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Abstract: This research investigates the usefulness and efficacy of synthetic ruler images for the
development of a deep learning-based ruler detection algorithm. Synthetic images offer a compelling
alternative to real-world images as data sources in the development and advancement of computer
vision systems. This research aims to answer whether using a synthetic dataset of ruler images is
sufficient for training an effective ruler detector and to what extent such a detector could benefit
from including synthetic images as a data source. The article presents the procedural method for
generating synthetic ruler images, describes the methodology for evaluating the synthetic dataset
using trained convolutional neural network (CNN)-based ruler detectors, and shares the compiled
synthetic and real ruler image datasets. It was found that the synthetic dataset yielded superior
results in training the ruler detectors compared with the real image dataset. The results support the
utility of synthetic datasets as a viable and advantageous approach to training deep learning models,
especially when real-world data collection presents significant logistical challenges. The evidence
presented here strongly supports the idea that when carefully generated and used, synthetic data can
effectively replace real images in the development of CNN-based detection systems.

Keywords: ruler detection; synthetic dataset; synthetic images; simulated data; generated images;
object detection; deep learning; convolutional neural network (CNN)

1. Introduction

In the domain of computer vision, the ability to detect and analyze specific objects
within images is central to a multitude of applications, from augmented reality systems to
quality control in manufacturing processes [1–9]. One of the seemingly simple but critical
objects that demand accurate detection is the measurement ruler. Algorithms for ruler
detection, recognition, and interpretation are central to the accuracy and efficacy of systems,
facilitating automated, high-precision measurements in fields such as aquaculture [10–13],
environmental monitoring [14–20], medical diagnostics [21–32], forensics [33,34], indus-
try [35–38], museums [39]. However, the task of detecting rulers in images presents
challenges that have not been extensively explored in current research (Figure 1).

Figure 1. Illustrated motivation and challenges in ruler detection within images. Rulers, commonly
employed as measurement standards, are presented amidst various objects being measured utilizing
computer vision (a,b). The presented three cases (a–c) have varying degrees of perspective distortions
in images that complicate accurate ruler localization.
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One of the steps towards improved ruler detection may be the adoption of synthetic
ruler images into the training set. Synthetic images offer a compelling alternative to real-
world images as data sources in the development and advancement of deep learning-based
computer vision systems [40–44]. Their ability to be generated quickly, in large quantities,
and under controlled conditions makes them a highly valuable asset in the rapidly evolving
landscape of AI and machine learning [45–49].

1.1. Ruler Detection in Images

Deep learning and computer vision techniques have paved the way for innovative
applications related to rulers and measurement, improving accuracy and automation in
several domains [35–38]. In aquaculture, determining the dimensions of fish is vital for
effective management [10,11,13]. Traditional methods, which rely on manual measure-
ments using rulers or tapes, are labor-intensive and often subjective [12]. Leveraging deep
learning, studies have proposed automated systems that use convolutional neural networks
(CNNs) to detect specific regions on a fish’s body to be used as landmarks for fish mea-
surement. By using images of fish alongside rulers or color plates of known dimensions,
these systems can automatically calculate the length of the fish. Such systems not only
streamline processes in fisheries but also ensure more consistent and accurate data for
marine resource management.

Forensics is another domain benefiting from vision system advancements. Tradition-
ally, forensic images required manual calibration using rulers placed within the frame to
determine the resolution for accurate measurements. This method, although functional,
is prone to errors, especially when the ruler gradations are unclear due to low-contrast
or -resolution issues. Contemporary methods now utilize image analysis to automati-
cally detect and estimate ruler directions and gradation spacing in forensic images [33,34].
Museums cataloging ancient coins or artifacts have adopted similar automated methods,
utilizing Fourier analysis to determine the scale from a ruler’s characteristic pattern, thus
expediting the cataloging process [39].

Automated vision-based measurements are used for urban flooding monitoring and
water level dynamics [16,17,19]. Utilizing innovative methods such as surveillance cameras
paired with intentionally designed rulers, researchers have proposed ways to measure
the depth of urban flooding. These methods, such as binocular and subruler methods,
rely on deep learning object detection models to determine the pixel position of floating
rulers [14]. As the results indicate, these techniques offer a low-cost solution to monitor
urban flooding, especially in areas susceptible to deep-water accumulation. Another notable
application is in monitoring water levels in catchment-scale rivers [15]. Although accurate,
traditional manual measurements are inefficient, and automatic sensors come with their
own challenges. However, leveraging digital image processing tools combined with CNNs
makes it possible to batch-process source images and eventually calculate water levels. The
proposed methods have been validated, demonstrating their potential as cost-effective and
efficient tools for hydrology research and water resource management [18,20].

