposed an ERMF (edge refinement multi-feature, ERMF) method to
improve the accuracy of dual-temporal remote sensing image change detection by fusing
multiple features and adopting a refined segmentation strategy. Gao et al. [89] proposed a
global-to-local (GL) network, which achieved accurate and robust remote sensing object
detection via global and local feature fusion. Chen et al. [90] proposed the Info-FPN
network improved the remote sensing image object detection algorithm via an information
transfer mechanism and an adaptive weighted loss function. Su et al. [91] proposed
the multi-scale context-aware RCNN method, which showed high accuracy and stability
in detecting small sample objects in remote sensing images. Dong et al. [92] proposed
the multi-scale deformable attention and multilevel feature aggregation method, which
exhibited high accuracy and robustness in remote sensing object detection. Zhang et al. [93]
proposed the multi-scale structural conditional feature transformation network showed
high accuracy and robustness in object detection of remote sensing images. Dong et al. [94]
proposed the convolutional neural network method based on appropriate object scale
features to solve the detection problem caused by object scale differences in high-resolution
remote sensing images using multi-scale features and adaptive pooling operations. Meng
et al. [95] proposed a multi-scale convolutional neural network remote sensing object
detection method that demonstrated higher accuracy and robustness on real datasets. Yao
et al. [96] proposed the remote sensing multi-scale object detection method that utilized
multivariate feature extraction and characterization optimization to achieve efficient and
accurate detection of different scale objects in remote sensing images. Zhang et al. [97]
proposed an all-around accurate detection algorithm for dense small objects and achieved
efficient and accurate detection by introducing RPN and multi-scale feature fusion. Zhang
et al. [98] proposed an image segmentation method that utilized an adaptive pyramid
network and a parallel spatial channel to enhance performance. Zhou et al. [99] proposed
the APS-Net (adaptive point set network, APS-Net), which achieved an accurate detection
of complex scenes and small objects via adaptive mechanisms and multi-scale feature fusion.
As shown in Table 3, the remote sensing image object detection method based on multi-scale
processing has many applications in improving detection accuracy and detection rate. These
methods effectively solve the problems of object size change and background complexity in
remote sensing images by introducing multi-scale information, context awareness, feature
fusion, and other technologies, and achieve good performance. However, these methods
may face the challenges of high computational complexity and extensive memory usage
when dealing with large-scale data and may have poor detection results for objects with
large-scale changes. Therefore, in practical applications, it is necessary to optimize the
algorithm’s efficiency and robustness to meet the needs of large-scale and multi-scale
remote sensing image object detection.
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Table 3. Comparison of object detection algorithms for remote sensing images based on multi-scale.

Literature Paper Highlights Applicability

Han et al. [85] Context scale-aware detector, providing a new
benchmark data set.

Remote sensing small weak object detection task in
UAV images.

Dong et al. [86]

Accurate maintenance of building boundaries is
emphasized, and the accuracy and robustness of

detection are improved using a
multi-scale strategy.

Building detection tasks in earthquake disasters
and other remote sensing images.

Zhang et al. [87] An efficient object detection method based on
multi-scale aerial optical sensor.

Remote sensing image, aerial photography, UAV
image analysis, and other fields.

Song et al. [88] Innovative design with edge refinement and
multi-feature fusion.

Two-phase remote sensing image change detection,
surface environmental change monitoring, and

other tasks.

Gao et al. [89] Innovative design with scale perception and
global-to-local strategy.

Remote sensing object detection and multi-scale
object detection tasks.

Chen et al. [90]
An innovative design with an information feature

pyramid and feature selection based on
information gain.

Su et al. [91] The small sample object detection of multi-scale
context-aware.

Few-shot object detection task in remote
sensing images

Dong et al. [92]

Multi-scale deformable attention mechanism and
multi-level feature aggregation method are used to

improve the accuracy and robustness of
object detection. Remote sensing image object detection tasks.

Zhang et al. [93]
The multi-scale structural condition feature

transformation and attention module
are introduced.

Dong et al. [94] The method of applying object scale feature
extraction and structural optimization.

