

 electronics-12-04929

electronics-12-04929

Electronics 2023, 12(24), 4929; doi:10.3390/electronics12244929

Article

Integrating Lorenz Hyperchaotic Encryption with Ring Oscillator Physically Unclonable Functions (RO-PUFs) for High-Throughput Internet of Things (IoT) Applications

Alexander Magyari * and Yuhua Chen

Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA

*

Correspondence: ammagyari@uh.edu

Citation: Magyari, A.; Chen, Y. Integrating Lorenz Hyperchaotic Encryption with Ring Oscillator Physically Unclonable Functions (RO-PUFs) for High-Throughput Internet of Things (IoT) Applications. Electronics 2023, 12, 4929. https://doi.org/10.3390/electronics12244929

Academic Editors: Philip Perry, Soufiene Djahel, Dhiah el Diehn I. Abou-Tair and Mamun Abu-Tair

Received: 22 October 2023 / Revised: 2 December 2023 / Accepted: 5 December 2023 / Published: 7 December 2023

Abstract

:

With the combined call for increased network throughput and security comes the need for high-bandwidth, unconditionally secure systems. Through the combination of true random number generators (TRNGs) for unique seed values, and four-dimensional Lorenz hyperchaotic systems implemented on a Stratix 10 Intel FPGA, we are able to implement 60 MB/s encryption/decryption schemes with 0% data loss on an unconditionally secure system with the NIST standard using less than 400 mW. Further, the TRNG implementation allows for unique encryption outputs for similar images while still enabling proper decryption. Histogram and adjacent pixel analysis on sample images demonstrate that without the key, it is not possible to extract the plain text from the encrypted image. This encryption scheme was implemented via PCIe for testing and analysis.

Keywords:

chaos; hyperchaos; IoT; FPGA; encryption; PUF; TRNG

1. Introduction

The Internet of Things (IoT) is the ever-growing collection of devices with access to the Internet for means of communication, data acquisition, data transmission, and system monitoring. Devices integrated with the IoT are not always devices that first come to mind, such as wearables and cell phones, but also include vehicles, food monitoring systems within restaurants, security systems, pet monitoring devices, and even agricultural systems. These devices are constantly evolving, with calls for lower power consumption, decreased form factors, improved security, and increased throughput, with unique requirements depending on the device application [1].

One major issue for IoT devices is high-throughput security that could potentially be used for applications such as image and video encryption while maintaining a low power profile. Meeting this need is non-trivial, as trade-offs must be made between power management and security. Often, when increasing the security of a system, there comes the innate need for more power. This is a difficult decision for IoT device engineers and is often application-specific. Meeting these privacy needs comes with a few obstacles:

	
Processing power: The power of on-board processing within IoT devices is often reduced to save power. Many IoT devices do not have a constant power source and instead rely on a battery to increase the mobility of the device. In fact, many IoT devices do not have a central CPU at all and instead rely on a Field-Programmable Gate Array (FPGA) or Application-Specific Integrated-Circuit (ASIC).

	
Power consumption: Increased complexity in cryptographic algorithms will draw more power. For example, the use of Digital Signal Processors (DSPs) for complex mathematical functions on ASICs or FPGAs, such as ordinary differential equations or transforms, will require additional power.

	
Easy access: With the wide range of IoT applications and the growing array of connected devices, it has become easier than ever for an attacker to get inside a network. A single device’s vulnerability can expose the entire network that is otherwise secure [2]. Further, with the mobility of IoT devices such as wearables and remote sensing units, new vulnerabilities are constantly being discovered outside the security of traditional, local networks.

This work focuses on implementing multiple techniques for IoT encryption with an emphasis on increasing throughput, encrypting plain text security, and reducing power consumption. We are able to utilize a Lorenz hyperchaotic encryption system on an Intel Stratix 10 FPGA using Physically Unclonable Functions (PUFs) for random seed generation. The motivation for this work is as follows:

	
Providing a secure, hyperchaotic method for high-speed image encryption.

	
Securing the private key from hardware-replication methods and side-channel attacks.

	
Allowing for a configurable key refresh rate.

	
Providing a small power and resource footprint for resource-constrained devices.

Besides of the low power and high throughput of our system, our implementation is unique in two ways. First, it provides a unique encrypted key for every 24 bits. This makes the system significantly harder to crack, as breaking even a single key will only allow the attacker access to less than four bytes of data. This is critical for high-security systems, as methods have been introduced that can break a single-seed Lorenz system using synchronization methods [3], machine learning detection of initial conditions [4], or various other crypt-analysis techniques such as plaintext attacks [5,6,7]. With our implementation of frequently refreshed keys, our system is immune to plaintext and side-channel attacks that the predecessors fell victim to. Second, we use PUFs to generate these keys, which prevents device synchronization for cloning attacks due to the unique PUF output relative to the device it is implemented on.

Further, we demonstrate an implementation of this system via Peripheral Component Interconnect Express (PCIe), which allows for data and power analysis. Via this implementation, we can stress the system with a variety of images from the Signal and Image Processing Institute, including black-and-white images, high-definition images, and low-resolution images. Our results will demonstrate that through the use of PUFs, encrypted variations of identical images are dissimilar to the point of complete uniqueness. Further, our results yield that images of varying resolutions and color quality do not have an adverse effect on the encryption results.

Our work for the Lorenz hyperchaotic encryption system is organized as follows: Section 2 provides a brief background on the topics of PUFs, Lorenz Encryption, and their integration methods with FPGAs. Section 3 discusses how we went about implementing the system on an FPGA, in addition to computer simulations that demonstrate the volatility (and therefore security) of our system. Section 4 covers the output of our system, including power usage, the responses to different image types, and the statistical analysis of ciphers. Section 5 discusses the potential for improving the system and where it could be utilized. Finally, Section 6 concludes the paper.

2. Research Background

This work relies on two major components, which can be considered separately: a true random number generator (TRNG) that relies on noise from hardware internal to the FPGA, and a Lorenz hyperchaotic encryption system that relies on the output of the TRNG for seed generation. For this reason, we explore research on the two topics individually.

2.1. Building a True Random Number Generator

Random number generators have a wide array of applications, ranging from lottery drawings, research involving probability and statistics, cryptography, and seeding for sequential systems. For this reason, it is imperative that TRNGs meet strict metrics regarding the lack of reproducibility and unpredictability.

There are also many pseudo-random number generators (PRNGs) which can generate seemingly random results, although these results are often the output of mathematical equations that can be replicated. For example, pseudo-random binary sequence (PRBS) patterns are often used for hardware validation, as these patterns have a random output that can be replicated. Outlined in the Built-In Self Test (BIST) checker by Bhandari et al., a PRBS pattern is input into individual components, such as DSPs. Since the output of these components can be calculated before the PRBS pattern is input to these components, thanks to the reproducibility of the PRBS pattern, the actual output from the components can be compared against the expected output, thereby determining if a device is functional or not.

The PRBS pattern is used to specifically stress the component with a large variety of testing inputs. Bhandari’s implementation, specifically, utilizes Linear Feedback Shift Registers (LFSRs), which are known to have configurations that produce maximum 2 n − 1 bit streams before repeating numbers. LFSRs, by definition, are a vector of bits where the leading (most significant or least significant bit, depending on implementation) is a linear function of the previous vector state. Further, due to the simplicity of the structure of LFSRs, which include shift registers and a series of strategically placed logic gates, a user can see extremely high data rates from an individual LFSR. In Bhandari’s case, they achieved data rates of more than 12 Gbps [8].

With respect to PRNGs utilizing LFSRs, there are two primary modifications that are typically utilized within the state-of-the-art technology: the Galois configuration and the Fibonacci configuration. A configurable version of each configuration is described in a work by Li et al., and we refer the reader to this work for a more detailed background on the subject [9].

We cover the basics of the Galois and Fibonacci configurations here. The two rely on various types of logic gates for sampling the n − 1 state, referred to as taps, while the XOR gate is the most common. Fibonacci LFSRs use cascaded logic gates from multiple taps, while Galois LFSRs utilize exclusively noncascaded logic gates [10]. Due to the lack of cascading in the Galois configurations, the Galois configuration will have a higher throughput, as there is a reduced propagation delay relative to the Fibonacci configuration. Fibonacci LFSRs, on the other hand, have the benefit that the n + 1 sequence is immediately available from the n sequence: only the MSB uses the output of the taps, where the remainder bits are the outcome of a simple shift chain.

The two are compared in Figure 1 with a feedback polynomial of x 8 + x 6 + x 5 + x 4 . It is important to note that while both of these LFSRs have a period of 255, they are not equal, as the PRBS produced is dissimilar between the two. Also note that the Fibonacci LFSR in Figure 1a is labeled backward according to the taps in the feedback equation for easy comparison with the Galois LFSR.

The primary issue with PRNGs, especially in relation to cryptography, is that their output is predictable when a subset of sequential samples is given. For cryptographic purposes, a TRNG is required; that is not to say that we should discard the use of PRNGs. By the end of the section, we will have introduced how we can combine the principles for PRNGs and TRNGs into a robust TRNG for cryptographic purposes. First, let us explore some common architectures for TRNGs. Most digital TRNGs rely on metastability, the period where a signal has yet to stabilize between clock cycles, to generate their random numbers. While typical digital applications seek to eliminate metastability, TRNGs opt for maximizing metastability—resulting in the breaking of rules that most designs abide by, such as reducing clock skew, avoiding clock-crossing boundaries, decreasing propagation delays, and avoiding latches.

