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Abstract: The orientation of objects plays an important role in accurate predictions for the tasks of
classification, detection, and trajectory estimation. This is especially important in the automotive
domain, where estimating an accurate car orientation can significantly impact the effectiveness of the
other prediction tasks. This work presents Car Full View (CFV), a novel dataset for car orientation
prediction from images obtained by video recording all possible angles of individual vehicles in
diverse scenarios. We developed a tool to semi-automatically annotate all the video frames with
the respective car angle based on the walking speed of the recorder and manually annotated key
angles. The final dataset contains over 23,000 images of individual cars along with fine-grained angle
annotations. We study the performance of three state-of-the-art deep learning architectures on this
dataset in three different learning settings: classification, regression, and multi-objective. The top
result of 3.39° in circular mean absolute error (CMAE) shows that the model accurately predicts car
orientations for unseen vehicles and images. Furthermore, we test the trained models on images from
two different datasets and show their generalization capability to realistic images. We release the
dataset and the best models while publishing a web service to annotate new images.

Keywords: car orientation dataset; car angle prediction; convolutional neural networks; vision
transformers; visual features

1. Introduction

Accurate car orientation prediction is a critical problem in various computer vision
(CV) applications, particularly autonomous driving. Understanding the precise angle at
which a car is positioned relative to the observer is essential for building intelligent systems
capable of making informed decisions in dynamic traffic scenarios. Successful prediction
of car orientation can positively impact the performance of tasks such as lane detection,
path planning, object detection, and overall safety in autonomous vehicles.

Having the angle information of vehicles in an image can enhance the performance of
machine learning (ML) models for many CV tasks. For example, it can be used to refine
predictions of detection models by skewing the bounding box according to the car’s angle.
The information on orientation can also be used as an additional feature in tracking moving
vehicles by predicting the future position as well as searching for similar car angles in
consecutive frames. In the case of vehicle classification based on manufacturer and model,
knowing the angle of the car is crucial, as some distinctive features can only be seen from
certain perspectives. For the segmentation of cars, the orientation encodes information
about what parts are visible and need to be delimited.

Electronics 2023, 12, 4947. https://doi.org/10.3390/electronics12244947 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244947
https://doi.org/10.3390/electronics12244947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5324-0428
https://orcid.org/0009-0009-6229-1839
https://orcid.org/0000-0002-1177-5288
https://orcid.org/0000-0001-5176-9344
https://orcid.org/0000-0002-4815-9227
https://doi.org/10.3390/electronics12244947
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244947?type=check_update&version=1


Electronics 2023, 12, 4947 2 of 22

In addition to improving the predictions of CV models, the angle information of
vehicles can be important in deep learning (DL) pipelines. It can filter images based on
specific tasks—for example, when working only with images of cars from the front and rear
views, all images containing other angles can be removed. The angle annotation can ensure
that the training images encompass a diverse range of perspectives, mitigating any potential
data imbalance. Moreover, it can be used for training CV models with a curriculum [1] by
initially using samples with normal orientations and progressively adding training images
with more unusual angles.

Traditional approaches to car orientation prediction rely heavily on handcrafted fea-
tures and heuristic-based methods, which may not generalize well to complex real-world
scenarios. With the advent of deep neural architectures such as convolutional neural net-
works (CNNs) and vision transformers, a paradigm shift in CV was observed. Deep neural
networks have demonstrated noteworthy capabilities in learning complex patterns and
representations directly from raw image data, making them the most effective architectures
for various vision tasks.

However, DL models require large and diverse datasets for training to achieve op-
timal performance and generalization. Existing car angle datasets are often limited in
their scope, containing only a limited set of angles and lacking diversity observed in
real-world scenarios.

Current Study Objective

To address the previous limitation of existing datasets that do not specifically tackle
car orientation, we introduce the Car Full View (CFV) dataset, a unique and comprehensive
collection of images with accurately annotated car angles. Our dataset is meticulously
obtained by recording individual cars from all possible angles by circling the vehicle,
starting from the front and walking clockwise until returning to the initial position. To
ensure diversity and representation of the full range of car orientations, we leverage
advanced annotation techniques and proximity-based inference to automatically annotate
images in-between the manually annotated angles.

In this work, we introduce the construction and characteristics of our CFV dataset and
argue for its utility by training and evaluating a strong baseline of DL models with different
backbones (i.e., ResNet [2], ConvNext [3], and Swin Transformer [4]) for car orientation
prediction. Through extensive experimentation, we showcase the effectiveness of our
dataset in improving model performance and generalization.

The main contributions of our work are as follows:

• We present the CFV dataset, a novel dataset with fine-grained annotations for the
orientation of vehicles in images collected from a wide range of settings.

• We study the performance of state-of-the-art CV models on the proposed dataset and
analyze the importance of training loss, initialization, and training-time augmentation,
obtaining a circular mean absolute error of 3.39°and an accuracy of 93.97% with the
top-performing architecture.

• We showcase the importance of having labels for orientation by utilizing them to
refine the predicted license plate bounding boxes. Our approach reduces the amount
of relevant visual information lost after anonymization.