In the medical field, deep learning has changed the way physicians approach diagnos-
tics [30–32], particularly in dermatology and oral health. Photographs of oral lesions, often
accompanied by rulers for scale, can be automatically analyzed by algorithms to reduce
subjectivity in human assessments [21,22]. Deep learning networks have been developed
to identify ruler images in these contexts effectively. Another challenge in dermatology is
represented by the dermoscopic images that contain artifacts such as ruler markers, hair,
and gel bubbles, which complicate the segmentation of skin lesions. Neural networks that
employ encoder–decoder structures to detect such anomalies in skin lesion images, as well
as techniques combining deep learning models with traditional image analysis methods,
have been proposed to tackle these challenges [23–29].

Although these studies cover quite diverse applications of rulers for solving various
problems, there is a lack of deeper analysis on ruler detection in more complex environ-
ments, under strong geometric distortions, as well as a lack of publicly available datasets.
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1.2. Synthetic Image Generation for Deep Learning

Synthetic images have several important advantages as training data in the develop-
ment of deep learning vision systems [50–53]:

• Data availability and scalability. Traditional methods for collecting real-world images
are both time-consuming and expensive. Moreover, the acquisition of high-quality
labeled data often requires additional human labor. Synthetic images, on the other
hand, can be generated in large quantities with automated labeling, offering a scalable
solution for data collection [54].

• Controlled experimental conditions. Among the challenges in using real-world data
are the inherent variability and noise, which can introduce confounding factors into
experiments. Synthetic images can be generated under controlled conditions, allowing
for greater experimental rigor [55].

• Ethical and privacy concerns. Real-world images, especially those involving human
subjects, often come with ethical and privacy concerns, including the need for in-
formed consent. Synthetic images, being artificial constructs, bypass these issues,
allowing for broader applicability in research [56,57].

• Domain-specific adaptability. Generative models can be tailored to produce domain-
specific synthetic images, thus improving the training of algorithms for particular
applications [58,59].

• Data augmentation. Synthetic images can be easily manipulated to simulate various
conditions, such as lighting, orientation, background, etc., that might not be readily
available in real-world data. This enhances the ability of the model to generalize under
different conditions [60–63].

• Overcoming data imbalance. In many real-world applications, certain classes of data
are underrepresented. Synthetic images can be generated to address this imbalance,
thereby improving the performance of classifiers [64,65].

There are several key deep learning-based techniques employed in the generation of
synthetic image data: generative adversarial networks (GANs), diffusion models (DMs),
variational autoencoders (VAEs).

One of the most prevalent techniques for generating synthetic image data is the use of
GANs [45,66,67]. These networks consist of two neural network models, the generator and
the discriminator [68]. The generator aims to produce synthetic images that closely resemble
real-world photographs, while the discriminator’s role is to distinguish between real and
generated images. Through a competitive adversarial process, the generator iteratively
refines its synthetic images, attempting to fool the discriminator into misclassifying them
as real. GANs have been widely adopted for their ability to produce high-quality synthetic
images and have applications ranging from art generation to medical imaging.

Another technique that is gaining traction in the generation of synthetic images is
the use of diffusion models (DMs) [69–71]. Unlike GANs, which generate images in a
single forward pass, DMs work through a series of iterative steps to transform an initial
noise pattern into a coherent image. This iterative process provides more control over the
generation of synthetic data, allowing for a high degree of detail and complexity in the
resulting images. DMs have proven effective in tasks requiring gradual image formation
and are increasingly being employed in various computer vision applications.

In addition to GANs and DMs, other generative models, such as variational autoen-
coders (VAEs), autoregressive models, and flow models, are also used to generate synthetic
images [72–74]. VAEs are particularly effective in scenarios where the generated images
must adhere to specific statistical properties. Autoregressive models excel at capturing
temporal dependencies in sequential data and are often used in video generation tasks.
Flow models are adept at transforming simple probability distributions into complex ones,
which makes them helpful in generating intricate synthetic images.

AI-based synthetic image generation techniques, while potent and transformative, are
not without limitations. The following key challenges and constraints are associated with
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these techniques: computational cost, data bias, and ethical concerns, mode collapse, lack
of interpretability, difficulty in ensuring quality, and temporal and spatial coherence.

Computational cost is one of the most significant constraints. Training generative
models often requires large datasets and substantial computational power. Specialized
hardware is usually necessary to facilitate the training process, thereby increasing the
barrier to entry for researchers and organizations with limited computational resources.

As a result, the generated synthetic images can perpetuate and even amplify these
biases, posing ethical dilemmas. Adding to these challenges is the issue of mode collapse,
especially in the context of GANs. Mode collapse occurs when the generator produces a
limited variety of images, failing to capture the diversity inherent in the training dataset.
This limitation impacts the utility of the generated synthetic images, as they may not be
representative of real-world scenarios.

Furthermore, generative models are often criticized for their lack of interpretability.
The “black-box” nature of these deep learning-based methods makes it difficult to under-
stand how they arrive at specific outputs, a particularly problematic limitation in fields
requiring explainability, such as medical imaging and autonomous driving. Ensuring
consistent quality of the generated images is another challenge. Minor changes in model
parameters or input data can lead to significant deviations in the quality of the generated
images. Lastly, maintaining temporal and spatial coherence in synthetic images is a complex
task, especially in applications involving sequential data or multiple object interactions,
such as video generation and multiobject tracking.