High-resolution remote sensing image object
detection task.

Meng et al. [95] The method of multivariate feature extraction and
characterization optimization. Remote sensing multi-scale object detection tasks.

Yao [96] The method of multi-scale fusion feature and
convolutional neural network

Remote sensing imagery aircraft object
detection Mission.

Zhang [97]

Using the specific object detection network
structure and algorithm optimization technology

to achieve accurate detection of dense
small objects.

Detection task of dense small objects in remote
sensing images.

Zhang [98] An adaptive point set network and a point set
modeling and matching method are introduced. Optical remote sensing image target detection task.

Zhou [99] Autonomous structure pyramid network and
parallel space-channel attention mechanism.

Change detection task of high-resolution remote
sensing images.

2.4.4. Based on Deep Learning and Traditional Manual Feature Extraction Methods

Deep-learning technology has made significant progress in the field of computer
vision and pattern recognition. However, traditional manual feature extraction methods
are still significant in some fields. A deep-learning network structure was proposed
by Wang et al. [100]. It is based on two-dimensional discrete wavelet transform and
adaptive feature weighted fusion. Xu et al. [101] proposed a new neural network structure
that realized pixel-by-pixel classification of high-resolution remote sensing images by
introducing control gates and feedback attention mechanisms. Liu et al. [102] proposed a
new network architecture called contourlet CNN (C-CNN). It combines traditional spectral
analysis with convolutional neural networks to make feature representation for texture
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classification tasks sparse and effective. Hu et al. [103] proposed an object detection
method based on a small number of samples called Gabor-CNN. By constructing a feature
extraction convolution kernel library, improving the region proposal process, and using a
deep utilization feature pyramid network, the accuracy and recall rate on a small sample
data set are better than the existing comparison models, which have a strong application
prospect. Chen et al. [104] proposed a hyperspectral image classification method that
combines the Gabor filter and convolution filter. This would help alleviate the overfitting
problem of deep CNN when there are not enough training samples. Zheng et al. [105]
proposed a new frequency domain direction learning module that encodes the direction
information of directional object detection via a frequency domain feature extraction
network and a direction-enhanced self-attention layer. El-Khamy et al. [106] proposed a
new convolutional neural network model using a discrete wavelet transform pool (DWTPL)
to extract spectral information. They obtained a better classification accuracy and f1 score
than other models on the AID dataset. This method can effectively process high-resolution
images and improve scene classification performance. EL GAYAR et al. [107] proposed a
new image decoding model, combining a wavelet-driven convolutional neural network
with a two-stage discrete wavelet transform to extract salient features in images. Using the
deep visual prediction model and long-term and short-term memory as the decoder, the
model can automatically generate semantic titles according to the image’s semantic context
information and spatial features. He et al. [108] proposed a method combining the adequate
channel attention (ECA) module with the ResNet model to improve the accuracy of remote
sensing image classification. The ECA module shows high accuracy on the AID dataset
by avoiding dimensionality reduction and using a deep residual structure. Tsourounis
et al. [109] proposed a new SIFT-CNN combination method, which implicitly obtains local
rotation invariance by converting SIFT descriptors into multi-channel images and training
CNN to use these images as input. Li et al. [110] proposed a color texture convolutional
neural network, which combines the characteristics of traditional CNN and Gabor CNN.
The image classification task is completed by inputting the original image and the Gabor
processed image into two stream networks and combining the output at the end.

In summary, based on some research results of deep learning and traditional methods,
these methods improved the accuracy and efficiency of remote sensing image processing.
However, these methods may require a lot of data support and complex computing re-
sources, and there are still limitations in specific scenarios, which need further practical
application and improvement.

