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Abstract: The internet of things (IoT) has emerged as a pivotal technological paradigm facilitating
interconnected and intelligent devices across multifarious domains. The proliferation of IoT devices
has resulted in an unprecedented surge of data, presenting formidable challenges concerning efficient
processing, meaningful analysis, and informed decision making. Deep-learning (DL) methodologies,
notably convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep-belief
networks (DBNs), have demonstrated significant efficacy in mitigating these challenges by furnishing
robust tools for learning and extraction of insights from vast and diverse IoT-generated data. This
survey article offers a comprehensive and meticulous examination of recent scholarly endeavors
encompassing the amalgamation of deep-learning techniques within the IoT landscape. Our scrutiny
encompasses an extensive exploration of diverse deep-learning models, expounding on their archi-
tectures and applications within IoT domains, including but not limited to smart cities, healthcare
informatics, and surveillance applications. We proffer insights into prospective research trajectories,
discerning the exigency for innovative solutions that surmount extant limitations and intricacies in
deploying deep-learning methodologies effectively within IoT frameworks.

Keywords: deep learning; internet of things; convolutional neural networks; recurrent neural
networks; healthcare; surveillance

1. Introduction
1.1. Motivations

The integration of deep-learning models into IoT systems holds substantial promise,
generating a myriad of advantageous opportunities and applications. Incorporating deep-
learning models within IoT systems yields a multitude of benefits, each catering to the
specific demands and complexities of the modern technological landscape.

One pivotal advantage lies in the realm of automatic feature extraction. Deep-learning
models excel in autonomously extracting features from raw sensor data, a critical capability
particularly beneficial in IoT applications grappling with unstructured, noisy, or intricately
interconnected datasets.

Furthermore, the implementation of deep learning facilitates real-time and streaming
data analysis, enabling IoT applications to efficiently handle the continuous influx of data.
This functionality is paramount in time-sensitive applications such as real-time monitoring,
predictive maintenance, or the seamless operation of autonomous control systems [1,2].

A notable enhancement that deep learning offers to IoT systems is the substantial boost
in accuracy. By discerning intricate patterns and anomalies within data that may elude
human comprehension, deep-learning models bolster the precision and dependability of
IoT systems.

Moreover, the optimization of deep-learning models results in reduced resource con-
sumption, making them ideally suited for deployment on resource-constrained IoT devices.
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This efficiency enables a streamlined and effective utilization of resources, underscoring
the practicality and sustainability of incorporating deep learning into IoT systems.

Intriguingly, the integration of deep-learning models can pave the way for novel
applications, fostering a new paradigm of interaction between humans and their physical
environment. Efficiency and safety remain key concerns that demand thorough considera-
tion, to fully harness the potential of this integration. However, ongoing initiatives such
as the very efficient deep learning in the IoT (VEDLIoT) project are actively tackling these
challenges, demonstrating a commitment to surmounting obstacles and maximizing the
benefits of this powerful amalgamation.

The proliferation of internet access, coupled with advances in hardware sophistication
and network engineering, has ushered in an era characterized by an extensive corpus
of data and a multitude of data-analyzing techniques. This confluence of factors has
empowered the analysis and verification of signals received by sensors, heralding a new
era of possibilities in various domains, such as healthcare, transportation, agriculture, and
the development of smart cities (Figure 1).

Wireless-access technologies, heavily reliant on ubiquitous sensing, have emerged as
the linchpin for robust internet connectivity. Ubiquitous-sensing technology, capable of
distilling insights from sensor-collected data, has emerged as a significant area of research,
charting a course towards transformation advancements [3,4].

At the heart of these technological innovations lies the IoT, a catalytic force that amalga-
mates disparate technologies. The IoT encompasses a network of physical devices, vehicles,
structures, and objects embedded with sensors, software, and cutting-edge technologies.

Figure 1. General Deep Learning in IoTs systems.

Deep learning, a prominent branch of machine learning, plays a crucial role in shaping
the landscape of IoT (internet of things) systems [5–9]. At its core, deep learning relies on
neural networks, which are computational models inspired by the human brain. These
networks enable the automated extraction of intricate patterns and relationships from
complex data. Deep learning leverages various types of neural networks, each designed
for specific tasks and data structures:
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• Convolutional neural networks (Figure 2): These are tailored for image and video
analysis. CNNs excel in detecting spatial patterns through convolutional layers,
making them invaluable for tasks like image classification and object detection. The
strength of CNNs lies in their hierarchical feature-extraction process. Convolutional
layers apply filters or kernels to the input data, effectively scanning it for various
features, such as edges, textures, shapes, and other visual cues [10–27].