The most basic TRNG is a ring oscillator, which utilizes an odd number of inverters to produce an oscillatory signal that will be gated to a periodic clock signal. By using manual placement in an FPGA, the propagation delay can be extended for the ring oscillator, intentionally violating setup and hold times for the clock. These violations lead to the aforementioned metastability, which can have random outputs. When placed in stages, with registers between sets of ring oscillators of varying lengths, one can achieve random vectors of bits [11,12,13].

Another TRNG architecture that maximizes oscillatory metastability is the Transition Effect Ring Oscillator (TERO). Similar to a classic ring oscillator, a TERO uses a coupling of two AND gates and two XOR gates to produce a constant metastable state, which is then clocked into a flip-flop [14,15]. These TRNG principles can be combined with the Fibonacci and Galois LFSRs to create Fibonacci Ring Oscillators (FiROs) and Galois Ring Oscillators (GaROs). By utilizing a series of TEROs instead of basic flops for the Fibonacci and Galois configurations, one can have a suitable TRNG that can be implemented on hardware. Further, one can perform an XOR on the outputs of a FiRO with that of a GaRO to produce a further randomized number. This configuration is referred to as a NLFiGaRO [16].

A work by Tao et al. sought to increase the entropy of the NLFiGaRO system. To further reduce the stability of the system, and thereby increase the randomness of the output, one can introduce a free-running clock as an enable signal that is phase-shifted 90° from the clock signal that is used to sample the registers [17]. Thermal noise is further introduced by switching the NLFiGaRO system between the NLFiGaRO layout and that of a typical ring oscillator: when the system is disabled via the phase-shifted clock, the ring oscillators are running with a feedback loop internal to their respective stage in the NLFiGaRO system. This leads to an increase in temperature between the ring oscillators, further increasing the entropy of the system. While we modify this model for our purposes, we utilize the core structure of this work for seed generation. The NLFiGaRO system is displayed in Figure 2.

2.2. Physically Unclonable Functions

Physically Unclonable Functions (PUFs) utilize components that can have varying properties between devices that are caused by variations in manufacturing processes. Specific to FPGAs, PUFs often take advantage of variations in propagation delay between components within the fabric. These unique systems allow for protection against device cloning, which can quickly break a cryptographic system if the keys are known [18]. There are two primary categories of PUFs:

	
Silicon: These rely on the uncontrollable differences in manufacturing between devices and do not require extra components outside of an FPGA. This category can further be broken up into delay-based PUFs, such as Arbiter PUFs [19,20] and RO PUFs [21,22,23,24], and memory-based PUFs, which utilize the entropy from volatile memory cells [25,26].

	
Non-silicon: These PUFs are constructed using peripherals besides FPGA silicon for sources of entropy. This is a broad topic and may include the use of acoustics, optical fibers [27], and magnetics [28].

PUFs can and should be utilized within cryptographic systems to ensure that uniquely generated key-generation methods cannot be copied between devices. There are many low-power PUF examples that can be used to further enhance the security of IoT systems [29,30].

2.3. Lorenz Hyperchaotic Systems

Chaos can be described as a seemingly random output that can be modeled and replicated with some system of equations given that the initial conditions are known. Outputs of chaotic systems, such as the Lorenz system, are highly sensitive to the initial conditions of the system, with minor variations causing drastic changes to the output model.

Chaotic systems are formally defined as having at least one positive Lyapunov exponent. A Lyapunov exponent quantifies the rate of separation of infinitesimally close trajectories. In other words, a chaotic system will deviate between multiple iterations with small perturbations. Hyperchaos takes this concept one step further, requiring that the system of equations have a minimum of two Lyapunov exponents [31,32].

One such system that we used to implement secure encryption is the Lorenz hyperchaotic system (LHCS). The LHCS has been used in a variety of works and has proven useful for encryption [33,34,35,36]. A number of these methods, however, rely on software for encryption and therefore fail to realize a large data-throughput rate. By integrating these systems on hardware, such as FPGAs, one can maximize the data throughput, seeing encryption speeds increase by multiple orders of magnitude over similar software implementations.

In a work by Zou et al., a three-dimensional Lorenz chaotic system was used to encrypt and decrypt images [37]. This system modifies the classic Lorenz system by adding delay coupling and the modulo function to increase the complexity and frequency distribution of the system. Further, Zou implements a method to increase the size of the plaintext image, further increasing the complexity required to decrypt the output. This implementation is also resistant to data loss and noise attacks. The work implemented by Zou could be improved upon by utilizing a higher dimensionality of the chaotic system, further increasing the complexity required to break the key. However, because the system was not implemented on hardware, it had a relatively low data throughput.

Another work, by Ilyas et al., sought to implement an LHCS on an FPGA [38]. This work uses a 4D LHCS with a built-in self-security test module to ensure that generated keys are secure. Ilyas’ design manages to use less than 100 mW power for their implementation of the LHCS; however, their system has one primary shortcoming. The initial condition of their system is always a constant, which is stored in hardware. With this knowledge, it is possible to extract the keys from the FPGA and recreate the system for attack and decryption on a predatory device via either bitstream extraction or side-channel attacks [39,40,41]. For this reason, Ilyas’ system is not unconditionally secure. The system could be improved by introducing PUFs that are unique to the FPGA that the system is implemented on to increase the viability of their system.

A four-dimensional system was chosen based on previous works that evaluated three-, four-, and five-dimensional systems [42]. This work, by Bouteghrine et al., while evaluating chaotic systems (rather than hyperchaotic systems), demonstrates the trade offs behind implementing higher-dimensionality systems. Higher dimensions inherently lead to larger required resource utilization and therefore power consumption, so they may not be ideal for applications that require low power utilization. However, Bouteghrine’s work showed that a higher dimensionality leads to both a larger keyspace and larger reactions to perturbations, as demonstrated by an increase in Kolmogorov entropy relative to dimensionality. From the work, it can be determined that a five-dimensional system offers the most security, while a three-dimensional system offers the lowest power consumption. We opted for a four-dimensional system, which is a balance between the two.

3. System Design

Our background research of Lorenz systems shows that there is still work to be done so that the LHCS can be utilized to its full potential on hardware. Building off of the previous works, we seek to introduce the aforementioned PUFs into the chaotic system to further the entropy of the system, while still allowing for the decryption of the encrypted data. Our implementation method followed a three-step process. First, we designed and modeled the system via Python. Second, we constructed the LHCS on an FPGA and verified the model’s ability to encrypt and decrypt plaintext. Third, we inserted the design into a PCIe wrapper on a Stratix 10 FPGA from Intel and stressed the design via a custom Linux kernel and C++ programming on an Intel Sandy Bridge processor.

3.1. Lorenz Hyperchaotic System

The Lorenz hyperchaotic system (LHCS) that is explored within this paper can be described using the following four functions in Equations (1)–(4), where x, y, z, and w are initial conditions:

 x ˙ = F (t , x , y)

(1)

 y ˙ = G (t , x , y , z , w)

(2)

 z ˙ = Q (t , x , y , z)

(3)

 w ˙ = U (t , x)

(4)

The full mathematical model of the systems is described by Equations (5)–(8), where a, b, c, and d are constants that control the behavior of the Lorenz attractor.

 x ˙ = a (y − x)

(5)

 y ˙ = x (b − z) + w − y

(6)

 z ˙ = x y − c z

(7)

 w ˙ = − d x

(8)

3.2. Runge–Kutta 4 Method

The Runge–Kutta 4 (RK4) method is an iterative method used for temporal discretization for approximate solutions for simultaneous nonlinear equations, such as LHCS. The RK4 method calculates weighted averages across some step size h to estimate the next iteration within a system. The RK4 method has applications in hardware for power electronics [43], RNGs [44,45], and evaluating chaotic systems [46]. Iteration n + 1 is the weighted average of four outputs through a time step h shown in Equation (9).

 x n + 1 = x n + h (k 0 + 2 k 1 + 2 k 2 + k 3) 6

(9)

For this equation, the functional outputs k n are required and can be determined from Equations (10)–(13). For the purposes of our Hyper-Chaotic Encryptor, F (t n , x n) in Equations (10)–(13) is applied to Equations (1)–(4).

 k 0 = F (t n , x n)

(10)

 k 1 = F (t n + h 2 , x n + h ∗ k 0 2)

(11)

 k 2 = F (t n + h 2 , x n + h ∗ k 1 2)

(12)

 k 3 = F (t n + h , x n + h ∗ k 2)

(13)

3.3. Computer Simulation

Prior to implementing our work on an FPGA, we verified both the stability of the LHCS and the perceived entropy of the system via computer simulations in Python. Our primary concern was the move from a continuous system, such as the ordinary differential equations of the LHCS, to a digital system, such as the FPGA logic environment. We began by implementing the Equations (1)–(8) via Python and modeling their output. For simulation, we used constants a = 5 , b = 20 , c = 1 , d = 0.1 , with a step size of h = 0.001 , and ran the model for 5000 iterations with various initial conditions.

Using floating point numbers, we observed the output of the system in Figure 3. We can see that the systems for the different initial conditions (IC), −91 and 55, exhibit unique outputs, as expected. We tested this model for our initial conditions, which are not shown here, all with uniquely varied outputs. One clear observation, however, is the settling of the output toward a final point. This is an anticipated behavior of the LHCS, as it is an attractor by definition. For this reason, we determined that we would have to periodically refresh key initial conditions. This does not become an issue until approximately 5000 iterations of key generation.