• We argue for the effectiveness and generalization capabilities of our proposed dataset
by using the top-performing model to annotate images from two different car datasets:
Stanford Cars and Autovit.

2. Related Work

Image-based datasets of cars are relatively scarce and often constrained in scale,
posing challenges to CV researchers. Collecting diverse and extensive datasets of cars
can be challenging due to the complexity of real-world driving scenarios, variations in
car models, orientations, and the need for precise annotations. Many researchers have
turned to 3D simulations to generate synthetic data for training and testing their algorithms.
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While 3D simulations have proven valuable for advancing the field, good performance
on synthetic data may not translate to good performance in realistic settings. Because of
this, there is a need for more comprehensive, real-world image datasets to bridge the gap
between simulated and real-world applications, ensuring that CV models can effectively
handle the intricacies of actual road environments.

The task of predicting car orientation has been approached from aerial images, a context
that can be relevant for traffic monitoring. The EAGLE dataset [5] consists of high-resolution im-
ages taken from an aerial view for orientation-informed vehicle detection. It contains 8280 high-
resolution images with a total of over 215k vehicle instances. Wang et al. [6] proposed a method
for detecting vehicles from unmanned aerial vehicle videos. Their architecture disentangles
appearance information from orientation and scale, which makes the predictions robust to
such variations. Tang et al. [7] presented an approach that not only detects vehicles from
aerial images but also predicts the orientation, which is utilized to refine the bounding
boxes. In contrast to these approaches, our dataset is designed for fine-grained orientation
estimation from close-up images of vehicles.

The KITTI dataset [8] was constructed with the purpose of advancing autonomous
driving research and contains data obtained from a moving vehicle in traffic with multiple
sensors such as an RGB camera, LiDAR, and GPS. Based on this data, the authors obtain
annotations for multiple tasks such as 3D object detection, 3D tracking, depth estimation,
and optical flow. Multiple approaches have been introduced for the task of 3D object
detection. Kim et al. [9] utilized a multi-modal approach for predicting the 3D bounding
boxes based on both RGB and LiDAR data. Zheng et al. [10] proposed a teacher–student
architecture that leveraged the point clouds obtained by the LiDAR sensor to obtain the 3D
bounding boxes. Zhang et al. [11] attempted to solve the problem of occluded objects by
generating multiple possible ground truths with the help of a variational auto-encoder.

Stanford Cars [12] is a dataset for fine-grained classification of vehicles in terms of
make, model, and manufacturing year. The dataset consists of 196 vehicle classes and
contains over 16,000 images annotated with the help of crowd-sourcing and majority voting.
For the fine-grained classification task on Stanford Cars, multiple methods that achieve
high performance have been proposed. Jia et al. [13] utilized a noisy large-scale dataset
to pretrain their ALIGN model in a contrastive manner on text and image data and fine-
tune the image encoder for classification. Ridnik et al. [14] proposed an attention-based
classification head that scales better to a large number of classes than classic approaches
while providing good efficiency. Liu et al. [15] proposed a CNN-based approach in which
intermediary layers are treated as “experts” specialized in detecting certain discriminative
regions. These layers pass on a prediction and an attention map with relevant information
to the next layers, enabling more flexibility and creating diversity in the training data with
augmentation based on the attention maps.

Dutulescu et al. [16] constructed a dataset for second-hand car price estimation based
on one of the largest platforms for selling vehicles in the Romanian market. The dataset
contained the text description of the car, vehicle specifications, information about add-ons,
images of the car provided by the seller, and the listed price. The authors of the dataset
provided a comprehensive study in which they determined the most relevant features for
predicting an accurate price of the car. In a subsequent study [17], the authors explored the
usage of neural networks for determining the car price and expanded their study to the car
market of Germany, constructing a dataset from the mobile.de platform for selling cars. In
our study, we utilize the Stanford Cars and Autovit datasets to analyze the performance
of our models in scenarios and perspectives that differ from those encountered in the
training set.

The nuScenes dataset [18] is a resource for advancing autonomous vehicle technology,
offering a comprehensive sensor suite including six cameras, five radars, and one Lidar,
providing a 360-degree field of view. It includes 1000 scenes, each with 20 s of data, an-
notated with 3D bounding boxes for 23 object classes and 8 attributes. With seven times
more annotations and 100 times more images than KITTI [8], nuScenes [18] introduced
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novel 3D detection and tracking metrics, along with dataset analysis and baselines for
Lidar and image-based methods. Yin et al. [19] introduced CenterPoint, a 3D object rep-
resentation and detection framework in point-cloud data. CenterPoint focused on the
challenges posed by 3D object orientations and employed a key point-based approach for
object center detection. The proposed CenterPoint framework achieves state-of-the-art
performance on the nuScenes benchmark for both 3D object detection and tracking. Yang
et al. [20] proposed 3DSSD, a lightweight point-based 3D single-stage object detector that
departs from prevalent voxel-based methods. Unlike point-based approaches, it eliminates
upsampling layers and the refinement stage, opting for a fusion sampling strategy during
downsampling for efficient detection of less representative points.