To address some of these limitations, different non-AI approaches that are based
on traditional computer graphics methods may be employed. Synthetic images can be
rendered from various angles and under various lighting conditions using 3D models
and textures [49,75–81]. Images can also be generated using algorithms and rules. Some
hybrid synthetic image generation approaches include domain adaptation, which enables
the transformation of images from one domain to another, combinations of real-world data
with synthetic data, and image generation in a simulated environment and adaptation to
resemble real-world images.

The landscape of synthetic image generation is diverse, with multiple techniques
offering distinct advantages and limitations. The integration of synthetic images into the
data pipeline has the potential to revolutionize the field of AI by mitigating many of the
limitations associated with real-world data. However, it also cautions that the quality of
synthetic images and their ability to faithfully represent real-world complexities are critical
factors that need further investigation.

1.3. The Novelty and Contributions of This Work

Advancements in deep learning and computer vision have contributed significantly
to the automation and accuracy of measurements across multiple fields, such as aqua-
culture, forensics, urban flooding monitoring, medical diagnostics, and industry. These
developments have replaced or augmented traditional methods, offering more efficient and
objective alternatives. However, it should be noted that current research exhibits several
gaps. Specifically, there is a lack of in-depth analysis concerning ruler detection against
complex backgrounds and under high perspective distortions. Furthermore, no publicly
available datasets are tailored for the development of ruler detection algorithms, hindering
progress in this subfield. Lastly, the potential of utilizing synthetic data for the development
of ruler detection systems remains an unexplored area. These gaps present compelling
directions for further research.

To fill these gaps, this research tackles the challenge of rule detection in diverse and
complex environments. Ruler detection is the initial step for decoding ruler gradations.
With the detection results of ruler markings, the metric scale data can be transferred to the
objects being measured.

Developing an accurate and reliable ruler detector that utilizes deep learning algo-
rithms requires a large and diverse training dataset. Achieving an adequately representative
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dataset that encompasses the many different situations in which rulers are found presents
a significant challenge. This research aims to investigate whether using a synthetic dataset
of ruler images is sufficient for training an effective ruler detector and to what extent ruler
detector development could benefit from using synthetic images as a data source.

The novelty and contributions of this work can be summarized as follows:

• Proposing a method to generate a dataset consisting of synthetic ruler image samples
of high fidelity;

• Publicly providing the synthetic ruler image training dataset generated according to
the presented method;

• Publicly providing the real ruler image training and test datasets;
• Presenting ruler detection benchmark results using six different CNN architectures;
• Experimentally showing that the created synthetic ruler image dataset is effective,

sufficient, and superior to the real image dataset for the development of ruler detectors.

The motivation and challenges for ruler detection in images are summarized in
Figure 1.

The paper is organized as follows: In Materials and Methods (Section 2), the proposed
method for generating synthetic ruler image data is described; the methodology for eval-
uating the synthetic dataset is presented; data collection and software tools used in the
research are reported. Results and Discussion (Section 3) gives experimental evaluation
results of the usefulness and efficacy of synthetic ruler images to develop a deep learning-
based ruler detection algorithm and provides an interpretation of the findings and practical
implications. Finally, Section 4 gives the conclusions of this work.

2. Materials and Methods

This section details the method for generating synthetic ruler image data and outlining
the requirements for synthetic ruler images. In addition, it presents the methodology for
evaluating the synthetic dataset using trained convolutional neural network (CNN)-based
ruler detectors and describes the process for collecting experimental data.

2.1. Generation of Synthetic Ruler Image Dataset

AI-based synthetic image generation techniques offer significant capabilities but come
with inherent limitations. To mitigate these limitations, alternative approaches based on
traditional computer graphics methods or hybrid techniques can be employed. These
methods utilize 3D models, textures, and algorithms to render synthetic images from
various perspectives and under various lighting conditions. Hybrid approaches may
further enhance versatility by combining real-world and synthetic data.

This section addresses the creation of a synthetic dataset for training deep learning
models in the task of ruler detection within images. Essential requirements for such a
dataset are delineated, encompassing aspects such as variability, diversity, image quality,
realism, and adherence to legal considerations. These prerequisites guide the generation
process to ensure that the synthetic images are both representative of real-world scenarios
and conducive to effective model training.

2.1.1. Requirements for Synthetic Ruler Images

When formulating requirements for a synthetic ruler image dataset to train deep
learning models, several criteria should be considered to ensure the dataset’s effectiveness
and relevance to the intended application. Here are some key requirements to be considered
when choosing implementation approaches:

1. Variability and diversity: The dataset should include rulers of various lengths, colors,
materials (e.g., plastic, metal, wood), and units of measurement (e.g., inches, cen-
timeters). It should also cover a wide range of backgrounds, lighting conditions, and
occlusions to mimic real-world scenarios:
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• Ruler appearance: Generating rulers of different shapes, colors, materials. Ruler
appearance can be simulated by randomly selecting width, height, color, trans-
parency, and gradation marking type and placement from the predefined range
of parameter values;