• Recurrent neural networks: RNNs are ideal for sequential data, such as natural
language processing and time-series analysis. They maintain memory of past inputs,
enabling them to capture temporal dependencies [12,28–37].

• Long short-term memory (LSTM) networks: A specialized type of RNN, LSTMs
address the vanishing gradient problem and are well-suited for tasks requiring longer-
term memory retention [13,16,20,21,38–45].

• Gated-recurrent-unit-(GRU) networks: Similar to LSTMs, GRUs are designed for
sequential data but have a simplified architecture, making them computationally
efficient [46–58].

• Fully connected neural networks (Figure 3): These networks, also known as multi-
layer perceptrons (MLPs), are versatile and can be used for various tasks, including
regression and classification. Fully connected layers, serving as the final layer in a
deep neural network, play a central role in synthesizing output from preceding layers
into comprehensive predictions [59–71].

Figure 2. Representation of convolutional neural network architecture.

Figure 3. Mathematics inside a fully connected layer.

Deep learning with neural networks is a powerful paradigm that excels at representing
data hierarchically, extracting essential features, and performing predictive modeling.
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Feature extraction is a critical component of this process, wherein the network automatically
identifies and isolates key patterns and relevant information from raw data. These features
encapsulate distinctive characteristics, such as textures and shapes in images, enabling
the network to comprehend the underlying structure within the data. This hierarchical
feature extraction empowers deep-learning models to transform complex, unstructured
data into meaningful representations, facilitating accurate predictions and insights. The
integration of deep learning into the internet of things (IoT) presents a promising avenue
for enhancing IoT capabilities. There is a need for a survey of the various deep-learning
techniques that can be applied in IoT contexts, including CNNs and RNNs, to provide
a holistic understanding of their strengths and weaknesses. Secondly, understanding
the resource constraints in IoT devices and designing efficient deep-learning models that
can operate within these limitations is crucial, and more research is needed in this area.
Additionally, there is a need for benchmark datasets to assess the real-world applicability
and performance of deep learning in diverse IoT applications, such as healthcare, human
recognition, and surveillance applications. Addressing these research gaps will facilitate
the effective integration of deep learning into the IoT and will foster its broader adoption
in real-world scenarios.

1.2. State-of-the-Art on Deep Learning for the IoT

The integration of deep learning and the IoT has revolutionized multiple sectors.
Ahmed et al.’s 2018 research highlighted deep learning’s crucial role in IoT data analysis,
enabling real-time monitoring, predictive maintenance, and operational optimization across
IoT applications [72]. This integration has sparked innovations in smart-home automa-
tion, autonomous vehicles, smart agriculture, energy management, and healthcare [73–75].
Anomaly detection in the IoT has benefited from advanced deep-learning techniques,
such as CNNs with auto-encoders, LSTMs, and generative adversarial networks (GANs),
bolstering security and pre-empting threats [76,77]. Activity recognition, a pivotal IoT
data analysis aspect, leverages CNNs, RNNs, and DBNs for real-time adaptability [78–80].
Energy-efficient deep-learning models, including spiking neural networks (SNNs), binary
neural networks (BNNs), and deep-compression techniques, address the IoT’s resource
constraints without sacrificing data analysis accuracy [81,82]. Edge computing’s rise in the
IoT has necessitated optimized deep-learning models, achieved through techniques like
federated learning, transfer learning, and knowledge distillation, enhancing edge-device
performance [83–85]. Visual data processing in the IoT benefits from deep learning, with
CNNs, transfer learning, region-based CNNs, and CNNs with spatial pyramid pooling
facilitating data-driven insights and comprehensive data categorization [86–89]. The col-
laboration between deep learning and the IoT showcases the transformative potential of
modern technology, enhancing efficiency, and driving innovation across industries. It
shapes the future of applications and paves the way for groundbreaking advancements.

1.3. Contributions

This survey represents a comprehensive examination of the most recent research
pertaining to the intersection of deep learning and the IoT. Our approach encompassed an
extensive exploration and analysis of pertinent academic publications and reports from
diverse sources. Leveraging online databases, notably Google Scholar, we conducted a
meticulous search, using targeted keywords such as “deep learning” and “Internet of
Things”. Our focus centered on sifting through the latest and most impactful developments
in the field. Additionally, we prioritized the inclusion of papers available in full-text format
and composed in the English language, ensuring accessibility for a broader audience.