The Audi Autonomous Driving dataset (A2D2) [21] is a dataset that contains both
recording of images and 3D point clouds, complemented by a rich array of annotations,
including 3D bounding boxes, semantic segmentation, instance segmentation, and data
derived from the automotive bus. The sensor suite of A2D2 [21] comprises six cameras and
five LiDAR units, providing complete 360-degree coverage and enabling a comprehensive
perception of the environment. This dataset encompasses 41,277 frames annotated with
semantic segmentation images and point cloud labels. Notably, 12,497 frames within this
collection also feature 3D bounding box annotations for objects within the frontal camera’s
field of view. Zhang et al. [22] propose PolarNet, a Lidar-specific segmentation algorithm
that distinguishes itself by employing a unique polar bird’s-eye-view representation. This
representation efficiently balanced points across grid cells in a polar coordinate system,
aligning the segmentation network’s attention with the challenging long-tailed distribution
of points along the radial axis. Zhang et al. [23] introduced a multimodal fusion method
designed to assess the contributions of different feature channels from sensors, particularly
in the context of Lidar camera fusion networks. This method incorporated a channel
attention module that enhanced cross-channel local interaction and assigned weights to
feature channels, representing their contributions.

ApolloScape [24] is a dataset for autonomous driving research, addressing the need
for large-scale data to train and evaluate perception models. It includes rich annotations,
including semantic dense point clouds, semantic labeling, instance segmentation, and accu-
rate location data across diverse driving scenarios. ApolloScape supports the development
of algorithms that jointly consider multiple tasks, fostering advancements in multi-sensor
fusion and multi-task learning in CV. It facilitates sensor fusion by integrating camera
videos, GPS/IMU data, and a 3D semantic map, enhancing self-localization and semantic
segmentation for autonomous driving. Li et al. [25] addressed the critical issue of ensuring
the safety of autonomous driving cars by focusing on motion prediction, a core function of
such vehicles. The authors previously introduced GRIP [26], a scheme designed for effi-
cient trajectory prediction of traffic agents near autonomous cars, significantly improving
prediction accuracy compared to state-of-the-art solutions. Chandra et al. [27] introduced
an innovative approach to traffic forecasting in urban scenarios, combining spectral graph
analysis with DL. Their model predicted both low-level information (future trajectories) and
high-level information (road-agent behavior) using the trajectory data of each road agent.

3. Method
3.1. Dataset Development
3.1.1. Data Colection

Our CFV dataset was obtained by recording a series of videos using smartphone
cameras positioned at a natural angle for the recorder. In order to record videos of different
cars, we requested the help of volunteers. All participants recorded their vehicles and
provided informed consent for publishing the anonymized images of their cars.

The high-level overview of the dataset collection procedure is shown in Figure 1.
Participants were asked to make a video recording of their stationary vehicle by starting
from the front of the car (0°) at about 3 m away and circling the vehicle clockwise while
maintaining a consistent distance. While moving around the car, the camera was slightly
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angled so that the automobile was always in the center of the frame. Moreover, the whole
car needed to be visible in all frames. The video ended when the camera reached the
starting point in front of the car.

Figure 1. Depiction of the dataset collection procedure.

A video recording of an individual car takes approximately 1 to 2 min. All videos were
taken in the clockwise direction. As there was no constraint with respect to the location
of the videos, the dataset contains a wide range of realistic settings, such as outdoor
environments and diverse lighting conditions. Most videos have around 2000–3000 frames,
translating to a sufficient number of images for each angle value.

3.1.2. Data Annotation

We consider the front view of the car to be the 0° angle and the direction of the next
angles to be counter-clockwise. The order of the key angles is shown in Figure 2.

We employed an internally developed semi-automatic annotation tool to annotate the
CFV dataset. This involved a manual annotation process for identifying the frames which
contain the car in the key angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) shown in Figure 2.
For each video, the tool offers candidate frames for the key angles based on the number
of images in the recording. The annotators manually verify these candidate frames. The
annotator can confirm that the candidate frame contains the car with the correct orientation
or manually select another frame. This manual process of identifying the frames containing
the key angles by verifying candidates takes approximately 1 min per video.

To annotate the remaining frames in the videos, we utilized a proximity-based infer-
ence technique that does not require any manual labeling. For each video frame that does
not contain the car in any of the key angles, the tool identifies the closest key angle frames.
This computation is performed based on the index of the current frame and the already
established indices of the key angle frames. The angle of the current frame is calculated
as a weighted average of the neighboring key angles, where the weights are determined
based on proximity. A key angle closer to the current frame has a larger weight value.
The proximity is determined based on the number of video frames in-between the current
frame and the key angle frame.
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Figure 2. Examples of the key angles obtained from a video of an individual vehicle (green arrows
show the orientation labels).

In total, we collected 66 video recordings of different vehicles from which we obtained
over 180,000 angle-annotated images. These images are captured in diverse settings and
showcase all possible vehicle orientations, making them suitable for training DL architec-
tures for tasks in the real world. Figure A1 in Appendix A shows samples of the proposed
dataset along with their labels in a tabular format. The diversity of the CFV dataset is
showcased in Figure 3. The proposed dataset contains all car orientations and is diverse in
terms of car models, backgrounds, and lighting conditions.