• Perspective and orientation: The dataset should represent rulers from multiple
angles and perspectives, including top-down views and side views with varying
degrees of perspective distortion. This can be achieved by randomly applying
geometric transformations. Transformations (rotation, scaling, perspective distor-
tions) can be introduced during dataset construction and at the time of training
as data augmentation procedures;

• Contextual variety: Rulers should be placed in a variety of relevant contexts,
such as on different surfaces, alongside common objects of measurement, and
within complex scenes, to train the model for practical applications. Contexts can
be simulated by using natural images as backgrounds;

• Occlusions: Including images where the ruler is partially obscured or interacting
with other objects to simulate realistic use cases where the ruler is not always
fully visible. Occlusions can be simulated during the training phase as a data
augmentation procedure.

2. Balanced image quality and resolution: High-resolution images are necessary to
ensure that the measurement markings on the rulers are clear and discernible. On
the other hand, unnecessarily large images would waste memory; moreover, image
preprocessing for passing to neural networks would consume more time. The chosen
input size of the neural network should be considered. Therefore, the resolution of
images should be tuned while keeping in mind the maximum input size of the neural
network and by leaving enough freedom for various augmentation transformations
that enlarge the image regions.

3. Realism: While synthetic images need to be diverse and comprehensive, they also
need to be realistic enough not to introduce a domain gap when the model is applied
to real-world images. The visual evaluation and performance of a ruler detector that
is trained on a synthetic dataset provide feedback on realism.

4. Consistency in synthetic generation parameters: Ensuring consistent application of
synthetic image generation parameters such as lighting, textures, and noise models
across the dataset to avoid biases in the training process. Controlled parameter
sampling allows for the implementation of this requirement.

5. Dataset size and balance: The size of the dataset must be large enough to train deep
learning models effectively and should be balanced in terms of the variety of ruler
types and scenarios presented.

6. Legal considerations: The dataset creation process must adhere to intellectual property
laws. It is especially relevant when selecting real background images for the dataset
generation process; e.g., the COCO dataset [82] is licensed under a Creative Commons
Attribution 4.0 license.

2.1.2. Method for Generating Synthetic Ruler Image Dataset

The method for generating a synthetic ruler image involves the utilization of natural
images as backgrounds, onto which a synthetic ruler is superimposed, followed by the
simulation of geometric distortions (Figure 2).

Natural background images were sourced from the COCO dataset [82], which is
licensed under a Creative Commons Attribution 4.0 license, which allows free distribution,
modification, and use of copyrighted work, as long as the original creator is credited for
the original creation. To generate image background variability, the original COCO image
was randomly cropped. Employing a natural image as a background simulates ruler usage
in various complex natural environments. Detecting a ruler in complex environments
necessitates the ruler detector’s ability to extract robust and relevant features and to use
these features to discriminate the ruler object from the other various non-ruler objects.
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Figure 2. Synthetic ruler image generation method.

Synthetic rulers were superimposed on these background images. Their appearance
was characterized by randomly determined parameters within certain ranges. To imitate
various situations of possible different camera angles while capturing rulers in complex
scenes, geometric distortions were applied to the generated images. A representative subset
of synthetic ruler images from the training set is shown in Figure A2.

The detailed steps for generating the synthetic ruler image are outlined in Figure 2
and are as follows:

1. Background preparation. The real image from the COCO dataset was randomly
cropped and resized to 1000 × 1000 px image size. The crop box was defined by
randomly shifting the corner coordinates of the original image (x1, y1, x2, y2) by a
maximum of 20% of the width/height of the image.

2. Definition of the ruler area. The location of the ruler was designated in the
1000 × 1000 pixel background area and centered. The length of the ruler, which
is the longer dimension, was randomly chosen to be between 70% and 95% of the
background width, while the width of the ruler, which is the shorter dimension, was
randomly selected to be between 4% and 20% of the background height.

3. Setup of the appearance of the rule. A set of random parameters that determined the
visual attributes of the ruler was generated. The color of the ruler was defined in the
HSV color space, where a triplet of values within the ranges of [0, 1], [0, 1], and [0.5, 1]
was drawn randomly. The transparency level was established by selecting a "face
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alpha" value from the interval [0.5, 1]. The curvature at the corners of the ruler was set
by choosing a value for the curvature parameter of the rectangle from the range [0, 0.4].
The areas for measurement markings, or gradations, were specified to be between
85% and 100% of the ruler’s length, with the width set at 30% to 45% for double-sided
rulers or 40% to 60% for single-sided rulers. The decision to use a single-sided or
double-sided ruler was made at random. The positions of the gradation areas were
also randomly adjusted, with a shift of [0, 5]% from the edge of the ruler. The length
of the ruler scale was chosen to fall within the range of [15, 30] measurement units.
Subdivisions of the ruler scale, indicating tick positions, were selected from sets of
1/0.5/0.1, 1/0.1, or 1/0.5. For rulers with three-level subdivisions, the tick lengths
were set to 100; 80; 60% of the width of the gradation area. For those with two-level
subdivisions, tick lengths were determined to be 100; 80%, 100; 60%, or 80; 60% of the
width of the gradation area.