Each identified paper underwent rigorous scrutiny and meticulous analysis. Our
emphasis was directed towards delineating the fundamental research inquiries, assessing
the methodologies employed, and comprehensively evaluating the resultant findings.
Moreover, an exhaustive examination of the references cited within the papers facilitated
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the identification of supplementary relevant sources, enhancing the depth and breadth of
our analysis.

The collated papers were meticulously categorized, elucidating the diverse applica-
tions of deep learning within the realm of the IoT. Subsequently, we meticulously syn-
thesized the key findings, elucidating the salient insights from each category, thereby
highlighting the latest strides and transformative applications of deep learning within
the IoT domain. In tandem, we expounded upon the intricate challenges and limitations
inherent within these applications, supplementing our discussion with valuable insights
into prospective research directions aimed at further enriching this dynamic and rapidly
evolving landscape.

In essence, our methodology embodies a systematic and meticulous approach toward
comprehensively evaluating the cutting-edge research pertinent to deep learning within
the IoT sphere. By virtue of our comprehensive analysis, we aim to provide a lucid and
informative survey, underscoring the rapid evolution and transformative potential of this
burgeoning field.

2. Overview on Deep-Learning Performance in Typical IoT Applications

In this review, we employed a systematic approach to selecting and analyzing aca-
demic publications and reports. Initially, we identified relevant databases and search terms
aligned with our study’s focus. Subsequent selection was based on predefined criteria, in-
cluding publication date, relevance to DL in the IoT, and scholarly credibility. Each selected
document underwent a thorough qualitative content analysis, to extract and synthesize
key findings and trends relevant to our research objectives.

2.1. Anomaly Detection

The integration of deep learning in anomaly detection within the IoT realm has
emerged as a transformative paradigm, ushering in a new era of data analysis and anomaly
identification. Notably, deep learning plays a pivotal role in unraveling complex and
unstructured data patterns, surpassing traditional anomaly-detection techniques reliant
on manual feature extraction and rule-based systems, as articulated by several pioneering
studies [90]. Leveraging its innate capacity to autonomously extract features from raw
sensor data and to comprehend intricate data relationships, deep-learning models have
redefined the landscape of anomaly detection, enhancing their efficacy in diverse IoT
applications, including real-time monitoring, predictive maintenance, and autonomous
control systems [76,91,92].

Moreover, the versatility of deep-learning models extends beyond their capacity for
real-time analysis, exhibiting optimal resource utilization, a pivotal attribute in the context
of resource-constrained IoT devices [76,91,92]. The amalgamation of sophisticated deep-
learning-based anomaly detection techniques has witnessed proliferation, encompassing
diverse methodologies such as unsupervised deep-learning techniques, auto-encoder neu-
ral networks, and spiking neural networks, each tailored to address the specific intricacies
of anomalous event detection within IoT systems [76,91,92].

However, the domain of anomaly detection within IoT systems is not without its share
of challenges, notably the paucity of large open datasets, which often impedes direct com-
parisons between various models. This challenge has prompted several researchers to rely
on private datasets, resulting in a fragmented landscape that complicates comprehensive
analyses and standardized evaluations [90]. Nonetheless, the cumulative efforts of various
models have culminated in promising results, showcasing high metrics scores with accu-
racy rates soaring up to 90%. The comparative analysis, as depicted in Table 1, illustrates
the diverse array of models, ranging from MLP and convolutional neural networks (CNN)
to random forest classifiers and intricate artificial neural networks (ANNs) [90].

These persistent efforts within the anomaly-detection realm, coupled with the ad-
vancements and achievements of diverse deep-learning models, serve as a testament to the
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transformative potential of integrating cutting-edge technologies within the intricate fabric
of IoT systems.

Table 1 summarizes the performance of the cited references.

Table 1. Scores of various models on the single DS2OS Dataset.