Another concern was the loss of entropy when moving from floating-point to fixed-point numbers, which were to be used in the digital implementation of the LHCS. Using publicly available Python packages, we reduced the computer simulation precision to 32 bit, 8Q24 fixed point notation. The output of the fixed point model, with the same parameters used in Figure 3, is shown in Figure 4.

We can see from Figure 4 that our prediction was correct: while the randomized output of the system differs relative to the initial conditions, the entropy of the system is significantly reduced. We modified this system by taking advantage of the inherent modulo function resulting from overflowing the 8Q24 format of the number. We increased the step size to 1.51 and further changed the initial conditions to a = 10 , b = − 28 , c = − 8 / 3 and d = − 5 . While these parameters quickly force a continuous system to infinity, we are able to see a non-infinite system with the fixed-point format.

As we can see from Figure 5, there is significantly more entropy from the first two experiments. This is due to the constant overflow of the LHCS with the large step from the RK4 equations. This system of equations fails to converge on a single point, like the first system, and fails to follow a consistent trajectory, like the second system. It continues to exhibit unique output that is sensitive to the initial conditions.

Because of these uniquely chaotic properties, this is an ideal method for encryption, where one key can be systemically generated from the previous key, allowing for a high key-refresh rate with low predictability.

3.4. Dynamical Analysis of the Lorenz System

We evaluated the influence of the parameters a, b, c, and d on the Lorenz system to determine the proper hyperchaotic behavior in our final model. Two of the modified Lorenz systems we experimented with, systems (a) and (b), are shown in Figure 6. Their values are a = 7, b = 20, c = 4, d = 0.1 and a = 0.1, b = 0.2, c = 1, and d = 2, respectively.

For the final values used in our system, a = 5, b = 20, c = 8/3, and d = −20, we observe coexisting attractors from Equations (1)–(4). The Lyapunov exponents of this system are 6.4, 1.2, −2.7, and −13.6. With two positive Lyapunov exponents, this system can be defined as hyperchaotic [47]. The exponents integrated over time are shown in Figure 7. We can see from Figure 8 and Figure 9 that this system exhibits multiple attractors, indicating the non-uniqueness of the final state relative to the initial conditions [48].

3.5. FPGA Implementation

There are two primary components of the LHCS that we integrated: the PUF and the LHCS/RK4 system itself. The PUF is used for unique, 24-bit key generation, which serves as the initial condition for the LHCS encryptor/decryptor. We describe those two subsystems individually in Section 3.5.1 and Section 3.5.2

3.5.1. RO PUF

Our PUF is loosely based on the NLFiGaRO implementation of Tao et al. [17]. We use only five stage-delay cells to reduce power consumption, but extend the system to a full 24 bits, as our key is 24 bits in length. We opted for the NLFiGaRO system in Tao’s work due to the improved entropy over the NLFiRO and NLGaRO systems. This system is able to run off a single PLL, with a 100 MHz clock system for clk_s, and a 90° phase-shifted clk_e. This construction of the NLFiRO and NLGaro is shown in Figure 10.

NLFiRO recognizes the equation x 23 + x 18 + 1 , and NLGaRO recognizes the equation x 24 + x 23 + x 22 + x 17 + 1 . The full combination of the system is shown in Figure 11.

We opted to use a 23-bit NLFiRO combined with a 24 bit NLGaRO system to construct our NLFiGaRO system. By using the two ROs with differing periods, we are able to realize a maximum period of 2 23 + 24 . With the induced entropy from the phase difference in clk_e and clk_s and the delay cells, we expect a sufficient amount of randomness from our TRNG system. The results of the RO PUF are described in Section 4.2.

3.5.2. Lorenz Hyperchaotic System

Our LHCS relies on 32-bit, fixed point arithmetic, with 24 bits for the decimal and 8 bits for the integer. Specifically, we used exclusively multiplication and addition for the LHCS. Multiplication for 8Q24 fixed point numbers a and b is described in Equation (14).

 P r o d u c t 8 Q 24 = (a ∗ b) m o d (2 31) 2 24

(14)

Fixed-point arithmetic is preferred due to the simplicity, and therefore lower propagation delay, over floating point arithmetic. Fixed point multiplication, as shown in Equation (14), can be calculated via an integer multiplier followed by a bit shift. This is the core principle that allows us to utilize a high clock frequency for increasing the throughput of our encryptor.

The Lorenz equation FPGA black box is shown in Figure 12. By utilizing a state machine for the RK4 method, we are able to reduce the amount of DSPs for multiplication by 75%. Further, by using asynchronous functions as opposed to registering the input and output, we are able to reduce the latency by two clock cycles. The constant values used within the system are a = 5, b = 20, c = 8/3, and d = −20. We utilized a step parameter of h = 1.51 in the final implementation. It is important to note that, since the system encrypts on a per-pixel basis, the step size h does not affect the final resolution of the ciphertext, nor does input resolution affect the dynamics of the system.

We use a similar approach to the RK-4 implementation. Each variable (x, y, z, and w) has its own multiplier for calculating the step h output at each respective state. Thanks to the reliance on asynchronous functions, we are able to complete an entire RK4 stage in one 100 MHz clock cycle. The RK4 state machine is replicated for each variable of the LHCS and is shown in Figure 13. This produces the encryption key, which is the lower 24 bits of the final x variable. These 24 bits can be either XOR’d against the plaintext to receive the cipher or XOR’d against the ciphertext to receive the plaintext. These two concepts are illustrated in Figure 14 and Figure 15, respectively.

The output of the system is fed back into the input of the system to generate another key. This continues for each packet fed into the system so that each plaintext has its own unique key determined by the LHCS.

Each LHCS is configured to work as both an encryptor and decryptor. The encryption algorithms used to implement the key refresh processes are described below:

	
If set to encrypt, the LHCE will first capture an RNG and generate an output, with the input to the system being the hard-coded initial conditions.

	
The plain-text RNG seed is encrypted with the output of the LHCE.

	
The LHCE will reconfigure itself with the RNG as its initial condition.

	
The LHCE will calculate its next key, with its input being its previous output, encrypting the plaintext with the generated key.

	
This continues until the LHCE is reset, at which point a new initial condition will be determined via the TRNG, or the system is set to the decrypt mode.

The total time cost for an encryption step requiring the RK4 state machine in Figure 13 is five clock cycles, or 50 ns at 100 MHz. This includes both the encryption of the public key and the encryption of pixel data.

The following algorithm is used for decrypting:

	
If set to decrypt, the LHCE will wait for data to be input, expecting the first 24 bits of data to be the encrypted initial condition for the system.

	
Once data are received, the generated output (with the hard-coded initial conditions being the input) of the LHCE is used to decrypt the ciphertext.

	
These received data are the initial conditions used by the encryptor, so the decryptor reconfigures itself with this first packet as the initial condition.

	
The LHCE will calculate its next key with its input being its previous output, decrypting the ciphertext along the way with the generated key.

	
This continues until the LHCE is reset, at which point a new initial condition will be determined via the incoming data stream, or the system is set to encrypt mode.

For the RK4 state machine in Figure 13, the total time cost for decryption is five clock cycles. This amounts to 50 ns at the 100 MHz clock rate and covers both the decryption of the public key and pixel data.

3.6. PCIe Wrapper

The PCIe wrapper, while not explicitly for an IoT system integration, allows for stressing the LHCS and represents a potential integration method for the system. Further, thanks to the high throughput potential of the LHCS, the LHCS also has the potential for non-IoT applications, such as high-speed data encrypting/decrypting from a computer processor. The PCIe wrapper is an example of such a system and is described in detail here.

We used an Intel Sandy Bridge processor to communicate with the Stratix 10 FPGA development kit that the LHCS is built on. A Linux kernel, provided by Intel, was modified for our purposes. The PCIe read/write capability was expanded to 256-bit word length, and a software Application Programming Interface (API) was developed in C++ for communicating with the PCIe kernel. The API allows for reading/writing memory from user space and was designed to seamlessly integrate with the PCIe hardware wrapper. The API was programmed with functions such as direct memory read/write, control register read/write (described later in this section), image encryption and decryption, and continuous read/write for PCIe stress testing, which was useful for power analysis.

The full PCIe hardware wrapper utilizes a multitude of components to fully utilize the LHCS system and is shown in Figure 16. The primary interface with the PCIe IV is a parallel I/O that reads and writes into a 512 bit × 32 word DRAM. The base IP for this is publicly made available by Intel and is modified for our purposes. We utilized a dual-port DRAM, where one port manages reads and writes from the processor via PCIe, and the other port manages reads/writes from the memory arbiter. To increase the maximum throughput of the system, non-LHCS components operate on a 200 MHz clock.

The PCIe interface is relatively simple: reads and writes go directly to the DRAM, with one exception. We have one 512-bit register, located at address 0 × 20, that maintains the encryption status of each word. Bits [287:256] act as status registers, where a “1” indicates that the respective address has been written into DRAM via PCIe and has yet to be encrypted. Once the Lorenz controller encrypts that data and writes them back into the same corresponding address space in DRAM, that bit in the address control space will be deasserted, indicating that the address is ready. It is up to the software to maintain responsibility for reading this register before writing in new data, or else data will potentially be overwritten. The lower bits of the control register also control the reset status of the Lorenz controller, the encrypt/decrypt enable bits, and how many valid 24-bit words there are per 256-bit Transaction Layer Packet (TLP) payload (if less than the maximum 10).