Figure 3. Samples from the proposed dataset (green arrows show the orientation labels).
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Having a small number of unique vehicles in the dataset can lead to overfitting when
training the CV model. This means that the trained orientation architecture can predict the
angle only of similar cars. For this reason, it is important to have diversity in terms of car
models. Figure 4 showcases the distribution of the CFV dataset in terms of the recorded
cars. Since each video contains a different vehicle and there is a total of 49 unique car
models, the CFV dataset has strong generalization capabilities to other car models.

Figure 4. The number of videos in the dataset for each car model.

Figures 5 and 6 show that some videos and orientations have a larger weight in the
final dataset as they appear more frequently. To achieve a balanced dataset in terms of
images per individual cars and images per angle, we keep only 1 image for each angle
degree of every car. For this, we keep every frame closest to a whole degree angle and
round its angle annotation value to the closest whole degree. The resulting dataset contains
360 images (corresponding to 360-degree values from 0° to 359°) for each video. The final
dataset has 23,760 images.

Figure 5. Number of frames for all 8 orientation classes.
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Figure 6. Number of frames for each video recording.

3.1.3. Data Anonymization

To anonymize the dataset, we remove the license plate in every image in an automatic
manner. We utilize a YOLOv5 detection model [28] trained specifically to detect the
bounding boxes of license plates. However, the bounding box prediction consists of
2 coordinates describing the top left and bottom right corners. Because of this, the bounding
box is oriented horizontally and remains fixed in relation to the car’s rotation. This is a
problem as a large portion of the bounding box does not contain the license plate, but
meaningful visual information.

In order to solve this problem, we leverage car angle annotations, highlighting another
benefit of having orientation information. Having all 4 coordinates of the horizontally
oriented bounding box, we have 2 distinct cases: for the first and third quadrants (0°–90°,
180°–270°), the y coordinate of the top left corner is increased, whereas the y coordinate of
the bottom right corner is decreased as the license plate is diagonal; in the second and fourth
quadrants (90°–180°, 270°–360°), the y coordinate of the bottom left corner is increased, and
the top right corner is decreased. The offset value by which these coordinates are increased
and decreased is calculated as:

o f f set =


α ∗ H ∗ angle if angle < 90°
α ∗ H ∗ (180° − angle) if 90° < angle < 180°
α ∗ H ∗ (angle − 180°) if 180° < angle < 270°
α ∗ H ∗ (360° − angle) if 270° < angle < 360°

(1)

where H is the height of the license plate bounding box and α is an empirically determined
constant equal to 135.

Figure 7 displays the improvement brought by our proposed angle-based refinement
technique to the license plate bounding box predictions. The green box shows the coarse
detections made by the license plate detection model. The filled-in white rectangle repre-
sents the final bounding box of the license plate. Our method of refining the bounding box
based on the car angle significantly decreases the lost visual information. These results
highlight the importance of having orientation data. Without it, an additional DL model
for segmentation [29,30] or a more resource-intensive algorithm such as GrabCut [31]
is required.
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Figure 7. Examples of anonymized images from the proposed dataset (the green boxes show initial
coarse detections, while the filled-in white rectangles show refined detections).

Based on our analysis, the detection model is unable to consistently find the license
plates in frames where the car is seen from a diagonal angle. This happens most frequently
between the following angles: 55°–65°, 115°–125°, 235°–245°, 295°–305°. Moreover, other
cars than the main one could exist in the video frame. As such, finding the predictions that
do not correspond to the main car is not trivial.

We automatically flag video frames that potentially do not have a license plate predic-
tion for the main car by leveraging angle annotations and an additional detection model.
We utilize a separate YOLOv7 architecture [32] trained for common objects detection on
MSCOCO [33] to obtain the bounding box of the full car. The frames in which this model
found no car are automatically flagged. Furthermore, frames with no detected license plate
bounding box inside the car bounding box are automatically flagged except for the frames
with car angle annotations between 75°–105°and 255°–285°; these ranges denote side views
where the license plate should not be visible. All flagged frames were manually verified
and corrected.

3.2. Neural Architectures

For the task of car orientation prediction, we experimented with multiple neural
network architectures that are designed to process images: ResNet [2], ConvNeXt [3], and
Swin Transformer [4]. We considered both random initialization of these models as well as
weights pretrained on ImageNet [34]. We study 3 possible approaches to the problem of car
orientation, namely a classification problem, a regression task, and a combination of both.

3.2.1. Orientation as a Classification Task

In order to treat the prediction of orientation as a classification task, we construct 8 dif-
ferent classes based on the fine-grained angle annotations. The classes are as follows: Front
(337.5°–22.5°), Front-Right (22.5°–67.5°), Right (67.5°–112.5°), Back-Right (112.5°–157.5°), Back
(157.5°–202.5°), Back-Left (202.5°–247.5°), Left (247.5°–292.5°), Front-Left (292.5°–337.5°). The
3 architectures are modified to output an 8-dimensional vector consisting of the class logits.