4. Adding geometric distortions. The perspective transformation was simulated by
randomly selecting ruler corner shifts and fitting the geometric transformation to
those corner coordinate shifts. Each corner coordinate of the ruler was randomly
shifted up/down by up to 20% of the ruler width and right/left by up to 10% of
the ruler length. In addition, one of the ends of the ruler was widened by a value
corresponding to the length up to the initial width of the ruler.

2.2. Synthetic Data Evaluation

The evaluation of the synthetic ruler dataset was a key part of this research. Central
to the investigation was the determination of whether a synthetic dataset of ruler images
suffices for the training of an effective ruler detection algorithm and to what extent the
development of such a detector could benefit from the inclusion of synthetic images.

To address these questions, three training configurations were used: training using a
synthetic image dataset (referred to as “synthetic-train” dataset), training using a dataset
composed of real images (denoted “real-train”), and training using a mixed dataset con-
taining both synthetic and real images. CNN-based ruler detection algorithms were then
developed using these datasets. The performance of these detectors was subsequently
compared by employing a real image test set (“real-test”), alongside a selected performance
metric. The overall block diagram of the experiment is depicted in Figure 3.

The metric chosen for this evaluation was Intersection over Union (IoU). IoU is par-
ticularly relevant for measuring object detection accuracy, as it measures the extent of
overlap between the predicted and actual locations of rulers within images. To avoid the
intricacies and potential biases that hyperparameter tuning for each model could introduce,
the progression of the validation IoU score was monitored throughout the training period.

A range of CNN architectures was trained to gain a comprehensive understanding
of performance across different network structures. Six distinct CNN models, each with
varying complexities and capabilities (a summary of the backbones used is presented
in Table 1), were subjected to a series of experimental scenarios. These scenarios were
designed to investigate the impact of different data combinations and training durations
on the models’ ability to detect rulers in images.

The designed experimental scenarios (benchmarks) were the following:

1. Training six different CNN architectures (MobileNetV2 [83] (alpha = 0.5), MobileNetV2
(alpha = 0.75), MobileNet [84], NASNetMobile [85], ResNet50 [86], EfficientNetB0 [87])
for 100 epochs using transfer learning;

2. Training MobileNetV2 for 200 epochs using transfer learning or “from scratch”;
3. Training MobileNetV2 for 200 epochs using transfer learning or “from scratch” with

5-fold cross-validation.
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Figure 3. Overall block diagram of the experiment.

Table 1. Summary of the backbones.

Backbone Parameters 1 Depth 2 Size (MB) 3 Time (ms) CPU 4 Time (ms) GPU 4

MobileNetV2 (0.5) 5 706,224 52 3.06 233.6 15.5
MobileNetV2 (0.75) 5 1,382,064 52 5.64 363.2 19.2
MobileNet (0.5) 5 829,536 27 3.36 178.1 12.1
NASNetMobile 4,269,716 196 17.9 585.4 44.1
ResNet50 23,587,712 53 90.3 1171 44.3
EfficientNetB0 4,049,571 81 15.9 729.6 32.5

1 Number of backbone’s parameters; 2 number of convolutional layers; 3 size of the weights file; 4 time per
inference step on CPU/GPU evaluated by averaging 30 batches of size 32, and 10 repetitions (CPU: AMD Ryzen
5 3600 6-Core Processor at 3.59 GHz; RAM: 32 GB; GPU: NVIDIA GeForce RTC 2080 Ti); 5 in parentheses:
MobileNet/MobileNetV2 models’ alpha parameter, which controls the width of the network.

The initial scenario applied transfer learning, harnessing pre-trained model weights to
expedite convergence on task-specific features. Keras pre-trained deep learning models
were used in transfer learning (https://keras.io/api/applications/ (accessed on 21 August
2023)). Subsequent scenarios involved the extended training of the MobileNetV2 model,
both using transfer learning and training from scratch, to gain insight into the benefits of
extended training and the importance of initial weight configurations.

The number of training epochs was determined empirically based on initial exper-
iments aimed at balancing computational efficiency and achieving near convergence in

https://keras.io/api/applications/
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the validation curves. For transfer learning applications, a duration of 100 epochs was set,
while models trained from scratch were trained for 200 epochs to facilitate comprehensive
learning. All experiments used epochs of 500 steps and a batch size of 64.

To ensure the reliability of the results, each model underwent five training iterations.
This repetition was essential to reducing anomalies resulting from randomness within the
model initialization and training process and to establish a strong statistical foundation for
subsequent analysis and discussion.

The training workflow involved the same image augmentations regardless of the
training dataset used. The augmentation pipeline was built using the following transforma-
tions from the Albumentations package: (a) one of: ChannelShuffle, ColorJitter, Sharpen,
RandomBrightnessContrast; (b) RandomSunFlare; (c) ShiftScaleRotate; (d) Perspective;
(e) Cutout.