Another primary component of the wrapper is the memory arbiter. Since the LHCS system relies on sequential data, it is important that data arrive strictly ordered. Further, since the software interfacing with the PCIe controller on the motherboard has limited control of the transmission of TLPs, it is not possible to guarantee that data arrive at the physical address that they were destined for in the DRAM. This is the reason why the memory arbiter is necessary.

The memory arbiter, with the assistance of a FIFO, manages both the data alignment and ordering of data being fed to the LHCS. It is possible that data are not right-aligned when intercepted from the PCIe interface. The memory arbiter aligns the data, based on byte-enable bits, and feeds the lower 24 bits of the word to the LHCS while continuously shifting the 24-bit data to the right to keep the LHCS busy. Further, it shifts completed encrypted or decrypted data into a new word. Once the arbiter determines that all the data for a given word have been encrypted or decrypted, it writes the data back to the DRAM and deasserts the corresponding bit in the memory controller. Due to the limited maximum clock frequency of the LHCS, a clock crossing FIFO is necessary between the memory arbiter and the LHCS.

4. Results

4.1. Resource Usage

To calculate resource usage, we evaluate our design against the base PCIe memory read/write example available from Intel. This is because we expect our primary system, the LHCS and LHCS controller, to be used without the PCIe implementation. To measure net resource usage of the core LHCS and controller system, we take the difference between the resource usage of the entire design and the original, base PCIe PIO design. This results in resource utilization of the full LHCS system with control functions such as the memory arbiter, control register, and clock-crossing FIFO. This excludes the resources from the DRAM, Parallel I/O controller, and Intel PCIe P-Tile IP. The resource usage for the three designs (base PCIe, full system, and full system minus the PCIe design) are outlined in Table 1.

We used a similar approach for evaluating the power usage of the system. The Stratix 10 development kit that we used has an onboard Max10 FPGA that can be used to record active power consumption from the Stratix 10. To measure the power, we stressed the PCIe/LHCS system by running an infinite amount of memory reads and writes via the Linux kernel. We measured the average power consumption over a ten-minute period. The average power for both the PCIe base design and the full LHCS/control/PCIe system was recorded, and the difference between these two measurements indicated the power consumption of the LHCS and LHCS controller. These results are summarized in Table 2.

4.2. Random Number Generation

To evaluate our RO-PUF RNG, we used the NIST Statistical Test Suite for Random Number Generators [49]. With RNGs, it can be difficult to determine if a set of numbers is truly random, and no amount of testing can certify an RNG as certainly random. Further, it is unlikely for an RNG to pass all the NIST tests, as some of the test outcomes contradict others. Therefore, it is up to the user to evaluate the outcome of the tests for their uses in cryptography [49]. Furthermore, as the NLFiGaRO system has a period (in the non-RO, PRNG configuration) of 223+24, it would take a substantially large amount of processing power to evaluate an entire period’s worth of data. To test RNGs, we ran the RO-PUF for 50,000 iterations five times. We share the worst-case results in Table 3.

4.3. Image Encryption and Decryption

The image encryption process was run via the software API described in Section 3.6 and evaluated against the results of encrypted/decrypted .bmp files. Since the encrypted public key, also referred to as the randomly generated LHCS initial condition, is three extra bytes on top of the encrypted image data, the key had to be stored outside of the encrypted data section of the .bmp. This is an application-specific decision, but we chose to store the key in the header section of the .bmp, since there is a four-byte partition reserved for program use. While most applications would require full encryption of the image header data, we chose to not encrypt the header data so that we could evaluate the image-encryption results. Our final implementation uses values a = 5, b = 20, c = 8/3, and d = −20 for the LHCE, with 8.1 for x 0 , y 0 , z 0 , and w 0 as the hardcoded initial values for the private key. We ran our LHCS system against the entire publicly available SIPI library [50], and some of those results are displayed in Figure 17.

Further, our system sought to deliver multiple unique encryptions of the same data. We encrypted and decrypted each image four separate times. While the decryption results remain similar, the encrypted results are entirely unique with respect to each other. To prove this, we evaluated the RGB histogram of the plaintext image as well as three different encryptions of the same image. This is displayed in Figure 18. More examples of this are displayed in Figure 19.

4.4. Statistical Analysis

Potential attackers can evaluate color ranges from histograms and leverage inconsistencies in the pixel distributions to potentially break the key for a given encryption system. For this reason, it is important to mask the pixel distribution in the final ciphertext of an image. The strength of the distribution within a histogram, such as that in Figure 18, can be evaluated with a X 2 test. The X 2 test determines homogeneity with a sample and is calculated with Equation (15).

 X 2 = ∑ i = 1 256 (V i − g) 2 g

(15)

In Equation (15), V i represents the recurrence of i (whether the channel being tested is red, blue, green, or grey) and g = V 256 . The X 2 values for various images are displayed in Table 4. For a degree of freedom value 255 (for an eight-bit image), the maximum value to determine goodness of fit from an X 2 test is 293 for a 0.05 significance level [51].

Another test used to determine a system’s strength against histogram-based attacks is Shannon’s entropy, which measures “disorder” within an image by relating an amount of uncertainty to a given probability distribution. A component with low entropy means that it has a more homogeneous distribution [52]. For protection against histogram-based attacks, the ideal entropy value is 8. Shannon’s entropy is defined in Equation (16). Entropy values for various image ciphers are shown in Table 5. Further, we compare the X 2 and entropy values to other works in Table 6.

 H (s m) = − ∑ i = 1 256 p n (s m) · l o g 2 (p n (s m)) , m = 1 , ⋯ , M

(16)

4.5. Differential Attack Analysis

To further prove the viability of our encryptor, we evaluated common metrics for evaluating the performance of the encryption process against differential attacks. Specifically, we evaluated our LHCS ciphertexts for their Unified Average Change Intensity (UACI) and Number of Pixel Change Rates (NPCRs). UACI measures the average absolute difference between two images, while an NPCR measures how different two images’ pixel intensities are at all locations [57]. An image is considered secure against these differential attacks if it has a UACI value of more than 33% and an NPCR value of more than 99% [58]. UACI is defined in Equation (17), and NPCR is defined in Equation (18).

 U A C I = 1 255 × M N ∑ i = 1 M ∑ j = 1 N | C 1 (i , j) − C 2 (i , j) | × 100

(17)

Typically, in Equation (17), C 1 and C 2 refer to two images with a single pixels difference. However, since our application uses different keys based on the output of an RO-PUF, we are able to run UACI for the exact same image.

 N P C R = 1 M N ∑ i = 1 M ∑ j = 1 N d i s t (i , j) × 100

(18)

In Equation (18), d i s t (i , j) is expressed by Equation (19).

 d i s t (i , j) = 0 if C 1 (i , j) = C 2 (i , j) 1 if C 1 (i , j) ≠ C 2 (i , j)

(19)

M and N in both equations refer to the number of rows and columns of pixels in an image.

Further, we calculated the Pearson correlation coefficient (PCC) to measure the correlation between two ciphers of the same image. For this calculation, the public key was changed for two ciphers of the same plaintext image, x and y. The PCC can range from 1 (perfect correlation) to 0 (no correlation) to −1 (perfect negative correlation). An encryptor should reduce this correlation to zero, indicating that two ciphers are entirely unique. Equation (20) shows how the PCC is calculated, where M is the total number of pixels, x i represents a pixel value on image x at index m, y i represents a pixel from a similar image tested against image x at index m, and x ¯ and y ¯ represent the mean values of pixel intensities in images x and y, respectively.

 P C C = 1 M ∑ i = 1 M (x i − x ¯) (y i − y ¯) ∑ i = 1 M (x i − x ¯) 2 ∑ i = 1 M (y i − y ¯) 2

(20)

The worst-case results for PCC, UACI and NPCR are shown in Table 7. It can be seen from the tables that our proposed LHCE passes all tests, even when the same image is compared against itself when it is encrypted with different keys. This is unique with respect to other implementations, as similar images will produce similar ciphers.

Finally, we compared our results against other works in chaotic encryption. While our work shows similar results for these tests, it is important to note that our implementation tested ciphers of the exact same image with different keys. Typically, PCC, UACI, and NPCR are carried out on ciphers where a single pixel is changed between plaintext images. Despite this, it can be determined from the comparison that our work has similar levels of resistance to differential attacks as shown in Table 8.

4.6. Keyspace Analysis

Brute force attacks, in which every possible key is used in an effort to break and decrypt a ciphertext, can be launched on any encryption scheme. To protect against this, a system needs a keyspace large enough so that the system can not be easily broken via brute force. The system relies on eight 24-bit values for key generation: a, b, c, d, x 0 , y 0 , z 0 , and w 0 . Further, the private key is again encrypted using a randomly generated key, which is again generated based on a, b, c, d, x 0 , y 0 , z 0 and w 0 . Before the attacker can utilize the private key, they must break the randomly generated public key. Thus, the full key space is 2 2 ∗ (4 ∗ 28) = 2 224 . This places the keyspace in the middle of similar works. A comparison is shown in Table 9.

5. Discussion

We sought out the objective of providing an unconditionally secure, low-power, high-throughput encryption system. While it may be reasonably impossible to build a truly 100% secure system, one can make it practically impossible to crack. Our system is immune to a variety of common attacks, such as plain-text, side-channel, and differential attacks.