As an evaluation metric, we utilize the accuracy as the dataset is balanced in terms of
samples per class. We employ the cross-entropy loss calculated as follows:

LCE = −
M

∑
c=1

yc log(pc) (2)
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where M is equal to the number of classes, yc is equal to 1 if the current sample has the
class c and 0 otherwise, and pc is the predicted probability for class c.

3.2.2. Orientation as a Regression Task

We consider the car orientation prediction as a regression task by utilizing the raw
angle values. For evaluation, we considered a mean angular error (MAE) metric for which
the angular values are circular since 0° and 360° values are equal. For example, the absolute
difference between the values of 1° and 359° is equal to 2°, and not 358°. We refer to this
metric as circular mean absolute error (CMAE).

All architectures are modified to output a single number, which is normalized to have
values between 0 and 1 with the help of a sigmoid activation. In order to obtain the result in
degrees, the output value is multiplied by 360. To compute the CMAE metric, the difference
is calculated in the radians domain, after which it is converted back into degrees. The
CMAE is used as both training loss for the training data and evaluation metric for the
testing samples. CMAE loss can be formulated as:

LCMAE = atan2(sin(a − â), cos(a − â)) (3)

where a is the ground truth angle in radians, â is the angle prediction in radians, and atan2
is the arctangent operation with consideration of the quadrant.

We study the effect of 2 different types of augmentations: (a) weak augmentations in
the form of random crops with the addition of color jittering, and (b) a custom version of
RandAugment [35] that does not use any rotation-based transforms. In order to observe
their increase in performance, we compare them against the case where no augmentation
is utilized during training. Aside from the different types of augmentation, we utilize the
same training hyperparameters used for the classification architectures.

3.2.3. Orientation as a Multi-Task

To improve the results of the previous two approaches, we train the network for
both classification and regression at the same time. The 3 model variants are modified
to first output the class prediction in the form of an 8-dimensional vector consisting of
the probability values for each class. The class probability distribution and the extracted
features are given as input to a linear layer for a fine-grained prediction of the angle. This
approach has the advantage that the model first needs to make a coarse prediction in the
form of a general orientation and then refine it to a numeric value.

In terms of augmentation, we only employ the weak augmentation setting as it obtains
the best results by introducing sample diversity without adding too much noise. The
loss employed for training is a combination of the losses from Equations (2) and (3),
formulated as:

LCombined = α ∗ LCE + LCMAE (4)

where α is chosen to balance both losses and give more importance to the regression task.

3.3. Experimental Setup

We split the data into a training set consisting of 80% of the dataset and the testing set,
which contains the rest of the images. The images in the testing set show different vehicles
than those in the training set.

We train the deep learning models with the AdamW optimizer [36] and a step learning
rate schedule that starts from a value of 0.0005 and is decreased by a multiplicative decay
factor of 0.95 every 10 epochs for a total of 100 training epochs. We utilize images with
a resolution of 224 × 224 and a batch size of 512. These hyperparameters were obtained
as a result of a Bayesian hyperparameter optimization process using the wandb library.
A total training time takes approximately 30 min for ResNet-based models, 60 min for
ConvNeXt-based models, and 70 min for Swin-based models. All ResNet-based models
utilize a ResNet-18 backbone, while the ConvNeXt-based and Swin-based models employ
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a small version of the architectures. We utilized an NVIDIA A100 with 80 GB of VRAM for
all our experiments.

4. Results

This section presents quantitative and qualitative results for the proposed models
on the test set of the CFV dataset. We present the results for the classification approach,
regression approach, and finally for multi-task setting.

Table 1 shows the results of the classification models in terms of accuracy for orien-
tation prediction based on the 8 defined classes. The ConvNeXt architecture overfits and
cannot capture meaningful features when initialized randomly due to its extensive parame-
ter count in relation to the limited training samples. In the case of weights pretrained on
ImageNet, all architectures improve classification accuracy as opposed to random initial-
ization, showing that the learned features extracted by early and intermediary layers are
relevant to the prediction of orientation. ResNet obtains the highest classification accuracy
in the random initialization scenario as it has the lowest amount of trainable parameters,
making it more likely to fit the data. The ResNet and ConvNeXt models obtain the highest
accuracy when fine-tuned from pretrained weights, proving that a convolutional backbone
is more effective for this classification task.

Table 1. The accuracy of the classification models in both cases of weight initialization (bold denotes
the best results).

Model Random Initialization ImageNet Pretrained

ResNet 85.04% 93.83%
ConvNeXt 17.27% 93.83%

Swin 84.45% 93.59%

Table 2 shows the experimental results of the regression architectures for car orientation
estimation from images. The ConvNeXt architecture with weak augmentations obtains the
smallest circular mean absolute error of 3.58°. For random initialization, we only show the
results of the ResNet as it was the only model among the three capable of learning and
not overfitting due to its smaller size. For the ConvNeXt and Swin Transformer, we only
show the results of the models when starting from pretrained weights because they would
require a larger amount of training data to be trained in the random initialization scenario.

Table 2. The performance of the regression deep learning architectures in terms of CMAE for all
types of augmentation techniques (bold denotes the best performance).