Reference Approach F1

[76] MLP 0.98
[91] LR 0.98
[91] SVM 0.98
[91] DT 0.99
[91] RF 0.99
[91] MLP 0.99
[92] SS-TCVN 0.96

The findings presented in Table 1 demonstrate the utilization of various techniques
for anomaly detection in the IoT, all yielding high F1 scores. Specifically, the decision-tree
(DT) and random-forest (RF) classifiers exhibited the highest F1 scores in the investigations
conducted by [91], reaching 0.99. This suggests that algorithmic approaches in machine
learning outperform neural networks for this specific task. Following this, MLP classifiers
achieved F1 scores of 0.98 and 0.99 in two separate studies [76,91]. Similarly, the support-
vector-machine-(SVM) and logistic-regression-(LR) approaches recorded high F1 scores of
0.98 in the same study [91]. By contrast, the study conducted by [92] employed a different
methodology, termed segmentation-based self-taught convolutional neural network (SS-
TCVN), achieving an F1 score of 0.9616, slightly lower than the scores achieved by the other
methodologies. This discrepancy may be attributed to the propensity of complex neural-
network architectures to overfit rapidly when applied to datasets with simple patterns.

2.2. Human-Activity Recognition

Deep learning plays a crucial role in various aspects of IoT applications, particularly
in anomaly detection and human-activity recognition (HAR). When it comes to anomaly
detection, deep learning’s ability to automatically learn complex patterns and relationships
within the data is invaluable, making it an essential tool in identifying unusual events or
behaviors in IoT systems. Traditional anomaly detection methods often rely on manual
feature engineering, which can be time-consuming and may not capture all the relevant
information in the data. By contrast, deep-learning models can automatically extract
features from raw sensor data, making them more effective at detecting anomalies.

Moreover, deep-learning models excel in handling real-time and streaming data,
enabling continuous analysis and decision making in time-sensitive applications, such
as real-time monitoring and predictive maintenance. Their potential to be optimized for
reduced resource consumption makes them ideal for deployment on resource-constrained
IoT devices, further enhancing their versatility and applicability.

Various State-of-the-Art deep-learning-based anomaly detection techniques have been
proposed, including unsupervised deep-learning techniques, auto-encoder neural net-
works, and spiking neural networks, with applications spanning diverse IoT domains, such
as botnet detection, smart logistics, and healthcare monitoring. Similarly, in the field of
HAR, deep learning’s capability to automatically learn intricate patterns and relationships
in complex and unstructured data is indispensable. HAR, focusing on autonomously classi-
fying human activities, benefits greatly from deep learning’s automatic feature extraction,
leading to improved accuracy and efficient real-time data analysis.

The current State-of-the-Art models for HAR leverage CNNs, RNNs, and their com-
binations to classify human actions based on sensor data from accelerometers or gyro-
scopes [93]. CNNs extract spatial features from sensor data, while RNNs model temporal
dependencies, allowing the recognition of activity patterns over multiple time steps [93].
Recent advancements in HAR research include the use of transfer-learning and data-
augmentation techniques to enhance model performance and to mitigate overfitting [93].
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One standout model, the DeepConvLSTM architecture, combines multiple CNN and
LSTM layers, demonstrating notable accuracy and performance across various activity
classes [93]. The field has also witnessed the application of hybrid feature-based State-of-
the-Art methods, reflecting the ongoing progress and innovative approaches within HAR.
Table 2 summarizes the efficiency results of the reference works.

Table 2. Results of 2-layer DeepConvLSTM on a private Dataset [93].

Units Accuracy (%) Precision (%) Recall (%) F1 (%)

128 69.59 88.48 76.80 81.92
256 70.63 87.87 78.52 82.70
512 71.17 88.23 78.93 83.03
1024 72.26 88.07 88.38 83.75

Moreover, the DeepConvLSTM architecture represents a notable advancement in HAR,
showcasing its ability to classify human activities accurately, with metrics scores ranging
from accuracy and precision to recall and F1 score [93]. An example of Deep CNN–LSTM
internal model architecture is shown in Figure 4.

In essence, the synergy between deep learning and IoT applications, particularly in
anomaly detection and HAR, underscores the transformative potential of this technology
in enabling efficient, accurate, and real-time data analysis, with implications across a wide
array of domains ranging from healthcare and security to smart homes and logistics. In
the realm of HAR, DeepConvLSTM serves as an illustration of a hybrid model with a
substantial number of learning parameters. Unlike in the anomaly detection task, the
model did not demonstrate signs of overfitting even after the number of layers reached
1024. However, the model’s accuracy was not optimal, indicating room for improvement
for researchers.

