
Citation: Wei, Z.; He, R.; Li, Y.; Song,

C. DRL-Based Computation

Offloading and Resource Allocation

in Green MEC-Enabled Maritime-IoT

Networks. Electronics 2023, 12, 4967.

https://doi.org/10.3390/

electronics12244967

Academic Editors: Fernando

Reinaldo Ribeiro and José Metrôlho

Received: 6 November 2023

Revised: 9 December 2023

Accepted: 10 December 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

DRL-Based Computation Offloading and Resource Allocation
in Green MEC-Enabled Maritime-IoT Networks
Ze Wei , Rongxi He * , Yunuo Li and Chengzhi Song

College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
wllt@dlmu.edu.cn (Z.W.); liyunuo@dlmu.edu.cn (Y.L.); scz@dlmu.edu.cn (C.S.)
* Correspondence: hrx@dlmu.edu.cn

Abstract: The maritime Internet of Things (MIoT), a maritime version of the Internet of Things
(IoT), is envisioned as a promising solution that can provide ubiquitous connectivity over land and
sea. Due to the rapid development of maritime activities and the maritime economy, there is a
growing demand for computing-intensive and latency-sensitive maritime applications requiring
various energy consumption, communication, and computation resources, posing a significant
challenge to MIoT devices due to their limited computational ability and battery capacity. Mobile
Edge Computing (MEC), which can handle computation tasks at the network’s edge more efficiently
and with less latency, is emerging as a paradigm for fulfilling the ever-increasing demands of MIoT
applications. However, the exponential increase in the number of MIoT devices has increased the
system’s energy consumption, resulting in increased greenhouse gas emissions and a negative impact
on the environment. As a result, it is vital for MIoT networks to take traditional energy usage
minimization into account. The integration of renewable energy-harvesting capabilities into base
stations or MIoT devices possesses the potential to reduce grid energy consumption and carbon
emissions. However, making an effective decision regarding task offloading and resource allocation
is crucial for maximizing the utilization of the system’s potential resources and minimizing carbon
emissions. In this paper, we first propose a green MEC-enabled maritime IoT network architecture to
flexibly provide computing-intensive and latency-sensitive applications for MIoT users. Based on the
architecture, we formulate the joint task offloading and resource allocation problem by optimizing the
total system execution efficiency (including the total size of completed tasks, task execution latency,
and the system’s carbon emissions) and then propose a deep-deterministic-policy-gradient-based
joint optimization strategy to solve the problem, eventually obtaining an effective resolution through
continuous action space learning in the changing environment. Finally, simulation results confirm
that our proposal can yield good performance in system execution efficiency compared to other
benchmarks; that is, it can significantly reduce the system’s carbon emissions and tasks’ delay and
improve the total size of completed tasks.

Keywords: maritime Internet of things (MIoT); mobile edge computing (MEC); computation offload-
ing; carbon emissions; renewable energy; deep deterministic policy gradient (DDPG)

1. Introduction

The ocean not only contains numerous biological and mineral resources but also plays
a significant role in the study of biodiversity, the exploration of global climate change,
the development of marine resources, and ocean transportation [1,2]. In recent years, the
ocean has become a focal point of great concern for governments, academia, and industry,
prompting a significant acceleration in their efforts in ocean exploration and advance
maritime communication. The Internet of Things (IoT) allows a wide range of smart devices,
from simple smart home devices to complex industrial machinery, to gather extensive data
and communicate with each other and with other internet-connected devices. This seamless
data exchange enables these devices to carry out a variety of tasks autonomously [3]. The

Electronics 2023, 12, 4967. https://doi.org/10.3390/electronics12244967 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244967
https://doi.org/10.3390/electronics12244967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0006-3838-3790
https://orcid.org/0000-0003-0506-0021
https://doi.org/10.3390/electronics12244967
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244967?type=check_update&version=1

Electronics 2023, 12, 4967 2 of 27

success of the IoTs in the mainland has prompted extensive exploration into how to develop
a maritime version of the Maritime Internet of Things (MIoT) [4,5]. MIoT is able to bring
the advantages of the IoT to the maritime sector and provide ubiquitous internet services
for marine environmental monitoring and emerging maritime-related applications, such as
marine pollution monitoring, tidal recording, ocean current measuring, assisted navigation,
maritime search and rescue (SAR) operations, vessel traffic management, and so on.