The loss function used was the mean squared error (MSE). It evaluated the difference
between the six output values of the CNN and the ground-truth values. The CNN output
encoded the position of the rotated bounding box (BBox): the normalized center coordinates
(x0 and y0) of the BBox; the normalized width and height of the horizontally aligned BBox;
and the rotation of the BBox, represented as sin(2α) and cos(2α), where α is the rotation of
the BBox.

All CNNs used had the same regression head attached, which consisted of three
Dense layers. Two of these hidden layers consisted of 64 neurons, followed by Batch
Normalization and Swish activation layers. The output Dense layer had six linear neurons.

Other training hyperparameters were the following: Optimizer: Adam; learning rate
schedule: linearly decreasing from 2 × 10−3 to 5 × 10−4; input size: 224 × 224; batch size:
64; steps per epoch: 500. The original preprocessing functions provided by Keras for each
model were used to normalize the input image.

2.3. Data Collection

For the experimental evaluation of the proposed method for generating artificial
ruler images (Section 2.1.2), three datasets were compiled: one comprised synthetic images
(called “synthetic-train”), and the other two, real ones (“real-train” and “real-test”) (Table 2).
Synthetic ruler images (“synthetic-train”) were generated according to the suggested
method and were used as the training dataset for developing ruler detectors based on CNN
models. Additionally, a real ruler image training set (“real-train”) was gathered to train
the same models. Throughout the training process, the real ruler test/validation dataset
(“real-test”) was utilized for monitoring and evaluating the performance of the models.

A collection of the datasets used in the current research is summarized in Table 2.

Table 2. Summary of the datasets developed and used in the current research.

Dataset No. of Samples Resolution(s)

Synthetic-train 5000 512 × 512
Real-train 1901 512 × 512
Real-test 810 512 × 512

To establish a robust dataset for training and testing ruler detection algorithms, the
objective of collecting a representative, unbiased, and varied set of real images was raised.
A compiled robust real image test dataset (“real-test”) was needed as a benchmark to
evaluate the synthetic ruler image dataset’s (“synthetic-train”) effectiveness in training
the algorithm by comparing it to baseline ruler detector models trained on the real image
training set. Model comparisons address the research questions of whether synthetic data
are sufficient for training a ruler detection algorithm and how training using synthetic data
compares to training using real image data.

The real ruler datasets included a wide range of rulers, ensuring diversity in color,
material, and gradation markings (Figure 4). The images capture these rulers against
a multitude of simple and complex backgrounds, simulating a spectrum of real-world
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scenarios. The rulers were photographed under diverse lighting conditions to test the
algorithm’s resilience to illumination variations. Additionally, the rulers and camera were
positioned at different orientations and angles to ensure that the algorithm could recognize
rulers irrespective of geometric (perspective) distortions and rulers’ alignment in an image.
To further mimic real-world conditions, there were images with partial rulers—rulers
cropped by the camera frame. When collecting images for the training dataset, the ruler
was moved after each shot to ensure there was no relationship between the background
pattern and the ruler position. A representative subset of images of real rulers from the
training/test sets are shown in Figure A1.

Figure 4. A set of straight-edge rulers used for compilation of real image dataset. This collection show-
cases all the rulers used to gather a real-world dataset after placing them against varied backgrounds
and under different perspective conditions. The set comprises transparent and semi-transparent
rulers (a–h), metallic/steel rulers (i–k), and a wooden ruler (l).

Photographs were acquired using the smartphone Samsung Galaxy S10 standard
Camera App. The abovementioned smartphone has three rear cameras: a main 12 MP
(4032 × 3024 pixels) wide-angle lens (77◦) with dual aperture and dual-pixel focus, a 12 MP
(4032 × 3024 pixels) telephoto lens (45◦) with 2× zoom, and a 16 MP (4608 × 3456 pixels)
ultra-wide-angle lens (123◦). The main camera was used for the most part, although the
other cameras also contributed some images to the dataset. The camera settings were left
to be automatically configured.

Each image within the datasets features labels indicating key points at the ruler corners
and/or at the intersections of the ruler edges with the image borders.
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The created ruler image datasets are fully and openly available and can be found at
Zenodo: https://doi.org/10.5281/zenodo.10276322 (accessed on 5 December 2023).

2.4. Software Used

The software tools and programming languages used in this research are as follows:

• MATLAB programming and numeric computing platform (version R2022a; The Math-
works Inc., Natick, MA, USA) for the synthetic dataset creation workflow;

• Python (version 3.10.12) (https://www.python.org) (accessed on 21 August 2023) [88],
an interpreted, high-level, general-purpose programming language. Used for machine
learning applications and for data analysis and visualization;

• TensorFlow with Keras (version 2.10.1) (https://www.tensorflow.org (accessed on
21 August 2023)) [89], an open-source platform for machine learning. Used for the
online data augmentation stage of the synthetic dataset creation workflow and for the
training/testing of deep learning models;

• Albumentations (version 1.3.1) (https://albumentations.ai (accessed on 21 August
2023)) [90], a Python library for fast and flexible image augmentation. Used for the
image augmentations during deep learning model training;

• OpenCV (version 4.8.0) (https://opencv.org/ (accessed on 21 August 2023)) [91], an open-
source computer vision library. Used for image input/output and manipulations.