Figure 4. An example of Deep CNN–LSTM architecture for image-recognition applications [94].
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2.3. Healthcare

Deep learning is becoming increasingly important in healthcare IoT applications, due
to its ability to improve the accuracy of diagnosis, enable personalized treatment, monitor
patients’ health in real time, and be optimized for deployment on resource-constrained IoT
devices. Here are some of the most commonly used deep-learning models in healthcare
IoT applications. Several State-of-the-Art deep-learning-based healthcare applications
have been proposed for IoT applications, such as disease diagnosis, drug discovery, and
personalized medicine (Figure 5). These applications have the potential to improve patient
outcomes, reduce healthcare costs, and enable more efficient healthcare delivery. In terms
of quantitative metrics, deep-learning models have been shown to achieve high accuracy,
sensitivity, and specificity in various healthcare applications. For instance, a CNN-based
model achieved an accuracy of 97.5% in detecting COVID-19 from chest X-ray images.
Another CNN-based model achieved an accuracy of 96.5% in detecting skin cancer from
dermoscopy images.

Figure 5. Deep Learning in Bio-medicine IoTs.

A computer-vision field is used for this task, and the current state is the same as the
progress in this field. As an example of image processing in the IoT, we take its application
in medicine [95], where DL models are used to predict diagnosis based on the X-ray results.
This is a difficult task, as it requires a large amount of dataset and computer power to
train the model. Although classification tasks [96] can achieve about 95% accuracy, more
important tasks such as segmentation of the desired region are still low and vary around
60 in mean-average-precision metrics.

There are various applications of DL in the field of healthcare, and the IoT has enabled
the development of numerous IoT systems for homes related to healthcare. These systems
utilize sensors and devices to monitor and analyze patients’ health data in real time. The
entries in Table 3 encompass a diversity of data types (RGB, skeleton, depth, audio), datasets
used (UCF101, NTU-RGBD, HMDB51, etc.), and methods employed (e.g., TSN, FCN, DBN,
GAN, etc.). The efficacy of the methods is evaluated in terms of accuracy, ranging from
14.40% to 97.4%. Given the disparate data types and architectural differences, direct
comparison of the methods may be challenging. Nevertheless, the table serves as a valuable
reference for researchers interested in applying deep learning to HAR, underscoring the
wide array of methods and datasets employed in this field. Table 4 provides a summary of
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some of the IoT systems for homes related to healthcare that utilize DL techniques. These
systems can help individuals manage their health better, enable early detection of diseases,
and support remote patient monitoring.

Table 3. Hybrid feature-based State-of-the-Art methods for HAR [97].

Method Data Type Dataset Performance Source

HxRSM RGB UCF101 Accuracy: 93.0% [98]

GCN Skeleton NTU-RGBD Accuracy: 96.1% [99]

PYSKL Skeleton
NTU-RGBD,

UCF101
Accuracy:

97.4%, 86.9% [99]

ActionCLIP RGB+Text Kinetics Accuracy: 83.8% [99]

IMGAUD2VID RGB+Audie ActivityNet Accuracy: 80.3% [100]

Stacked LSTM Skeleton
SBU Kinect,

HDM05,
CMU

Accuracy:
90.41%, 97.25%,

81.04%
[101]

Stacked LSTM Skeleton
MSRDailyActivity
3D, NTU-RGBD

(CS), CAD-60

Accuracy:
91.56%, 64.9%,

67.64%
[102]

Stacked LSTM RGB
HMDB51,
UCF101,

Hollywood2

Accuracy:
41.31%, 84.96%

MAP: 43.91

[103]

Differential RNN
RGB and
Skeleton

MSRAction3D
(CV), KTH-1(CV),

KTH-2(CV)

Accuracy:
92.03%, 93.96%,

92.12%
[104]

AGCN Skeleton
NTU-RGBD(CS)
NTU-RGBD(CV)

Kinetics

Accuracy: 88.5%, 95.1%,
Top 5% accuracy: 58.7%,
Top 1% accuracy: 36.1%

[105]

Two-stream MiCT RGB HMDB51, UCF101 Accuracy: 70.5%, 94.7% [106]

DBN Depth MHAD, MIVIA Accuracy: 85.8%, 84.7% [107]

GAN RGB UCF101, HMDB51 Accuracy: 47.2%, 14.40% [108]

In Table 4, Fonseca et al. aimed to enhance the living conditions of chronic multi-
morbidity patients by introducing new caregiving amenities, yet no statistical data were
available to substantiate its effectiveness. Sandstrom et al. proposed a simplistically
structured DL method to link smartphone sensor data to individual health, offering low
computational load and high performance. However, they recommended further research
into different sensor-data genres. Liu et al. developed a smart-dental-health-IoT system
with cost-efficient hardware, but its coverage of larger teeth was incomplete. Sagar et al. put
forth a DNN model with high accuracy and low cost for patient monitoring, necessitating a
substantial amount of data.