Similar to IoT devices (IoTD), MIoT devices (MIoTD), such as various sensors, smart
buoys, unmanned surface vessels (USV), and floats, have stringent computation and energy
resource limitations. To reduce the burden of powering and computing for task computa-
tion and reduce task processing latency at terminals, Mobile Edge Computing (MEC) is
gradually replacing the cloud computing paradigm, envisioned as a promising paradigm,
by putting lightweight servers in closer proximity to the terminals [6]. MEC architecture
can be employed in a variety of IoT application scenarios, like 6G communication, virtual
reality, the Internet of Vehicles (IoV), smart cities, smart factories, and more. As one of the
core techniques of the MEC, task offloading has received great attention recently. Most of
the work has been conducted to determine how computation offloading can be optimized,
that is, ensuring rapid and reliable wireless transmission while also providing a reasonable
amount of communication and computation resources to meet task latency requirements [7].
Generally speaking, binary offloading approaches are usually employed for simple, indi-
visible, or highly integrated tasks. This means that tasks can be either processed locally
or entirely sent to the MEC servers [8]. The authors in [9,10] studied the binary offloading
problem with the goal of minimizing energy consumption, and they found that utilizing
MEC servers for certain computing tasks can be more effective in certain situations.

Except that the implementation of MIoT is impeded by computing resource con-
straints, the shift in dominant traffic in wireless networks is a significant driving factor
for the progression toward 6G. Since there is a finite amount of the spectrum available
in wireless networks, advanced channel coding and modulation techniques are required
to reduce interference, which normally infers more power consumption, not only from
the transceiver but also from the overall radio access network [11]. It is anticipated that
wireless networks will remain a major contributor to the global carbon footprint, which
is predicted to double in the next decade [12]. Hence, a key challenge in deploying the
MIoT is minimizing its traditional energy consumption to lower its carbon footprint and
environmental negative impact. Furthermore, due to the numerous MIoTDs involved in
the MIoT, such as underwater sensors and smart buoys on the sea, replacing or recharg-
ing the batteries of these devices is not convenient, not to mention the relevant cost and
effectiveness [13]. Therefore, adopting more energy-efficient, sustainable, and eco-friendly
wireless communication systems is becoming increasingly necessary. The integration of
MIoT and green communication technology is anticipated to bring a multitude of benefits
by optimizing joint computing and resource allocation to reduce their traditional energy
consumption and carbon footprint. For instance, by implementing energy-efficient proto-
cols and equipment in MIoT, its power consumption can be cut back, while the deployment
of renewable energy sources can further help to balance the carbon emissions associated
with the network’s operation.

As an achievable way to cut down on traditional energy usage and carbon emissions,
harnessing renewable energy [14,15] has attracted much attention in recent years. By
incorporating energy harvest (EH) modules into energy storage devices, base stations
(BSs), or other equipment, renewable energy, such as solar energy, wind energy, and tidal
energy, can be exploited and then converted into electric power. This helps reduce carbon
emissions and enables self-maintenance circuits [16]. A few recent works have considered
the integration of EH and MEC and the optimization of task offloading [8,17,18]. These prior
studies have primarily emphasized enhancing computing efficiency and minimizing energy
consumption in IoTDs to enhance performance in the “energy-saving approach”. However,
the aspect of reducing carbon emissions in the “exploiting renewable energy approach”
has not received adequate attention in these works. With the increasing popularity of

Electronics 2023, 12, 4967 3 of 27

the internet and broadband communication systems, it is essential to consider reducing
these systems’ traditional energy consumption to decrease their carbon footprints and keep
their environmental impact to a minimum. Furthermore, offloading decisions can be more
flexible. However, current classical network optimization algorithms still rely on complex
heuristic adjustments to find a sufficient solution, resulting in exponential computational
time and limited effectiveness for larger networks. Fortunately, deep reinforcement learning
(DRL) techniques can replace the laborious process of traditional optimization algorithms
while reducing computational complexity [19,20]. Recently, more and more attention has been
given to the DQN-based strategies [21,22] applied to the MEC offloading issue. Nevertheless,
value-based methods are not sufficient to tackle the optimization challenges of dynamic
computation offloading and resource allocation with a continuous action space. This is due to
their inability to extract temporal information from task data as they are restricted to global
discrimination. To overcome the inefficiency and high variance associated with assessing
a policy using policy gradient methods, the authors in [23,24] proposed joint optimization
methods based on the DDPG structure that involves the simultaneous continuous-time
adaptation of both actor and critic neural networks. However, the work [24] solely focused
on minimizing the system’s energy consumption, ignoring the fact that energy savings in a
hybrid energy system do not imply lower carbon emissions.