Model No Augmentation Weak Augmentation RandAugment

ResNet (Rand. Init.) 68.19° 31.23° 48.58°
ResNet 14.81° 5.89° 7.85°

ConvNeXt 4.99° 3.58° 3.67°
Swin 4.69° 4.10° 4.50°

The results argue that incorporating augmentation in the training process improves
the overall performance of the models on new samples. The weak augmentation setting
obtains better results than the custom version of RandAugment for all the regression
models. This probably happens because the RandAugment algorithm introduces too
much noise to the training samples which makes the model learn a slightly different
distribution of the data. In contrast, the weak augmentation setting achieves a balance
between introducing diversity in the training samples and avoiding excessive noise that
might alter the true data distribution. The top performance obtained by the ConvNeXt
model is to be expected since the architecture is an upgraded version of the ResNet model
with more efficient modules. Furthermore, convolutional networks usually require less
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training data than vision transformers to generalize [37], which explains why the ConvNeXt
model outperforms the Swin Transformer.

Figure 8 shows example predictions from the top-performing model in our experi-
ments on the testing set. The trained model manages to generalize to cars that were not
seen in the training set and makes predictions very close to the ground truth. For certain
cases where the label is slightly incorrect, it even makes better predictions.

Figure 8. Predictions of the ConvNeXt model on the test set of the CFV dataset (red arrows depict
the model’s predictions while green arrows show the actual labels).

Table 3 shows the results of the three models trained with multi-task learning for car
angle prediction. In the case of random initialization, only the ResNet architecture manages
to learn relevant features and does not overfit. However, none of the models obtained a
better performance for this initialization setting than in the case of single-task learning. This
probably happens because of the difficulty of the task combined with the relatively small
number of samples in comparison to the number of trainable parameters of the model. For
initialization with ImageNet pretrained weights, the accuracy shows a slight improvement
for all models in comparison to the single-task setting. Furthermore, the CMAE metric is
improved compared to the exclusive regression task for all models in the case of fine-tuning
pretrained weights. The ConvNeXt model obtains the top result with a CMAE value of
3.39° , which surpasses the previous best model by 0.19°.

Table 3. The performance of the multi-task models for both random initialization and ImageNet
pretrained weights (bold denotes the best results).

Initialization Model Accuracy CMAE

Random
ResNet 68.99% 33.25°

ConvNeXt 16.42% 89.75°
Swin 14.68% 89.63°

ImageNet
ResNet 93.93% 5.57°

ConvNeXt 93.97% 3.39°
Swin 93.93% 3.53°
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5. Discussion

This section starts with a comparison of our dataset to other existing datasets intro-
duced in the Related Work section. Next, we perform an analysis of our top-performing
model trained for orientation prediction and discuss its limitations when considering
test samples with the highest errors. Afterward, we study the performance of our top-
performing model on images from different datasets that contain images of cars from more
unusual perspectives. We showcase a real-world application of the orientation model
by refining bounding box predictions of license plates based on the estimated car angle.
Finally, we explore the reasons behind the predictions, arguing that the model takes global
information into account and does not focus on local visual features.

5.1. Comparison to Existing Datasets

Table 4 compares the proposed CFV dataset with other vehicle image datasets. In
contrast to the EAGLE dataset, which provides aerial images of vehicles, the CFV dataset
is composed of images of cars taken from a close distance. The tasks of 3D detection
and trajectory estimation are closely linked with the task of predicting the orientation of
vehicles from images. However, while KITTI, nuScenes, A2D2, and ApolloScape focus on
the diversity of objects and environments, our proposed dataset focuses on the diversity of
angles, providing the full range of possible car orientations.

Table 4. Comparison between the CFV dataset and other vehicle image datasets.

Dataset # Images # Vehicles Tasks Particularity

EAGLE [5] 8280 215,986 instances Detection, orientation Aerial view

KITTI [8] 12,000 +100,000 instances 3D detection, tracking, depth, optical flow Multimodal

Stanford Cars [12] 16,185 196 types Classification -

Autovit [16] 59,450 15,253 unique Classification, price estimation Includes text and
car features

nuScenes [18] 1.4M 1M instances 3D detection, tracking Multimodal

A2D2 [21] 41,277 1M instances 3D detection, segmentation Multimodal

ApolloScape [24] 140,000 70,000 instances 3D detection, trajectory, segmentation Multimodal

CFV (Ours) 23,760 66 unique Orientation Full range
of angles

5.2. Limitations

We investigate the test images in which the orientation model makes the largest
error compared to the ground truth. Figure 9 shows the samples with the highest CMAE,
indicating the lowest performance of the orientation model.

Figure 9. Samples with the highest circular absolute error (red arrows depict the model’s predictions
while green arrows show the actual labels).



Electronics 2023, 12, 4947 14 of 22

A shared characteristic in five of the six samples from the figure is the presence of
other vehicles in the background. This could explain the wrong prediction as the early and
intermediary layers of the convolutional model extract relevant features of both the main
and the background cars. When all the features are combined to make the prediction by
the last layers, they may also consider the features extracted from background cars, which
affect the output.