In Table 5, Klenk et al. utilized classical and non-classical algorithms for fall detection,
but the DL model exhibited lower accuracy for ADLs. Malasinghe et al. devised smart
patches or chips for human health monitoring, exhibiting promising outcomes based on
precision, efficiency, mean-residual-error delay, and energy usage. Nevertheless, they
suggested exploring advanced multimedia methods to reduce costs and enhance privacy.
Wei et al. introduced a novel system for automated nutrition monitoring, which proved
cost-efficient with high accuracy, but they recommended exploring alternative methods for
more precise diet prediction.
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Table 4. Classification Results of DL research in health care (pt. 1).

Research Study Main Focus Case Study Advantages Weaknesses

Fonseca et al. [105]

Improve home-based
healthcare for
patients with multiple
chronic conditions.

Patients with
multiple
chronic conditions.

Introduces new
caregiving amenities.

Limited cost control;
lack of statistical
proof of effectiveness.

Sandstrom et al. [109]

Establish a link
between smartphone
sensor data and
individual health,
using deep-learning
methods.

Personal
health
assistance.

Simple structure, low
computational burden,
high performance.

Need for more types
of sensor data
research.

Liu et al. [110]

Develop a smart-
dental-health-IoT
system with smart
hardware, deep
learning, and a mobile
terminal.

Smart-dental
health-IoT
system.

Compact dimensions
and adaptable lighting.

Incomplete coverage
of larger teeth.

Table 5. Classification results of Deep Learning research in health care (pt. 2).

Research Study Main Focus Case Study Advantages Weaknesses

Sagar et al. [111]

Propose a deep neural
network (DNN) to
analyze sensor-array
data for patient-
condition monitoring.

Patient-
monitoring
system.

High accuracy, cost-
effectiveness.

Requires a
substantial amount
of data.

Klenk et al. [112]

Employ classical and
non-classical
algorithms for fall-
detection models.

Fall detection.

Promotes
generalization; non-
flawless deep-learning
model for activities of
daily living (ADLs).

Malasinghe et al. [113]

Develop smart
patches or chips with
IoT sensors for
continuous health
monitoring.

Multi-access
physical
monitoring
system.

Promising results,
including precision,
efficiency, and mean
residual error.

Suggests advanced
multimedia methods
to reduce costs and
enhance privacy.

Wei et al. [114]

Introduce an entirely
automated nutrition-
monitoring system
(Smart-Log)

Nutrition
monitoring.

Cost-efficient and
highly accurate.

Recommends
exploring alternative
methods for more
precise diet
prediction.

2.4. IoT for Surveillance Applications

The integration of deep learning into the IoT has revolutionized surveillance applica-
tions, offering unprecedented advancements in security and efficiency. In recent years, IoT
devices have become indispensable tools in surveillance, enabling real-time monitoring,
data analysis, and predictive insights. Deep-learning techniques, such as convolutional
neural networks, have empowered these devices to recognize complex patterns and anoma-
lies in video streams, making them highly effective at identifying threats and providing
automated responses. However, this integration is not without challenges, including pri-
vacy concerns, data security, and computational limitations. This comprehensive survey
explores the diverse range of applications, from smart cities to smart homes, and provides a
critical assessment of the current landscape, addressing the hurdles that must be overcome
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for widespread adoption. Table 5 shows the advantages and challenges of applying various
deep-learning methodologies for surveillance applications.

Below are some of the commercially available solutions that utilize deep learning in
surveillance applications. They include:

• Amazon Rekognition: Amazon Rekognition is an image-and-video-analysis service
based on deep learning, which can identify objects, people, text, scenes, and activi-
ties in real time. It is used in surveillance applications for facial recognition, object
detection, and traffic monitoring [115–118].

• Hanwha Techwin: Hanwha Techwin is a company that produces deep-learning-based
surveillance cameras, such as the Q-AI and X-AI series, which use deep-learning
algorithms to detect objects, people, and activities [119–121].

• Hikvision: Hikvision is a company that manufactures deep-learning-based surveil-
lance cameras, such as the DeepinView series, which utilizes deep-learning algorithms
to detect objects, people, and activities [122,123].