3. Results and Discussion

The aim of this research was to assess the usefulness and efficacy of synthetic ruler
images for the development of a deep learning-based ruler detection algorithm. The
objective was to determine whether synthetic images alone could be employed within a
training dataset or whether real ones should be used. An investigation was conducted to
determine the comparison between a dataset consisting entirely of synthetic images and
those made up of real rulers, as well as a combination of both.

Three datasets were compiled for this evaluation: a synthetic ruler image dataset
(“synthetic-train”) and two datasets of real images, “real-train” for training and “real-
test” for validation purposes. The “synthetic-train” images were generated according to
the methodology proposed in this article and were used for training CNN model-based
ruler detectors. Further, the “real-train” mixed dataset was employed to train the same
detection models. The “real-test” dataset was used as a benchmark to evaluate the training
effectiveness using different training datasets.

Several experimental scenarios were drafted to compare the training datasets. The first
setup was to train six different CNN architectures (MobileNetV2 (alpha = 0.5), MobileNetV2
(alpha = 0.75), MobileNet, NASNetMobile, ResNet50, EfficientNetB0) for 100 epochs using
transfer learning. The second scenario was to train the MobileNetV2 model for 200 epochs
using transfer learning and from scratch. The third benchmark, which was an extension
of the second setup, was to train the MobileNetV2 model for 200 epochs in a five-fold
cross-validation (CV) manner, using transfer learning and from scratch. The results of all
benchmarks are presented in Figures 5–7 and summarized in Table 3.

The validation IoU score was used as a metric to compare the performance of the mod-
els trained in different scenarios. To eliminate the need to find optimal hyperparameters for
each model, the evolution of the validation IoU score was tracked throughout the training
process. The comparison of models at single points (fully trained models) would have
required that each model had individually tuned optimal hyperparameters. The reliable
discovery of optimal hyperparameters would have had to be separate research and was
out of scope of the current research.

The training of each model was repeated five times to smooth out the variations in
the curves and gather statistics on training results. The graphs in Figures 5–7 present the
means and 95% confidence intervals depicted by translucent error bands.

https://doi.org/10.5281/zenodo.10276322
https://www.python.org
https://www.tensorflow.org
https://albumentations.ai
https://opencv.org/
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Figure 5. Results of experimental comparison of synthetic, real, and mixed datasets for the development of ruler detectors. The graphs show the dynamics of
validation IoU score during the training of 6 different CNN architectures (MobileNetV2 (alpha = 0.5), MobileNetV2 (alpha = 0.75), MobileNet, NASNetMobile,
ResNet50, EfficientNetB0). Training lasted for 100 epochs with 500 steps per epoch; batch size: 64. Transfer learning was used here. Each training run was repeated
five times; therefore, the graphs present the means and 95% confidence intervals depicted by translucent error bands.
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Figure 6. Results of experimental comparison of synthetic, real, and mixed datasets for the develop-
ment of ruler detectors. Graphs show the dynamics of the validation IoU score during the training
of the MobileNetV2 (alpha = 0.5) CNN. Training lasted for 100 epochs (a) or 200 epochs (b,c) with
500 steps per epoch; batch size: 64. Transfer learning (a) or training from scratch (b,c) was used
here. Each training run was repeated five times; therefore, the graphs present the means and 95%
confidence intervals depicted by translucent error bands.
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Figure 7. Results of experimental comparison of synthetic and real datasets for the development of
ruler detectors. The graphs show the dynamics of the validation IoU score during the training of
the MobileNetV2 (alpha = 0.5) CNN. Training lasted for 200 epochs with 500 steps per epoch; batch
size: 64. Transfer learning (a) or training from scratch (b) was used here. Each training run was
repeated five times in a regular or 5-fold cross-validated (CV) arrangement. The legend points to
the curves that are related to CV experiments. The curve “5-fold CV (Train)” denotes the common
way of performing CV when the model is trained and tested on the data folds generated from the
training set. The curve “5-fold CV (Val)” shows the validation IoU scores acquired by testing the
same 5-fold CV models on the test set. The graphs present the means and 95% confidence intervals
depicted by translucent error bands.

The main message from all the graphs is that the synthetic dataset is consistently
superior to the real dataset. Figure 5 presents the results of the first experimental scenario.
The graphs are the validation IoU scores of six CNN models during training.

Figure 6 shows the results of the second experimental scenario in the second and third
plots. This scenario tested how training evolves during transfer learning and training from
scratch. The first plot is from Figure 5 and is presented as a reference for a more convenient
comparison of the training of 100 vs. 200 epochs.