While the entropy used for encrypting the system is generated via the LHCS, we believe that the truly significant factor for our system being superior to prior results is the use of the RO-PUF as a TRNG for the generation of public keys. This PUF will prevent an attacker from being able to extract the bitstream and replicate the design for decrypting a victim’s data, as the TRNG public-seed generator is unique to each FPGA that it is implemented on. Further, the TRNG PUF is what makes our system immune to differential attacks. For someone to break our encryption system, they would need to

	
Extract and decrypt the bitstream from the FPGA to steal the hard-coded initial values to the LHCS (the private key).

	
Replicate the system on an aggressor device.

	
Intercept the victim’s data.

	
Using the stolen private key, decode the incoming public key.

	
Synchronize the public key refresh rate with the victim.

Each one of the aforementioned steps makes the LHCS an extra magnitude more difficult to crack. It can be determined, from our results, that it is practically impossible to crack our LHCS.

Outside just high security, our system provides other benefits. It allows for high throughput, with each 24-bit key being generated once every 50 ns. This allows for a maximum throughput of 60 MB/s, which is more than enough to encrypt and decrypt compressed high-definition video. Further, one could introduce frequent initial key refresh, incurring a latency of only six additional clock cycles, or 60 ns. That means that one could add 100 key refreshes per frame of a 30-frame-per-second video and still achieve a video throughput of just under 60 MB/s. This means that even if an attacker was able to analyze a portion of the data and somehow extract the key, they would only have one percent of a video frame.

Further, our system showed a low power utilization that allows it to be integrated into IoT systems. We would not consider the LHCS system to be ultra-low-power, though. We would expect it to be used in devices that have access to a decently large battery, as our system is ideal for high-bandwidth applications that are most likely already drawing power that can be considered to be on the high end of the IoT spectrum. Similarly, we also demonstrated via our application that the LHCS has a place in high-bandwidth applications (such as PCIe) where power consumption is less of a concern.

We do think that our system has some areas for improvement. First, we would like to continue to optimize the power usage. Ideally, for a security system destined for the IoT, such as the LHCS, we would like to see power usage less than 150 mW. Further, implementing a native, variable-sized key may benefit developers seeking to encrypt varying sizes of data where it may be practical to reduce the key size.

6. Conclusions

The current state-of-the-art Lorenz encryption implementations are not suitable for video applications. Our solution allows for high-throughput, low-power encryption that provides unique ciphertexts for equivalent plaintexts. This will prevent a man-in-the-middle attack from being able to tell if a video is changing from frame to frame; in other words, an attacker will not be able to discern if a live feed is changing. This can be a significant perk in security systems, such as those in a bank, where there may or may not be a static environment.

We constructed a four-dimensional, Lorenz hyperchaotic encryptor/decryptor and implemented a PCIe hardware wrapper for stress-testing the system. Further, we integrated an RO-PUF that allows us to generate unique keys for seeding our LHCS system, which deviates from current state-of-the-art encryption on FPGAs. Our implementation with an RO-PUF allows us to have multiple different ciphertexts for identical images, which eliminates the vulnerability to differential attacks.

Our implementation showed a power requirement of only 380 mW, while giving a unique key to each 24-bit data packet. This extremely high key refresh rate with a reliance on a PUF TRNG for a public-facing key not only prevents plaintext attacks but also makes deciphering an entire data stream almost entirely impossible. On top of the low power usage of our system and ultra-high security, we see an extremely high throughput of 60 MB/s, which will allow for encrypting and decrypting live, high-definition video streams. The power consumption is the main shortcoming of our work; at 380 mW, it is not low enough for extremely resource-constrained devices, such as some IoT edge nodes. A possible solution includes the elimination of multipliers in the LHCE by finding powers of two for the values a, b, c, and d. This will allow for the multipliers to be replaced by a bit shift, which is a more power- and resource-efficient option.

Author Contributions

Conceptualization, A.M.; methodology, A.M.; investigation, A.M.; writing—original draft preparation, A.M.; writing—review and editing, A.M. and Y.C.; visualization, A.M.; supervision, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Derived data supporting the findings of this study are available from the corresponding author on request.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

	FPGA
	Field-Programmable Gate Array

	Gbps
	Gigabits per second

	HDL
	Hardware Description Language

	RX
	Receive

	TX
	Transmit

	RTL
	Register Transfer Level

	TRNG
	True Random Number Generator

	IoT
	Internet of Things

	I/O
	Input/Output

	API
	Application Programming Interface

	PUF
	Physically Unclonable Function

	RO-PUF
	Ring Oscillator Physically Unclonable Function

	FIFO
	First In, First Out Buffer

	LHCS
	Lorenz Hyperchaotic System

	PCIe
	Peripheral Component Interconnect Express

	TLP
	Transaction Layer Packet

	DRAM
	Dynamic Random Access Memory

	PCC
	Pearson Correlation Coefficient

	UACI
	Unified Average Change Intensity

	NPCR
	Number of Pixel Change Rates

	NIST
	National Institute of Standards and Technology

References

	

Magyari, A.; Chen, Y. Review of State-of-the-Art FPGA Applications in IoT Networks. Sensors 2022, 22, 7496. [Google Scholar] [CrossRef]

	

Uganya, G.; Radhika; Vijayaraj, N. A survey on internet of things: Applications, recent issues, attacks, and security mechanisms. J. Circ. Syst. Comput. 2021, 30, 2130006. [Google Scholar] [CrossRef]

	

Vaidyanathan, S.; Sampath, S. Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Commun. Comput. Inf. Sci. 2011, 205, 156–164. [Google Scholar]

	

He, C.; Ming, K.; Wang, Y.; Wang, Z.J. A deep learning based attack for the chaos-based image encryption. arXiv 2019, arXiv:1907.12245. [Google Scholar]

	

Munir, N.; Khan, M.; Jamal, S.S.; Hazzazi, M.M.; Hussain, I. Cryptanalysis of hybrid secure image encryption based on Julia set fractals and three-dimensional Lorenz chaotic map. Math. Comput. Simul. 2021, 190, 826–836. [Google Scholar] [CrossRef]

	

Ahmad, M.; Aijaz, A.; Ansari, S.; Siddiqui, M.M.; Masood, S. Cryptanalysis of image cryptosystem using synchronized 4D lorenz stenflo hyperchaotic systems. In Information and Decision Sciences, Proceedings of the 6th International Conference on FICTA, Birmingham, UK, 6–8 September 2023; Springer: Berlin/Heidelberg, Germany, 2018; pp. 367–376. [Google Scholar]

	

Fan, H.; Lu, H.; Zhang, C.; Li, M.; Liu, Y. Cryptanalysis of an image encryption algorithm based on random walk and hyperchaotic systems. Entropy 2021, 24, 40. [Google Scholar] [CrossRef] [PubMed]

	

Bhandari, J.K.; Verma, Y.K.; Mishra, V.; Kumar, A.; Gupta, S.K. A PRBS Generator and Checker based BIST for Multipliers. In Proceedings of the 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, 14–16 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]

	

Li, W.; Yang, X. A parallel and reconfigurable united architecture for Fibonacci and Galois LFSR. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 1, pp. 203–206. [Google Scholar]

	

Dubrova, E. A transformation from the Fibonacci to the Galois NLFSRs. IEEE Trans. Inf. Theory 2009, 55, 5263–5271. [Google Scholar] [CrossRef]

	

Della Sala, R.; Bellizia, D.; Scotti, G. A novel ultra-compact FPGA-compatible TRNG architecture exploiting latched ring oscillators. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1672–1676. [Google Scholar] [CrossRef]

	

Prada-Delgado, M.A.; Martínez-Gómez, C.; Baturone, I. Auto-calibrated ring oscillator TRNG based on jitter accumulation. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]

	

Choi, S.; Shin, Y.; Yoo, H. Analysis of Ring-Oscillator-based True Random Number Generator on FPGAs. In Proceedings of the 2021 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 31 January–3 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar]

	

Fujieda, N. On the Feasibility of TERO-Based True Random Number Generator on Xilinx FPGAs. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 August–4 September 2020; pp. 103–108. [Google Scholar] [CrossRef]

	

Hu, Y.; Jiang, Y.; Wang, W. Transient Effect Ring Oscillator PUF Based on Programmable Delay Lines. In Proceedings of the 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 26–27 February 2022; pp. 528–533. [Google Scholar] [CrossRef]

	

Nannipieri, P.; Di Matteo, S.; Baldanzi, L.; Crocetti, L.; Belli, J.; Fanucci, L.; Saponara, S. True random number generator based on Fibonacci-Galois ring oscillators for FPGA. Appl. Sci. 2021, 11, 3330. [Google Scholar] [CrossRef]

	

Tao, S.; Yu, Y.; Dubrova, E. FPGA Based True Random Number Generators Using Non-Linear Feedback Ring Oscillators. In Proceedings of the 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), Montreal, QC, Canada, 24–27 June 2018; pp. 213–216. [Google Scholar] [CrossRef]

	

Anandakumar, N.N.; Hashmi, M.S.; Tehranipoor, M. FPGA-based Physical Unclonable Functions: A comprehensive overview of theory and architectures. Integration 2021, 81, 175–194. [Google Scholar] [CrossRef]

	

He, Z.; Chen, W.; Zhang, L.; Chi, G.; Gao, Q.; Harn, L. A highly reliable arbiter PUF with improved uniqueness in FPGA implementation using Bit-Self-Test. IEEE Access 2020, 8, 181751–181762. [Google Scholar] [CrossRef]

	

Mahalat, M.H.; Mandal, S.; Mondal, A.; Sen, B. An efficient implementation of arbiter PUF on FPGA for IoT application. In Proceedings of the 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 324–329. [Google Scholar]

	