• NVIDIA: NVIDIA is a company that produces hardware and software for image and
video processing based on deep learning, such as the Jetson platform, which can be used
for surveillance applications such as facial recognition and object detection [124–127].

Table 6 showcases a variety of studies related to deep learning in the IoT for surveil-
lance applications, along with their methodologies, applications, benefits, and limita-
tions. Concerning IoT security and surveillance, a series of studies have leveraged deep-
learning techniques. Al-Amiedy et al. [128] employed GRU-based deep learning to de-
tect and prevent RPL attacks in IoT networks, demonstrating enhanced security. How-
ever, the study was confined to the realm of RPL-based 6LoWPAN within the IoT. Simi-
larly, Lerina et al. [129] exhibited improved IoT security through deep learning but failed
to provide a comprehensive review of deep-learning approaches to IoT security. Ba-
naamah et al. [130] focused on intrusion detection in the IoT, resulting in heightened
security measures, yet the study was constrained to this specific aspect. Javed et al. [131]
explored both machine learning and deep learning for IoT security but limited their scope
to a systematic review of the literature. Gandhi et al. [132] concentrated on enhancing
the privacy of deep-learning systems in the IoT, showcasing improved privacy measures,
albeit within this niche exclusively. By contrast, Gherbi [133] encompassed various IoT
networking domains with machine learning, demonstrating enhanced performance across
applications, albeit within the realm of machine learning alone. Studies [57,58] focused
on deep learning for diverse surveillance applications, including object detection, human-
activity recognition, anomaly detection, and facial recognition, achieving enhanced surveil-
lance capabilities within their respective domains but constrained by their specificities.
Collectively, these studies have contributed to improved security, privacy, and surveillance
in IoT applications. However, the challenge remains to integrate these individual successes
into a holistic and comprehensive solution that can address the broader spectrum of IoT
security, privacy, and surveillance requirements. Additionally, all these advancements
are constrained by the limitations imposed by the hardware capabilities of IoT devices,
emphasizing the need for further innovation in this area. In terms of quantitative metrics,
deep-learning-based solutions have demonstrated highly accurate and reliable results in
surveillance applications. For instance, a deep-learning-based facial-recognition solution
achieved an accuracy of 99.97% in a large-scale facial-recognition test. Additionally, a
deep-learning-based object-detection solution achieved an accuracy of 99.9% in a real-time
object-detection test.
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Table 6. Exploiting the internet of things for surveillance applications.

Method Application Benefits Limitations Reference

GRU-based
deep learning.

RPL attack detection
and prevention in IoT

networks.
Improved security.

Limited to RPL-based
6LoWPAN of IoT. [128]

Deep learning. IoT security. Improved security.
Lack of systematic review
of DL approaches to IoT

security.
[129]

Deep learning. Intrusion detection in
the IoT. Improved security.

Limited to intrusion
detection. [130]

Machine learning
and deep learning. IoT security. Improved security.

Limited to systematic
literature review. [131]

Deep learning. Privacy of deep-
learning systems in the IoT. Improved privacy.

Limited to the privacy of
deep-learning systems in

the IoT.
[132]

Machine learning. Various IoT networking
domains.

Improved
performance.

Limited to machine-
learning applications in

the IoT.
[133]

Deep learning. Object detection in
surveillance videos.

Improved
surveillance.

Limited to object
detection. [134]

Deep learning. Facial recognition in
surveillance videos.

Improved
surveillance.

Limited to facial
recognition. [135]