The presence of background cars, which impacts the prediction of the orientation
model, could theoretically be decreased by cropping the image based on the bounding box
obtained by the car detection model. However, we chose not to do so for multiple reasons.
First, the YOLOv7 model could not detect the main car in all images from the CFV dataset.
Second, cropping the image can result in a loss of context, which might make the orientation
model focus on specific local features such as the headlights, license plates, or doors for the
prediction instead of looking at the whole vehicle. Third, background cars would still not
be fully eliminated as the main bounding box can contain a lot of background information
from certain perspectives. Finally, only a small percentage of images with background cars
actually impact the orientation prediction, and the samples in Figure 9, along with their
adjacent angles, are the only ones that result in slightly large errors.

5.3. Cross-Dataset Testing

Our proposed models and training techniques achieve great performance and general-
ization on the testing samples of the proposed dataset. Because of these results, we test the
models in more challenging cases on car images coming from other datasets that contain
different data distributions and more unusual angles.

Stanford Cars [12] is a public dataset for fine-grained classification with 196 different
classes of vehicles. A class is differentiated based on the make, model, or year of fabrication.
However, it does not contain labels for the car’s orientation, which can be impactful in
making a correct classification. This dataset has a large intra-class variation as the same car
can differ significantly when visualized from another angle.

We also test our orientation prediction model on the Autovit dataset [16], which is
a dataset consisting of car listings from the Autovit website, one of the most prominent
platforms for selling cars in Romania. The dataset includes images, prices, and other vehicle-
related information. Similarly to the previous example of Stanford Cars, this dataset does
not include labels for the vehicle’s orientation in images.

To analyze the generalization capabilities of our proposed dataset, we train the multi-
task models on CFV and test them on the Stanford and Autovit datasets. As the datasets
do not contain orientation labels, we construct two testing sets by manually annotating
100 images from each dataset. The testing samples were randomly selected to ensure
diversity in terms of vehicle models and orientation.

Table 5 shows the performance of the models for cross-dataset testing. The Swin
Transformer obtains the highest performance on both testing sets with a CMAE value
of 12.12° on Stanford Cars and 5.15° on Autovit. The fact that the Swin Transformer
outperforms the ConvNeXt model shows that a slightly better performance on the CFV
test set does not necessarily imply a better performance on images outside the training
distribution. Despite this, the small CMAE values on these test sets prove that models
trained on the CFV dataset have strong generalization capabilities and can estimate the
orientation for vehicle models not seen during training.

The difference in performance between the Stanford Cars and Autovit datasets can
be attributed to two factors: more unusual perspectives and greater disparity between car
bodies. Because the Autovit dataset was collected from a car listing website, it contains
vehicle images captured by the car owners in a similar manner to our data collection
procedure—photos around the car from a natural height. On the other hand, Stanford Cars
was collected from various online sources and can contain vehicle images captured from
an unusual height. In terms of car bodies, both Autovit and CFV contain vehicle models
prevalent in Europe. In contrast, Stanford Cars contains a majority of vehicle models mostly
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seen in North America. Hence, there is a larger discrepancy in terms of car bodies between
the CFV dataset and Stanford Cars.

Table 5. The performance of the top-performing models in cross-dataset settings (bold denotes the
best results).

Dataset Model CMAE

Stanford
ResNet 17.40◦

ConvNeXt 13.44◦

Swin 12.12◦

Autovit
ResNet 11.96◦

ConvNeXt 5.99◦

Swin 5.15◦

Figure 10 shows the qualitative results of our model tested on the Stanford Cars
dataset. We observe that most predictions are close to the real orientation. This argues
that our dataset has enough diversity, and the proposed training settings aid the model in
generalizing to realistic images.

Figure 10. Predictions on the Stanford Cars dataset (green arrows show the orientation predictions).

Figure 11 displays examples of predictions of our model on images from the Autovit
dataset. As in the previous example, our model obtains results close to the real orientation.
This further argues that our model is suited for realistic tasks and can be used to annotate
datasets with helpful information.
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Figure 11. Predictions on the Autovit dataset (green arrows show the orientation predictions).

5.4. Anonymization of Car Plates

As shown in Figure 7, we can refine the bounding boxes of license plates based on
ground truth angle values obtained in the dataset development phase. However, we are
interested in the capability of refining license plate detections when there are unlabeled
images of cars.

To analyze this, we experiment with car images from the Autovit dataset and utilize
the same license plate detection model based on YOLOv5 [28]. This model detects coarse
bounding boxes that contain a lot of car-related visual information apart from the license
plate. Removing large parts of the car image can hinder the training process of the image
processing architectures. To refine the predicted bounding boxes, we utilize our ConvNeXt
multi-task model trained on the CFV dataset to obtain angle predictions on each image.
The bounding boxes are modified in the same manner as in Section 3.1.3, by skewing them
according to Equation (1).

Figure 12 shows examples of anonymized car images from Autovit with our proposed
method. Our refinement approach obtains improved bounding box predictions, which
have the advantage of not removing as much visual information as the initial detections.
This can make training deep learning models on anonymized images more robust as only
the necessary pixels are removed while minimizing the lost visual data.
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Figure 12. Examples of refined anonymization predictions (the green boxes show initial coarse
detections, while the filled-in white rectangles show refined detections).