Li, K.l.; Meng, Y.; Li, J.; Wang, S.k.; Yang, J. Research and design of a high-security configurable RO-PUF based on FPGA. Procedia Comput. Sci. 2021, 183, 40–45. [Google Scholar] [CrossRef]

	

Zhou, K.; Liang, H.; Jiang, Y.; Huang, Z.; Jiang, C.; Lu, Y. FPGA-based RO PUF with low overhead and high stability. Electron. Lett. 2019, 55, 510–513. [Google Scholar] [CrossRef]

	

Deng, D.; Hou, S.; Wang, Z.; Guo, Y. Configurable ring oscillator PUF using hybrid logic gates. IEEE Access 2020, 8, 161427–161437. [Google Scholar] [CrossRef]

	

Garcia-Bosque, M.; Díez-SEñorans, G.; Sánchez-Azqueta, C.; Celma, S. Proposal and analysis of a novel class of PUFs based on Galois ring oscillators. IEEE Access 2020, 8, 157830–157839. [Google Scholar] [CrossRef]

	

Chien, W.C.; Chang, Y.C.; Tsou, Y.T.; Kuo, S.Y.; Chang, C.R. STT-DPSA: Digital PUF-based secure authentication using STT-MRAM for the Internet of things. Micromachines 2020, 11, 502. [Google Scholar] [CrossRef]

	

Farha, F.; Ning, H.; Ali, K.; Chen, L.; Nugent, C. SRAM-PUF-based entities authentication scheme for resource-constrained IoT devices. IEEE Internet Things J. 2020, 8, 5904–5913. [Google Scholar] [CrossRef]

	

Dachowicz, A.; Atallah, M.; Panchal, J.H. Optical PUF design for anti-counterfeiting in manufacturing of metallic goods. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 51739, p. V01BT02A035. [Google Scholar]

	

Ibrahim, O.A.; Sciancalepore, S.; Di Pietro, R. MAG-PUF: Magnetic Physical Unclonable Functions for Device Authentication in the IoT. In Proceedings of the Security and Privacy in Communication Networks: 18th EAI International Conference, SecureComm 2022, Virtual Event, 17–19 October 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 130–149. [Google Scholar]

	

Monteiro, C.; Takahashi, Y. Low-power two-phase clocking adiabatic PUF circuit. Electronics 2021, 10, 1258. [Google Scholar] [CrossRef]

	

Monteiro, C.; Takahashi, Y. Ultra-Low-Power FinFETs-Based TPCA-PUF Circuit for Secure IoT Devices. Sensors 2021, 21, 8302. [Google Scholar] [CrossRef]

	

Rusyn, V.; Mujiarto; Mamat, M.; Azharul, F.; Sanjaya, W.M.; Sambas, A.; Dwipriyoko, E.; Sutoni, A. Computer modelling of the information properties of hyper chaotic lorenz system and its application in secure communication system. Proc. J. Phys. Conf. Ser. IOP Publ. 2021, 1764, 012205. [Google Scholar] [CrossRef]

	

Kushnir, M.; Galiuk, S.; Rusyn, V.; Kosovan, G.; Vovchuk, D. Computer modeling of information properties of deterministic chaos. In Proceedings of the Chaotic Modeling and Simulation International Conference (CHAOS2014), Lisbon, Portugal, 7–10 June 2014; pp. 265–276. [Google Scholar]

	

Ye, G.; Wu, H.; Liu, M.; Shi, Y. Image encryption scheme based on blind signature and an improved Lorenz system. Expert Syst. Appl. 2022, 205, 117709. [Google Scholar] [CrossRef]

	

Alexan, W.; ElBeltagy, M.; Aboshousha, A. Rgb image encryption through cellular automata, s-box and the lorenz system. Symmetry 2022, 14, 443. [Google Scholar] [CrossRef]

	

Moon, S.; Baik, J.J.; Seo, J.M. Chaos synchronization in generalized Lorenz systems and an application to image encryption. Commun. Nonlinear Sci. Numer. Simul. 2021, 96, 105708. [Google Scholar] [CrossRef]

	

Tariq, S.; Khan, M.; Alghafis, A.; Amin, M. A novel hybrid encryption scheme based on chaotic Lorenz system and logarithmic key generation. Multimed. Tools Appl. 2020, 79, 23507–23529. [Google Scholar] [CrossRef]

	

Zou, C.; Zhang, Q.; Wei, X.; Liu, C. Image Encryption Based on Improved Lorenz System. IEEE Access 2020, 8, 75728–75740. [Google Scholar] [CrossRef]

	

Ilyas, B.; Raouf, S.M.; Abdelkader, S.; Camel, T.; Said, S.; Lei, H. An Efficient and Reliable Chaos-Based IoT Security Core for UDP/IP Wireless Communication. IEEE Access 2022, 10, 49625–49656. [Google Scholar] [CrossRef]

	

Moradi, A.; Barenghi, A.; Kasper, T.; Paar, C. On the vulnerability of FPGA bitstream encryption against power analysis attacks: Extracting keys from Xilinx Virtex-II FPGAs. In Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 17–21 October 2011; pp. 111–124. [Google Scholar]

	

Duncan, A.; Rahman, F.; Lukefahr, A.; Farahmandi, F.; Tehranipoor, M. FPGA Bitstream Security: A Day in the Life. In Proceedings of the 2019 IEEE International Test Conference (ITC), Washington, DC, USA, 9–15 November 2019; pp. 1–10. [Google Scholar] [CrossRef]

	

Ramesh, C.; Patil, S.B.; Dhanuskodi, S.N.; Provelengios, G.; Pillement, S.; Holcomb, D.; Tessier, R. FPGA side channel attacks without physical access. In Proceedings of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Boulder, CO, USA, 29 April–1 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 45–52. [Google Scholar]

	

Bouteghrine, B.; Tanougast, C.; Sadoudi, S. Design and FPGA implementation of new multidimensional chaotic map for secure communication. J. Circuits Syst. Comput. 2021, 30, 2150280. [Google Scholar] [CrossRef]

	

Yushkova, M.; Sanchez, A.; de Castro, A. Strategies for choosing an appropriate numerical method for FPGA-based HIL. Int. J. Electr. Power Energy Syst. 2021, 132, 107186. [Google Scholar] [CrossRef]

	

Alcin, M.; Murat, T.; Erdoğmuş, P.; Koyuncu, I. FPGA-based dual core TRNG design using Ring and Runge-Kutta-Butcher based on chaotic oscillator. Chaos Theory Appl. 2021, 3, 20–28. [Google Scholar] [CrossRef]

	

Yu, F.; Zhang, Z.; Shen, H.; Huang, Y.; Cai, S.; Jin, J.; Du, S. Design and FPGA implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation. Front. Phys. 2021, 9, 690651. [Google Scholar] [CrossRef]

	

Garg, A.; Yadav, B.; Sahu, K.; Suneja, K. An FPGA based Real time Implementation of Nosé hoover Chaotic System using different numerical Techniques. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 1, pp. 108–113. [Google Scholar]

	

Letellier, C.; Rossler, O.E. Hyperchaos. Scholarpedia 2007, 2, 1936. [Google Scholar] [CrossRef]

	

Lai, Q.; Wan, Z.; Kuate, P.D.K.; Fotsin, H. Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105341. [Google Scholar] [CrossRef]

	

Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; Booz-Allen and Hamilton Inc Mclean Va: Tysons Corner, VA, USA, 2001. [Google Scholar]

	

Weber, A.G. The USC-SIPI Image Database: Version 5. 2006. Available online: http://sipi.usc.edu/database/ (accessed on 18 June 2023).

	

Neamah, A.A.; Shukur, A.A. A Novel Conservative Chaotic System Involved in Hyperbolic Functions and Its Application to Design an Efficient Colour Image Encryption Scheme. Symmetry 2023, 15, 1511. [Google Scholar] [CrossRef]

	

Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; Volume 4, pp. 547–562. [Google Scholar]

	

Khalid, I.; Shah, T.; Eldin, S.M.; Shah, D.; Asif, M.; Saddique, I. An integrated image encryption scheme based on elliptic curve. IEEE Access 2022, 11, 5483–5501. [Google Scholar] [CrossRef]

	

Hu, X.; Wei, L.; Chen, W.; Chen, Q.; Guo, Y. Color image encryption algorithm based on dynamic chaos and matrix convolution. IEEE Access 2020, 8, 12452–12466. [Google Scholar] [CrossRef]

	

Yang, F.; Mou, J.; Sun, K.; Cao, Y.; Jin, J. Color image compression-encryption algorithm based on fractional-order memristor chaotic circuit. IEEE Access 2019, 7, 58751–58763. [Google Scholar] [CrossRef]

	

Cai, X.; Liu, C.; Wang, Y.; Zhang, H. A novel 4D chaotic system with nonhyperbolic hyperbolic shape equilibrium points: Analysis, circuit implementation and color image encryption. Int. J. Mod. Phys. B 2019, 33, 1950383. [Google Scholar] [CrossRef]

	

Annaby, M.; Ayad, H.; Rushdi, M. A Difference-Equation-Based Robust Image Encryption Scheme with Chaotic Permutations and Logic Gates. J. Math. Imaging Vis. 2022, 64, 855–868. [Google Scholar] [CrossRef]

	

Kaur, M.; Kumar, V. Efficient image encryption method based on improved Lorenz chaotic system. Electron. Lett. 2018, 54, 562–564. [Google Scholar] [CrossRef]

[image: Electronics 12 04929 g001]

Figure 1. Different LFSR configurations. (a) Fibonacci LFSR configuration with a period of 255. (b) Galois LFSR configuration with a period of 255.