2.4.5. Fast Image Processing Method Based on VHR

With the wide application of VHR images, it is necessary to develop fast processing
methods to improve processing efficiency. Huo et al. [111] proposed a new high-resolution
image change detection method that uses fast object-level feature extraction and progres-
sive change feature classification. By improving the distinguishability between changed
classes and unchanged classes, dynamically adjusting training samples, and gradually
adjusting the separation hyperplane, this method achieves higher classification accuracy
and automation, and experiments prove its effectiveness. Mboga et al. [112] developed a
land cover classification method based on a fully convolutional network, using aerial RGB
images for end-to-end training and introducing skip connections to restore high spatial
details. This method has a lower computational cost and performs better in edge depiction.
Zhang et al. [113] proposed a coarse-to-fine large-size ultra-high resolution image regis-
tration method, which accelerates the acquisition of control points and image correction
by calculating a unified device architecture. Saha et al. [114] proposed an unsupervised
context-sensitive framework, called depth change vector analysis, for change detection
of multi-temporal high spatial resolution images. This method uses convolutional neural
network features to model the spatial relationship between pixels. It uses a hierarchical
automatic feature selection strategy to select features emphasizing the change information
of high and low prior probabilities. The depth change vector is obtained by comparing
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the depth feature supervector, and then the change pixels are identified. The experimental
results show that the proposed method achieves effective change detection results on
different data sets.

In summary, some fast for high-resolution remote sensing image processing methods
are introduced. These methods have achieved specific results in improving processing
efficiency and accuracy. However, in practical applications, it is still necessary to pay
attention to the robustness and generalization ability of these methods in different scenarios,
and further verify their applicability in large-scale data and complex environments.

3. Performance Evaluation and Comparison of Optical Remote Sensing Image
Object Detection
3.1. Optical Remote Sensing Image Data Sets

Optical remote sensing image data sets play a vital role in remote sensing object
detection tasks. These datasets provide valuable standard remote sensing data for model
training and an objective and unified benchmark for comparing different networks and
algorithms. In recent years, with the development of satellite remote sensing technology,
some high-quality optical remote sensing image object detection data sets have become
increasingly popular. In this paper, 15 representative data sets are selected for introduction.
Their sample statistical information is shown in Table 4, including publisher, and content
description, number of object categories, and number of images contained in the data set.
These open optical remote sensing image data sets promote the rapid development of
remote sensing object detection technology based on deep learning.

Table 4. Overview of commonly used optical remote sensing image object detection datasets [115].

Data Set Publisher and Content Description Number of
Object Categories Number of Images

TAS [116] Vehicle objecting dataset published by
Stanford University. 1 30

OIRDS [117] Vehicle objecting datasets published by
Raytheon Corporation. 5 900

SZTAKI [118] Rotating building object dataset published by
Mta Sztaki. 1 9

UCAS-AOD [119] Vehicle and aircraft object datasets published
by CAS, and background negative samples. 2 976

NWPU VHR-10 [120]

The data set of aircraft, ships, oil tanks,
baseball courts, tennis courts, basketball courts,

and other objects released by Northwestern
Polytechnical University.

10 1510

VEDAI [121] Vehicle objecting dataset published by
Caen University. 9 1210

HRSC2016 [122] Ship objecting dataset released by
Northwestern Polytechnical University. 1 1061

DLR3k [123] Vehicle object dataset published by German
Aerospace Center. 7 20

RSOD [124] Aircraft, oil tank, stadium, and overpass object
datasets released by Wuhan University. 4 976

TGRS-HRRSD [125]

Object datasets for ships, bridges, athletic
fields, oil tanks, basketball courts, tennis

courts, and other object data sets released by
the Chinese Academy of Sciences.

13 21,761
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Table 4. Cont.

Data Set Publisher and Content Description Number of
Object Categories Number of Images

LEVIR [126]
The object data set of aircraft, ships, and oil

tanks released by Beijing University of
Aeronautics and Astronautics.

3 22,000

ITCVD [127] Vehicle objecting dataset published by
Twente University. 1 135

DIOR [128]

Aircraft, airports, basketball courts, bridges,
chimneys, dams, and other object data sets

published by Northwestern
Polytechnical University.

20 23,463

DOTA [129]

object data sets of ships, swimming pools,
track and field fields, ports, helicopters,
football fields, and other object data sets

released by Wuhan University.

16 2806

FAIR1M [130]

The data set of 5 large categories and 37
fine-grained categories such as aircraft, ships,

vehicles, stadiums, and roads published by the
Chinese Academy of Sciences is the world’s

largest fine-grained object detection and
recognition data set for optical remote

sensing images.