3. Further Discussion

Various case studies have demonstrated the successful implementation of IoT and
machine-learning technologies in smart cities. These technologies have the potential to
transform urban environments, enhance the efficiency of urban services, and improve the
quality of life for citizens. Distinctive deep-learning algorithms with video analysis have
been presented as accurate smart-city applications [136]. In a study, researchers developed
a deep-learning-based IoT system for remote monitoring and early detection of health
issues in real time. The system demonstrated high accuracy in identifying heart conditions,
achieving an accuracy of 0.982. The study investigated the potential of integrating the
IoT and deep-learning technologies in medical systems for home environments, to pro-
vide real-time monitoring, timely intervention, and improved patient care while reducing
healthcare costs and hospital visits [137]. Deploying deep-learning methodologies within
IoT frameworks presents a multifaceted set of challenges and limitations, which are crucial
to understanding, for optimizing their effectiveness. These challenges can be broadly
categorized into ethical and privacy implications, scalability and resource constraints,
and the need for ongoing research and development. In surveillance applications, the
integration of deep learning into the IoT has led to significant advancements in security
and efficiency. IoT devices, equipped with deep-learning capabilities like convolutional
neural networks, can effectively analyze video streams, to identify threats and anomalies,
thereby enhancing real-time monitoring and predictive insights. However, this comes with
substantial privacy concerns and data security challenges. The ability of these systems to
recognize complex patterns and anomalies raises ethical questions regarding the extent
and manner of surveillance, especially considering the potential for misuse or overreach.
Deep learning is increasingly pivotal in healthcare IoT applications. Its ability to enhance
diagnostic accuracy, enable personalized treatment, and monitor patient health in real time
makes it a valuable tool. For example, deep-learning models have achieved high accuracy
in detecting COVID-19 from chest-X-ray images and skin cancer from dermoscopy images.
However, these applications also face significant challenges, such as the need for large
datasets and substantial computational power, particularly for complex tasks like image
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segmentation. While classification tasks can achieve high accuracy, more intricate tasks
like segmentation still struggle with lower precision metrics, highlighting the need for
continued advancement in deep-learning methodologies for healthcare IoT applications.
The scalability of deep-learning models in the IoT is a major concern. IoT devices often
have limited computational resources, which poses a challenge for deploying complex
deep-learning models that require significant data-processing capabilities. Optimizing
these models for deployment on resource-constrained devices is crucial. This necessi-
tates innovative solutions that can balance the computational demands of deep-learning
algorithms with the inherent limitations of IoT hardware.

4. Conclusions

In conclusion, our analysis delved into the latest models for various tasks within the
IoT, shedding light on their potential as well as the challenges and limitations they face.
Throughout our discussion, the dominant theme revolved around the expanding role of
deep learning in IoT systems across diverse tasks. A key insight from our exploration is
the effectiveness of algorithmic approaches such as decision trees and random forests in
anomaly detection within the IoT, yielding notable F1 scores that surpass those of neural
networks in specific contexts. This underscores the significance of tailoring the selection
of machine-learning techniques to the distinctive requirements of IoT applications. The
adaptability and proficiency of deep learning in handling intricate, multifaceted data in
dynamic IoT environments present an undeniable advantage. However, the thirst for ex-
tensive data and computational resources, along with the inherent opacity of deep-learning
models, poses significant challenges. Moreover, while deep learning has demonstrated
promise in fortifying security, privacy, and surveillance in the IoT, the integration of these
advancements into a comprehensive solution remains a formidable undertaking. The con-
straints imposed by the hardware of IoT devices further accentuate the need for innovative
solutions in this perpetually evolving landscape. To fully unlock the potential of deep
learning in the IoT, forthcoming research endeavors should prioritize the reduction of
computational requirements, the enhancement of model interpretability, and the augmen-
tation of adaptability to resource-constrained IoT systems. These measures are pivotal in
ensuring the widespread acceptance and reliability of deep learning in critical applications.
As we navigate the intricate realm of the IoT, striking a balance between technological
innovation and pragmatic solutions that address the challenges of this evolving ecosystem
is imperative.

Moreover, while deep learning has demonstrated promise in fortifying security, pri-
vacy, and surveillance in the IoT, the integration of these advancements into a comprehen-
sive solution remains a formidable undertaking. Despite its advantages, deep learning in
the IoT faces challenges. These include the need for extensive data, significant computa-
tional resources, and the inherent complexity of deep-learning models, which makes them
opaque and hard to interpret. Moreover, the limitations of IoT-device hardware also pose
challenges. Looking ahead, the future of deep learning in the IoT appears promising, espe-
cially in the realms of automotive, industrial, automation, and mechatronics applications. In
the automotive sector, the potential for deep learning to enhance autonomous driving sys-
tems, advanced driver-assistance systems (ADAS), and predictive maintenance stands as a
critical area for development [138–152]. Similarly, in industrial and manufacturing settings,
the integration of deep learning holds the promise of optimizing production processes,
predicting equipment failures, and improving overall operational efficiency. Furthermore,
in automation and mechatronics, deep learning can contribute to the development of intel-
ligent systems capable of adaptive and predictive behavior, thereby revolutionizing the
efficiency and productivity of various industrial processes. Future research should focus
on reducing computational requirements, enhancing model interpretability, and improving
adaptability to resource-constrained IoT systems. This is essential for deep learning’s wider
acceptance and reliability in critical applications, particularly in areas like automotive,
industrial automation, and mechatronics, where it promises significant advancements
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