Figure 1. Different LFSR configurations. (a) Fibonacci LFSR configuration with a period of 255. (b) Galois LFSR configuration with a period of 255.

[image: Electronics 12 04929 g001]

[image: Electronics 12 04929 g002]

Figure 2. NLFiGaRO Configuration.

Figure 2. NLFiGaRO Configuration.

[image: Electronics 12 04929 g002]

[image: Electronics 12 04929 g003]

Figure 3. Continuous output of the RK4 and LHCS Python integration for two different initial conditions, −91 and 55, respectively. We can observe that the output demonstrates a unique and unpredictable output for each condition, regardless of the fact that the same system of equations was used for each model.

Figure 3. Continuous output of the RK4 and LHCS Python integration for two different initial conditions, −91 and 55, respectively. We can observe that the output demonstrates a unique and unpredictable output for each condition, regardless of the fact that the same system of equations was used for each model.

[image: Electronics 12 04929 g003]

[image: Electronics 12 04929 g004]

Figure 4. Discrete, 8Q24 output of the RK4 and LHCS Python integration for two different initial conditions. We can observe that the output demonstrates a unique and unpredictable output for each condition, regardless of the fact that the same system of equations was used for each model. However, we can see significantly reduced entropy in the system. Oscillations are caused by the loss of data from the fixed-point format.

Figure 4. Discrete, 8Q24 output of the RK4 and LHCS Python integration for two different initial conditions. We can observe that the output demonstrates a unique and unpredictable output for each condition, regardless of the fact that the same system of equations was used for each model. However, we can see significantly reduced entropy in the system. Oscillations are caused by the loss of data from the fixed-point format.

[image: Electronics 12 04929 g004]

[image: Electronics 12 04929 g005]

Figure 5. Continuous output of the RK4 and LHCS Python integration for two different initial conditions. We can observe that the increased timestep h allows for an observably significant amount of entropy when compared to the previous two systems.

Figure 5. Continuous output of the RK4 and LHCS Python integration for two different initial conditions. We can observe that the increased timestep h allows for an observably significant amount of entropy when compared to the previous two systems.

[image: Electronics 12 04929 g005]

[image: Electronics 12 04929 g006]

Figure 6. Modified systems (a,b). System (a) has a single positive Lyaponov exponent 8.2 and one zero Lyaponov exponent. System (b) has one slightly positive Lyaponov exponent 0.35.

Figure 6. Modified systems (a,b). System (a) has a single positive Lyaponov exponent 8.2 and one zero Lyaponov exponent. System (b) has one slightly positive Lyaponov exponent 0.35.

[image: Electronics 12 04929 g006]

[image: Electronics 12 04929 g007]

Figure 7. The Lyaponov exponents of the Lorenz hyperchaotic system.

Figure 7. The Lyaponov exponents of the Lorenz hyperchaotic system.

[image: Electronics 12 04929 g007]

[image: Electronics 12 04929 g008]

Figure 8. Two-dimensional phase portraits when a = 5, b = 20, c = 8/3, and d = −20.

Figure 8. Two-dimensional phase portraits when a = 5, b = 20, c = 8/3, and d = −20.

[image: Electronics 12 04929 g008]

[image: Electronics 12 04929 g009]

Figure 9. Three-dimensional phase portraits when a = 5, b = 20, c = 8/3, and d = −20.

Figure 9. Three-dimensional phase portraits when a = 5, b = 20, c = 8/3, and d = −20.

[image: Electronics 12 04929 g009]

[image: Electronics 12 04929 g010]

Figure 10. We utilize a NLFiRO system and NLFiGaRO system of differing lengths to increase the maximum ideal period.

Figure 10. We utilize a NLFiRO system and NLFiGaRO system of differing lengths to increase the maximum ideal period.

[image: Electronics 12 04929 g010]

[image: Electronics 12 04929 g011]

Figure 11. The full NLFiGARO system is an XOR of the two sub-functions.

Figure 11. The full NLFiGARO system is an XOR of the two sub-functions.

[image: Electronics 12 04929 g011]

[image: Electronics 12 04929 g012]

Figure 12. The Lorenz FPGA module is completely asynchronous to reduce the latency of the system.

Figure 12. The Lorenz FPGA module is completely asynchronous to reduce the latency of the system.

[image: Electronics 12 04929 g012]

[image: Electronics 12 04929 g013]

Figure 13. The RK4 system uses a single multiplier per each x, y, z, and w variable and is able to complete the RK4 system of equations for the LHCE in 5 clock cycles. With a 100 MHz clock, this results in 50 ns for encryption of a single pixel.

Figure 13. The RK4 system uses a single multiplier per each x, y, z, and w variable and is able to complete the RK4 system of equations for the LHCE in 5 clock cycles. With a 100 MHz clock, this results in 50 ns for encryption of a single pixel.

[image: Electronics 12 04929 g013]

[image: Electronics 12 04929 g014]

Figure 14. The plaintext is XOR’d with the lower 24 bits of the LHCS x output from the encryptor, the mantissa, to produce the ciphertext.

Figure 14. The plaintext is XOR’d with the lower 24 bits of the LHCS x output from the encryptor, the mantissa, to produce the ciphertext.

[image: Electronics 12 04929 g014]

[image: Electronics 12 04929 g015]

Figure 15. The ciphertext is XOR’d with the lower 24 bits of the LHCS x output from the decryptor, the mantissa, to produce the plaintext.

Figure 15. The ciphertext is XOR’d with the lower 24 bits of the LHCS x output from the decryptor, the mantissa, to produce the plaintext.

[image: Electronics 12 04929 g015]

[image: Electronics 12 04929 g016]

Figure 16. The full LHCS utilizes a PCIe wrapper from stressing the system, implemented on a Stratix 10 FPGA development.

Figure 16. The full LHCS utilizes a PCIe wrapper from stressing the system, implemented on a Stratix 10 FPGA development.

[image: Electronics 12 04929 g016]

[image: Electronics 12 04929 g017]

Figure 17. Two results of the LHCS encryption/decryption system. Note that despite the two images being completely different, with one being full color and the other being high contrast, they both produced similarly random encryptions.

Figure 17. Two results of the LHCS encryption/decryption system. Note that despite the two images being completely different, with one being full color and the other being high contrast, they both produced similarly random encryptions.

[image: Electronics 12 04929 g017]

[image: Electronics 12 04929 g018]

Figure 18. An RGB histogram of the Mandrill image, as well as two different encryptions of the same image. It can be seen from the peaks and valleys on the histograms from the encrypted images that the resulting ciphertexts are unique with respect to each other. The red, blue, and green lines indicate pixel intensities for the colors red, blue, and green, respectively.

Figure 18. An RGB histogram of the Mandrill image, as well as two different encryptions of the same image. It can be seen from the peaks and valleys on the histograms from the encrypted images that the resulting ciphertexts are unique with respect to each other. The red, blue, and green lines indicate pixel intensities for the colors red, blue, and green, respectively.

[image: Electronics 12 04929 g018]

[image: Electronics 12 04929 g019]

Figure 19. More examples of ciphertexts varying with different keys generated with our RO-PUF RNG.

Figure 19. More examples of ciphertexts varying with different keys generated with our RO-PUF RNG.

[image: Electronics 12 04929 g019]

Table 1. Resource usage for the entire system relative to the base PCIe/memory design.

Table 1. Resource usage for the entire system relative to the base PCIe/memory design.

	Components
	Base PCIe
	Full System
	LHCS w/

Controller
	Net Utilization

	ALMs
	10.7 k
	23.4 k
	12.7 k
	2%

	ALUTs
	11.2 k
	26.1 k
	14.9 k
	<1%

	M20Ks
	89
	177
	86
	2%

	DSPs
	0
	14
	14
	<1%

	PLLs
	1
	2
	1
	<1%

Table 2. Total power usage for the entire system relative to the base PCIe/memory design.

Table 2. Total power usage for the entire system relative to the base PCIe/memory design.

	System
	Power Usage

	PCIe Base Design
	5948 mW

	Full System
	6328 mW

	LHCS/Controller
	380 mW

Table 3. A summary of the worst-case NIST test suite results.

Table 3. A summary of the worst-case NIST test suite results.

	Test Type
	p Value
	Required Value
	Result

	Frequency (Monobit)
	0
	>0.01
	Non-Random

	Frequency within a Block
	0
	>0.01
	Non-Random

	Run
	0
	>0.01
	Non-Random

	Longest run of ones
	0
	>0.01
	Non-Random

	Binary Matrix Rank
	−1
	>0.01
	Non-Random

	Discrete Fourier Transform
	0.43
	>0.01
	Random

	Maurer’s Universal Test
	−1
	>0.01
	Non-Random

	Non-overlapping Template
	1
	>0.01
	Random

	Overlapping Template
	0
	>0.01
	Non-Random

	Linear Complexity
	0.50
	>0.01
	Random

	Serial
	0.50
	>0.01
	Random

	Approximate Entropy
	1.0
	>0.01
	Random

	Cummulative Sums
	1.0
	>0.01
	Random

	Reverse Cummulative Sums
	1.0
	>0.01
	Random

	Random Excursions
	0.22
	>0.01
	Random

	Random Excursions Varient
	1.0
	>0.01
	Random

Table 4. The χ 2 values for five different images using the LHCE.

Table 4. The χ 2 values for five different images using the LHCE.