5.5. Explainability

We were also interested in understanding the reasons behind the predictions of the neu-
ral network and what features are the most relevant. As such, we utilize gradient-weighted
class activation mapping (GradCAM) [38] to obtain explanations for the predictions of the
model, which highlights the regions in the image that contributed most to the decision of
the neural network.

Figure 13 displays the GradCAM activations of the ConvNeXt model for five different
samples per class from the testing set. The results show that the whole car region determines
the class prediction. This is important as looking for specific cues, such as license plates
or headlights, can prove problematic in images where only a part of the car can be seen.
Furthermore, the model might make incorrect predictions for cars not seen in the training
set if it only looks at local visual information and not at the whole vehicle. This behavior is
obtained because of the random crop augmentation, which can output images where the full
car is not visible in the image, and the model must learn to look for other relevant features.

In addition, the deep learning model mostly focuses on the corner of the car and pays
little attention to the full vehicle for certain images showing the vehicle at a diagonal angle.
This probably happens because the model has learned to detect the specific shape and
contour of the car when seen diagonally. However, this behavior does not always happen
for images with cars at a diagonal angle, which may indicate that the contour and shape
become important cues for cars not seen in the training set. Another possible explanation
for this behavior could be the unusual vertical (pitch) angle. As we keep the pitch angle
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mostly constant and only vary the yaw angles, images with unusual vertical perspectives
may generate unpredictable behavior for the model.

Figure 13. GradCAM activations of the classification model for the first 5 classes (the red color
highlights areas with the highest importance while the blue color highlights areas with the lowest
importance).

6. Conclusions and Future Work

This work presents CFV, a novel dataset for estimating car orientation from images.
We collected 66 videos of vehicles recorded by walking around the car in order to capture
all possible angles. We annotate all the video frames by leveraging the manual annotations
of the key angle frames and the speed of the recording person. Our dataset consists
of over 23,000 labeled images that capture cars in diverse backgrounds, lighting, and
weather conditions. Using state-of-the-art detection models and the proposed refinement
of bounding boxes based on fine-grained angle annotations, we anonymize the images in
the dataset by removing the license plates.

We experimented with three popular deep-learning architectures designed for im-
age processing: ResNet, ConvNext, and Swin Transformer. We studied three different
approaches to predicting the orientation of cars: first, a classification problem in which
the model makes coarse predictions; second, a regression task where the model makes
fine-grained predictions, and finally, a multi-objective problem where the model conditions
the fine-grained estimation based on the coarse prediction. The best approach employing
the ConvNeXt model obtained a CMAE of 3.39°, arguing that a coarse-to-fine approach is
the most efficient strategy for predicting the fine-grained angle.

We studied the impact of two initialization approaches for our models: random
initialization and initialization from pretrained weights on ImageNet. The results showed
that initializing from pretrained weights and fine-tuning the models on our proposed
dataset improved performance. For this reason, our dataset should be utilized for fine-
tuning on the downstream task of orientation prediction and not for training from scratch.

We analyzed the impact of data augmentation techniques during training for the
regression task. We first trained our models without any augmentation, then with weak
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augmentations that employed random cropping and color jittering, and finally with a
custom version of RandAugment from which we removed rotation-based image transforms
that affected the overall angle annotation. The results argued that the weak augmentation
setting was the most effective as it struck a balance in terms of diversity in the training
samples and excessively distorting the images.

We assessed the performance of our trained architectures in cross-dataset settings,
where the models were tested on different car images than the ones obtained in our dataset.
The qualitative results on Stanford Cars and Autovit datasets showed that the proposed
training techniques on the CFV dataset produced models that generalize to realistic settings
containing vehicles and perspectives not seen during training.

Our study lays the foundation for other tasks in the automotive domain dependent on
object orientation, such as classification, detection, segmentation, and trajectory estimation.
In terms of future work, we aim to use the predicted angle on images as an additional
supervisory signal for improving the training of computer vision models for other tasks.
One of our objectives is to incorporate angle prediction as a task for classification models
that estimate the body type, manufacturer, and model of the car. Having angle prediction
as an additional task can help the models identify distinctive features exclusive to specific
areas of the vehicle. For instance, the manufacturer’s logo appears only on the front or back
of the car.

Furthermore, we aim to incorporate the angle annotation obtained by a car orientation
model to improve the performance of vehicle part segmentation models. By utilizing the
angle and body information obtained from the image, we want to construct a graph of
visible vehicle parts to be given as input to the segmentation model along with the image.
The graph input enables the segmentation model to only look for visible parts that actually
need to be segmented instead of searching for all known classes.
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Abbreviations
The following abbreviations are used in this manuscript:

CFV Car Full View
CMAE Circular Mean Absolute Error
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
GradCAM Gradient-weighted Class Activation Mapping
MAE Mean Angular Error
ML Machine Learning

Appendix A

Figure A1. Samples from the CFV Dataset.
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