Lastly, Figure 7 presents the results of the training models in a five-fold cross-validation
(CV) manner (third experimental scenario). The results of regular training were added
to the graphs for comparison purposes. As can be seen in the CV experiments, there is a
difference between the validation performance of the models trained on CV folds when
tested on subsets of the training set and on the test set. Essentially, this indicates that the
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model’s inability to perform adequately on “real-test” is not due to the flawed training
setup but rather due to the model’s adaptation to the background and its inability to
function with a changed background. During the CV experiment, when data from the
same “real-train” set were used for both training and validation, the model was able to
achieve the performance of models trained on “synthetic-train” data. This means that the
“synthetic-train” data were able to simulate the data statistics from the “real-test” dataset. It
is worth noting that “real-train” and “real-test” differ only in backgrounds.

Table 3. Results of the synthetic, real, and mixed dataset comparison using different scenarios
(benchmarks). The table summarizes the results presented in Figures 5 and 6. The results are
presented as means of five training repetitions with 95% confidence intervals (CIs). The mean values
presented here are the maximum values of the average curves of five 3rd-order polynomials, which
are approximations of original validation IoU curves.

Synthetic-Train Real-Train Mixed (All)
Experimental Scenarios Mean 95% CI Mean 95% CI Mean 95% CI

MobileNetV2 (0.5), TL, E100 0.77 0.76–0.79 0.66 0.62–0.70 0.82 0.81–0.84
MobileNetV2 (0.75), TL, E100 0.77 0.76–0.78 0.74 0.70–0.78 0.84 0.83–0.86
MobileNet, TL, E100 0.83 0.81–0.84 0.68 0.67–0.70 0.86 0.84–0.87
NASNetMobile, TL, E100 0.82 0.80–0.83 0.67 0.63–0.72 0.78 0.76–0.80
ResNet50, TL, E100 0.81 0.80–0.82 0.61 0.57–0.65 0.84 0.81–0.86
EfficientNetB0, TL, E100 0.83 0.81–0.85 0.73 0.71–0.75 0.85 0.84–0.87
MobileNetV2 (0.5), TL, E200 0.84 0.83–0.84 0.72 0.68–0.75 0.86 0.85–0.88
MobileNetV2 (0.5), FS, E200 0.82 0.81–0.83 0.64 0.62–0.66 0.80 0.79–0.82

TL—transfer learning; FS—training from scratch; E100/E200—training for 100/200 epochs; in parentheses:
MobileNet/MobileNetV2 models’ alpha parameter, which controls the width of the network.

The differences between the “synthetic-train” and mixed training sets are insignificant
and inconsistent. Longer training is needed to highlight the differences, if any. However, if
even small improvements are valuable, the current results suggest that mixed datasets could
provide a small increase in detector performance if the hyperparameters are carefully tuned.

Although the graphs can be used to draw initial conclusions about the performance of
different models in the ruler detection task or to compare the influence of some hyperpa-
rameters (number of epochs, MobileNetV2 model size, and model initialization type) on the
models’ performance, these results should be treated as initial (exploratory) results, because
it is unclear what the optimal hyperparameters should be, i.e., the models’ performance is
not compared with their optimal hyperparameters. The most promising hyperparameters
to check would be number of epochs (increase), learning rate schedule (tuning), input
image size (increase), data augmentation pipeline (tuning).

Further research could explore the conditions under which synthetic and mixed data
can be optimized to enhance ruler detector performance. Potential strategies for improv-
ing synthetic image generation include enhancing the realism of synthetic images using
hybrid methods that combine real and synthetic data and exploring advanced generative
techniques like generative adversarial networks and variational autoencoders. Additional
investigations may also examine the scalability of these findings in other areas of object
detection, expanding the use of synthetic data in machine learning. Yet another research
direction could be comparing the performance of handcrafted features and deep represen-
tations in ruler detection, especially in out-of-distribution conditions [92–96].
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4. Conclusions

The aim of this research was to evaluate the usefulness and efficacy of synthetic
ruler images for the development of a deep learning-based ruler detection algorithm. The
research utilized three datasets: a synthetic one (“synthetic-train”) and two real ones (“real-
train” for training and “real-test” for validation). The synthetic dataset was generated using
the proposed method. The real ruler datasets included a comprehensive range of rulers,
ensuring diversity in color, material, and a variety of simple and complex backgrounds.
All datasets have been made publicly available.

The experimental designs were diverse and included the training of six CNN archi-
tectures using transfer learning and training from scratch. It was found that the synthetic
dataset yielded superior results in training the CNN models compared with the real image
dataset. The use of a mixed dataset, integrating both synthetic and real images, did not
provide significant and consistent performance improvements beyond what was achieved
with the synthetic dataset alone. This result underscores the potential of high-quality
synthetic data to be sufficient as the sole training material for this specific application,
eliminating the need for costly and time-consuming real-world data collection.

The results support the utility of synthetic datasets as a viable and advantageous
approach to training deep learning models, especially when real-world data collection
presents significant logistical challenges. The evidence presented here strongly supports
the notion that synthetic data, when carefully generated and used, can effectively replace
real images in the development of CNN-based detection systems.
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Appendix A

Figure A1. Cont.
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Figure A1. A representative subset of real ruler images.
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Figure A2. A representative subset of synthetic ruler images.
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