	Image Cipher
	Red
	Green
	Blue
	Average

	Ruler
	251
	228
	229
	236

	Babboon
	265
	265
	217
	249

	Plane
	286
	259
	232
	259

	Peppers
	291
	259
	270
	274

	House
	272
	265
	288
	275

Table 5. The calculated entropy values for five different images using the LHCE.

Table 5. The calculated entropy values for five different images using the LHCE.

	Image Cipher
	Red
	Green
	Blue
	Average

	Ruler
	7.9972
	7.9975
	7.9975
	7.9974

	Babboon
	7.9993
	7.9993
	7.9994
	7.9993

	Plane
	7.9992
	7.9993
	7.9994
	7.9992

	Peppers
	7.9992
	7.9993
	7.9993
	7.9992

	House
	7.9970
	7.9971
	7.9968
	7.9970

Table 6. A comparison of different worst-case statistics with other chaotic encryption systems.

Table 6. A comparison of different worst-case statistics with other chaotic encryption systems.

	Test Type
	Proposed
	[53]
	[54]
	[55]
	[56]
	[51]

	 X 2
	275
	241
	287
	N/A
	N/A
	260

	Entropy
	7.9970
	7.9990
	7.994
	7.9985
	7.9890
	7.9971

Table 7. A summary of the differential attack resistance statistics for multiple images.

Table 7. A summary of the differential attack resistance statistics for multiple images.

	Image Name
	PCC
	UACI
	NPCR

	Mandrill
	0.001
	33.4%
	99.6%

	Peppers
	0.003
	33.5%
	99.6%

	Resolution Chart
	0.010
	33.4%
	99.6%

	Boat
	0.001
	33.5%
	99.6%

	House
	0.002
	33.5%
	99.6%

	Plane
	0.002
	33.5%
	99.6%

Table 8. A comparison against differential-attack-resistance statistics.

Table 8. A comparison against differential-attack-resistance statistics.

	Test Type
	Proposed
	[53]
	[54]
	[55]
	[56]
	[51]

	UACI
	33.5%
	33.4%
	33.3%
	33.4%
	33.6%
	33.6%

	NPCR
	99.6%
	99.6%
	99.6%
	99.6%
	99.0%
	99.6%

	PCC
	0.01
	0.0009
	0.0048
	0.0059
	0.01
	0.0016

Table 9. A comparison of different keyspaces in similar works.

Table 9. A comparison of different keyspaces in similar works.

	Scheme
	Proposed
	[53]
	[54]
	[55]
	[56]
	[51]

	Keyspace
	 2 224
	 2 128
	 2 219
	 2 448
	 2 470
	 2 478

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check Foot Note Order

Check CrossRef

media/file13.jpg
Lyapunov exponents.

10

0]

Dynamies of Lyapunov exponents

0

20

w w0 o
Time.

700

%0

000

media/file4.png
Modified Fibonacci Configuration [8:0] CLK + 90°
X[8] X[7] X[2] X[1] X[0] ' Delay Cell (DC)|

S

r[DC }L[DC DC }H DC i
>
rModified Galois Configuration [11:0]

X[10] X[9] X[8] X[5] X[4] X[3] X[1] X[0]

! DC}L[Dc

media/file30.png
Lorenz_x 0[23:0]
Y

Plaintext

Ciphertext

media/file18.png

media/file35.jpg
Handeil Encrypied Mandeil 1 Encrypied Mandil 2

Encopted Mandr 1 Hstogram Encypied ondr 2 Hitogram.

L e m A

media/file21.jpg
K

NLFiGaRO[23:0]

NLFiRO[22:0]

NLGaRO[22:0]

l

media/file26.png
RK4 Z Generator

RK4 X Generator
Idle KO
k[0] <= x_k
. X_t <=x_init + xh
X Init <= x| h <=h const/2
Xt <=x.l
h <=h_const/ 2
done <=0
K1
if (done)
X 0 <=x_ Init+ xh k[1] <= x_k
X t <= x_ init+ xh
h <=h_const
K3
h <= h _const/ 6 Q
done <=1
sum_k <=k[0] + k[1]/2 ... k[2] <=x_k
. +k[2] 12 + x_k x_t <=x_init + xh
h <=h_const
h —
Multipli xh
ultiplier >
X_ K —— P
sum_k —

state == k3

media/file39.png

media/file27.jpg
Lorenz_x_0[23:0]

Ciphertext

Plaintext

media/file3.jpg
[Modified Fibonacei Configuration (8:0] LK+ 90"

(8] Eul X2 X[1) X[0) w
' HE -+

Modified Galois Configuration [11:0]
X0 Xl xi8) i) 4] Xg X X0

be}l-{oe oC}-... e .

media/file22.png
NLGaRO[23] ——»

clk_s

-

NLFiRO[22:0]
NLGaRO[22:0]] ‘

-

|

|

NLFiGaRO[23:0]

media/file19.jpg
clk_s +90°
(0] Delay Cel (0C)|

NLFIRO [22:0]

X2 X(21] X(s]

NLGaRO [23:0]
X[23] X[22) X[21] X[16] X[0]

F{DC}JFD_{DC}JFD_(e }LFDJ DC]L...-[DC}-L‘

media/file7.jpg
Akd n = 5k, Starting conditon = 31

Rké n = 5k, Starting condition = 5.

TS

media/file28.png
Lorenz_x_0[23:0]
Y

Ciphertext_

Plaintext

media/file10.png
Rk4 n = 5k, Starting condition = 55

Rk4 n = 5k, Starting condition = -91 w
100
100
:m 50
0 0
.' ",
R
P -50
-50
-100

—100

media/file33.jpg
Plaintext Image Encrypted Image Decrypted Image

Mandrill, 512x512 Pixels

0
SENIm
I= M e
A=
SE
6=

Resolution Chart, 256x256 Pixels

media/file32.png
Lorenz Hyper Chaotic Encryptor
Implementation via Stratix 10 FPGA

PCle Parallel I/O

512 bit x 32
Word DRAM

|

|

Memory
Controller FIFO

Address and
Control Reqister

Clock Crossing
FIFO

Lorenz Controller

t

1

|
- [merpcepieviacemcaraEage |

1

v

Memory Arbiter

\ 4 V}

PUF TRNG

media/file14.png
Dynamics of Lyapunov exponents
1 1 1

o

i
o

Lyapunov exponents

300

400 500
Time

media/file11.jpg

media/file6.png
Rk4 n = 5k, Starting condition = 55

Rk4 n = 5k, Starting condition = -91

—90.5

—91.0

—-92.0

—92.5

—150

20

media/file36.png
Mandrill Encrypted Mandrill 1 Encrypted Mandrill 2

Encrypted Mandrill 1 Histogram Encrypted Mandrill 2 Histogram

2500 2500
2500
2000 2000
2000
1500 1500 1500
1000 1000 "W"‘*’l'h‘f""ir“'\'\-i'W'V‘MW&W*MM*MNMQWW* 1000 M‘:\,%.m‘v';vrm-q*drv’@rdm' Ao Wity
500 500 500
0
0 0

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

media/file15.jpg

media/file37.jpg
Plaintext CiphertextOne Ciphertext Two Decrypted Image

1PI Scattered

nav.xhtml

 electronics-12-04929

 		
 electronics-12-04929

media/file16.png
40 -
30
Mo20 A
~N20 A
10 -

0
100 +
75 1
50 A
25

0
_25 -
—50 4
_?5 -
—100 -

—10

-15

100 -
100 -

media/file2.png
Fibonacci LFSR

7 6 5 2 3 2

(a)

Galois LFSR
5

(b)

media/file20.png
' : clk_s +90°
NLFIRO [22:0]

X[22] X[21] X[5] X[o] | | Delay Cell (DC)
...a [;i 1 |
r - “T— ' Ilb ~d
tNLGaRO [23:0] '
X[23] X[22] X[21] X[16] X[O]

- >

media/file23.jpg
‘Aynchomous Lorenz Multpliers

xk=y_t*@-x1 zZk=(xtry)-(crz)

yk=xt*(b-2_1)
Syt

x_k

vk
z_k

|

w_k

media/file5.jpg

media/file24.png
X _t

Aynchornous Lorenz Multipliers

z t

X k=y t*(a-x_t) z k=(xt*y t)-(c*z.t)

X_k

y k

Wt

Z k

y k=xt*b-2z1...

V t-w t w k=xt*d

media/file29.jpg
Lorenz_x 0[23:0

Plaintext

Ciphertext

media/file1.jpg
6 5 4
0|10
(a)
Galois LFSR

s

o

media/file31.jpg
Lorenz Hyper Chaotic Encryptor
Implementation via Stratix 10 FPGA

P Address and ||
sxzbitxsz | (7 contol Register
Lorenz Controller

Clock crossing | _|

PCte Paralel 0 o
Memory
Controller FIFO| H T
Memory Arbiter PUETRNG

media/file25.jpg
RK4 Z Generator

RK4 X Generator

if (done)
X0 <=x_init+xh

h <=h_const/6

done.

sum_k <=k[0] + k[1]/2...
+ki2]/2+x k

Xt <=x_init +xh

h

<=h_const

h —]

Multiplier

xh

media/file12.png

media/file9.jpg

media/file0.png

media/file38.png
Plaintext Ciphertext One Ciphertext Two Decrypted Image

media/file8.png
Rk4 n = 5k, Starting condition = -91

100

—-50

—100

Rk4 n = 5k, Starting condition = 55

85

80

75

70

65

60

medi