37 15,000

3.2. Algorithm Performance Evaluation and Comparison

Currently, the commonly used performance indicators for evaluating optical remote
sensing image object detection algorithms are precision, recall, mean average precision
(mAP), and frame per second (FPS). The accuracy reflects the proportion of actual positive
samples in the test results. The recall rate reflects the proportion of positive samples that are
correctly detected in all positive samples to be noticed, and there is a trade-off combination
between accuracy and recall rate. The precision–recall curve (PR) can be obtained by
plotting the precision as the ordinate and the recall as the abscissa. The area under the
curve represents the AP of a specific category of objects. The AP mean of multiple categories
is the average precision mean mAP, which represents the algorithm’s overall performance
on the data set. Table 5 displays a performance comparison of popular optical remote
sensing picture object detection techniques. The following conclusions may be drawn from
the previous analysis of the critical properties of various algorithms and the performance
comparison of typical algorithms on the same data set in Table 5.

Table 5. Performance comparison of typical optical remote sensing image object detection algorithms.

Data Set Algorithm Backbone Network Literature Release Time mAP/%

RSOD [124]

FPN-YOLO DarkNet53 Sun et al. [28] 2021 87.40

DAM-YOLOX
CSPDarkNet

Wei et al. [29] 2023 93.90

YOLOv5-DNA Xin et al. [34] 2022 77.51

DF-SSD

ResNet-50

Qu et al. [45] 2020 51.78

SSOD-RS Zhang et al. [73] 2021 90.70

RCNN-FCD Su et al. [91] 2022 96.60

MLFAM Dong et al. [92] 2022 92.50

I-SSD
VGG-16

Liu et al. [47] 2022 80.53

AFF-SSD Yin et al. [55] 2022 75.19
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Table 5. Cont.

Data Set Algorithm Backbone Network Literature Release Time mAP/%

DOTA [129]

GSC-YOLO

CSPDarkNet

Ma et al. [30] 2022 93.44

YOLOv4-CD Zhu et al. [38] 2023 90.88

SAHR-CapsNet Yu et al. [50] 2021 93.04

AF-SSD

ResNet-50

Lu et al. [44] 2021 52.60

FFC-SSD Xue et al. [52] 2022 74.90

SOSA-FCN Hua et al. [80] 2020 95.25

ATMTransformer
DETR

Zhang et al. [67] 2022 77.30

EMO2-DETR Hu et al. [68] 2023 70.91

Info-FPN FPN Chen et al. [90] 2023 75.84

FAIR1M [130] YOLM CSPDarkNet Liu et al. [40] 2022 88.70

NWPU VHR-10 [120]

AF-SSD

ResNet-50

Lu et al. [44] 2021 69.80

DF-SSD Qu et al. [45] 2020 65.35

FESSD Shi et al. [54] 2020 79.36

MSCNN Yao et al. [96] 2019 96.00

CenterNet DLA-34 Liu et al. [49] 2020 95.70

GCDN ResNet-18 Zhang et al. [82] 2020 97.60

DIOR [128]
RSADet

DLA-34
Yu et al. [59] 2021 72.20

CenterNet Yu et al. [59] 2021 69.40

DIOR [128]
MLFAM ResNet-50 Dong et al. [92] 2022 73.90

MFC MFE Meng et al. [95] 2023 70.90

VEDAI [121] YOLOFusion CSPDarkNet Qingyun [79] 2022 78.60

TGRS-HRRSD [125]

SOSA-FCN ResNet-50 Hua et al. [80] 2020 97.25

MSFT SCFT Zhang et al. [93] 2021 86.33

MFC MFE Meng et al. [95] 2023 90.20

4. Challenge and Improvement Direction

For remote sensing object detection tasks, selecting data sets is crucial. Large-scale,
diversified, and high-resolution data sets are needed, and the balance of different categories
of samples is maintained. In terms of annotation, the bounding box is usually used to mark
the position and size of the object, and the partial annotation or splitting of overlapping
objects can be considered. For multi-class object detection, it can be transformed into a
multi-label classification problem, which combines prior knowledge and deep-learning
models to improve accuracy. For minor sample problems, data augmentation techniques
and transfer learning methods can be used. In order to improve robustness, data en-
hancement, abnormal sample detection and repair, multi-scale information fusion, and
other measures can be taken. To improve the interpretability of the model, many methods
can be employed, including visual attention, model anatomy, introduction of rules, and
interpretable network architecture.

When employing deep-learning techniques for remote sensing object detection, it
is imperative to consider various challenges, such as computational cost, availability of
datasets, and real-time processing capabilities. Many techniques can be employed to
reduce the computational cost, including adopting lightweight models, utilizing hardware
accelerators, implementing distributed computing, incorporating hardware acceleration
libraries, and applying optimization algorithms. When the dataset is limited and expensive,
it is possible to find a suitable dataset to cooperate or consider using synthetic data for
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training and reduce the amount of calculation via data preprocessing and enhancement. In
terms of real-time processing capabilities, selecting real-time object detection algorithms
and using parallel computing based on GPU clusters can improve processing speed.

5. Conclusions and Prospect

This paper summarizes the research progress of object detection in optical remote sens-
ing images based on the YOLO series, SSD series, candidate region series, and Transformer
algorithm. Among them, the YOLO series algorithm has fast detection speed and high
accuracy, which is suitable for real-time scenes, but has limitations in small object detection;
SSD series algorithms use multi-scale feature maps for object detection, which can better
solve the problem of small object detection, but the detection accuracy is relatively low. The
candidate region series algorithm performs object detection in two steps: candidate region
extraction and classification, which has high accuracy but high computational complexity.
The Transformer algorithm has made a significant breakthrough in the field of natural
language processing. In recent years, it has also been applied to object detection tasks with
good detection performance and interpretability.

Future research needs to focus on the following directions: small object detection,
multi-scale information fusion, diversity and scale of data sets, and real-time and effi-
ciency of algorithms. These directions will promote the development and application of
optical remote sensing image object detection. In addition, there are some potential areas
of concern:

Applying attention to new remote sensing tasks: In addition to object detection,
the attention mechanism can be applied to other remote sensing tasks, such as instance
segmentation, scene classification, etc. Researchers can explore how to use attention
mechanisms to improve the performance and efficiency of these tasks.

Developing interpretable attention mechanisms: In order to improve the model inter-
pretability, researchers can explore the development of interpretable attention mechanisms
to explain model decisions. This can enhance the user’s trust in model prediction and help
explain the model’s attention to different objects in remote sensing images.

Attention for multi-modal and multi-source remote sensing data fusion: With the
progress of remote sensing technology, multi-modal and multi-source remote sensing
data have become more abundant. Researchers can study how to effectively integrate
information from multi-modal data (such as optics, radar, hyperspectral, etc.) and multi-
source data (such as satellites, aircraft, ground sensors, etc.) to improve the performance
and robustness of object detection.

Attention mechanisms for few-shot and semi-supervised learning with limited labeled
data: In optical remote sensing image object detection, obtaining a large amount of labeled
data may be difficult and expensive. Therefore, researchers can explore the semi-supervised
learning method with few samples and combine the attention mechanism to make full use
of limited labeled data to improve the model’s performance.

Lightweight attention modules to reduce computational complexity: In order to
achieve real-time and efficiency in a resource-constrained environment, researchers can
develop lightweight attention modules to reduce computational complexity. This will make
it possible to perform optical remote sensing image object detection in an environment
with limited embedded devices or computing resources.

Self-supervised pre-training with attention for improved generalization: Self-supervised
learning has shown potential in optical remote sensing image object detection. Further re-
search can explore how to combine the attention mechanism for self-supervised pre-training
to improve the model’s generalization performance in different datasets and scenarios.

Extending to video analysis and change detection over time: In addition to static
images, researchers can extend the attention mechanism to the field of remote sensing
video analysis, such as object tracking, behavior recognition, and time-varying change
detection. This will help to better understand the dynamic scene in remote sensing images
and provide more comprehensive information.
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