Motivated by the above, in our previous work [25], we adapted the deep deterministic
policy gradient (DDPG) for joint optimization of computation offloading and resource
allocation schemes, aiming at maximizing the total system execution efficiency (including
the total size of completed tasks, task execution latency, and the system’s carbon emissions)
under a hybrid energy supply. As an extension of the earlier work in [25], in this article,
we consider in more detail the constraints of task latency, computational resource capacity,
and transmission power to formulate the maximizing system execution efficiency problem
in the green MEC-enabled MIoT network and adapt the DDPG to effectively optimize the
computation offloading and resource allocation scheme, aiming to significantly reduce the
system’s carbon emissions and tasks’ delay and improve the total size of completed tasks.
The difference between this paper and our previous work is listed in Section 2. The primary
findings of this study are outlined below:

• Network architecture and problem formulation: We first propose a green MEC-enabled
MIoT network architecture with multiple MIoTDs and multiple BSs and then formulate
the problem of joint task offloading and resource allocation in the green MEC-enabled
MIoT network as a stochastic optimization problem to maximize system execution
efficiency, which consists of system execution cost (including system task latency
and carbon emissions) and the size of completed tasks. Our objective function is
more general than those proposed by many related studies in that we include the
system’s carbon emissions due to fossil energy usage, the size of completed tasks, and
their latency.

• Algorithm design: We propose a DDPG-based carbon-aware task offloading and
resource allocation algorithm (DCTORA). We jointly consider maximizing the size of
completed tasks and minimizing the system’s carbon emissions and the delay of tasks.
DCTORA is a model-free DRL method that can efficiently handle continuous action
space. Moreover, it can determine the joint optimization scheme for each task in an
unpredictable environment with stochastic tasks and renewable energy sources.

• Experimental stimulation: The performance of our proposal is evaluated by extensive
simulations. The simulation results demonstrate that, in various simulation scenarios,
it outperforms the other four benchmark algorithms in terms of time-average task
latency, time-average system execution efficiency, and time-average carbon emissions.

The remainder of this study is outlined as follows. Section 2 reviews related works.
Section 3 describes the proposed green MEC-enabled MIoT network architecture, along
with communication, computing and energy consumption, and carbon emissions models,
followed by the problem formulation. Section 4 outlines the proposed algorithm, while

Electronics 2023, 12, 4967 4 of 27

Section 5 discusses the results of the performance assessment. Finally, we conclude this
paper in Section 6.

2. Related Works

Currently, existing maritime networks are dependent on narrowband radio trans-
missions, satellite links, and land-based cellular networks as the main methods of web
access [26]. The bandwidth of the maritime radio system is restrictive. Despite the potential
of satellite systems for furnishing vessels with global internet access, the prohibitive cost
of the satellite terminals and service significantly hinders their popularity. Those living in
coastal areas may reap the rewards of the growth of land-based cellular networks (e.g., 5G).
In this study, the focus is on the issue of offloading computational tasks and organizing
them for offshore cellular communication. There has been extensive research on the issue
of computation offloading, though not in relation to maritime scenarios.

For terrestrial cellular networks, MEC is capable of significantly reducing the backhaul
traffic, transmission cost, and data leakage risk of the network by offloading computational
tasks to nearby servers. The authors in [27] have investigated the multi-user computational
offloading problem in a single-server scenario using a Stackelberg game model under a
software-defined network to achieve optimal task offloading. The model in [27] exhibits
high computational complexity, and it does not apply to application scenarios related to
real-time task offloading. For the real-time offloading application scenario, the problem was
converted into a second-order cone programming problem and solved iteratively through
an algorithm based on successive convex approximations, such that the solution method is
simplified in [28]. However, [28] has not considered the dynamic mobility of edge nodes,
leading to its weak applicability. To investigate the fundamental trade-off between latency
and energy consumption in MEC systems, an iterative heuristic-based online offloading
algorithm has been proposed in [29]. To minimize the system latency and determine the
optimal offloading decision, the authors in [30] presented the computational offloading
decision as a finite-time Markov decision process and employed a dynamic programming
approach. However, the work in [30] does not consider the energy consumption constraints
that can lead to high energy consumption by users. To meet the IoT’s requirements for
both delay and energy consumption, the authors in [31] proposed a framework based on
decomposition and the continuous pseudo-convex method for the cooperative offloading
problem between edge networks and central cloud computing in cellular networks that
reduces the system cost by an iterative algorithm. MEC offloading scenarios actually
have dynamic, stochastic, and time-varying characteristics, and the main purpose of
the above task-offloading schemes for terrestrial networks is to obtain better offloading
decisions, lacking consideration of the high real-time requirements of decision algorithms in
actual scenarios.

As artificial intelligence technology is leaping forward, more and more researchers
have progressively combined it with MEC technology, which can more effectively ad-
dress the optimization problem of computing task offloading in dynamic, stochastic, and
time-varying environments. The authors in [32] studied the task offloading and resource
allocation problem in vehicular networks and proposed a Q-Learning-based task offloading
and resource allocation algorithm, but only considered a single MEC system. To optimize
the task processing delay while satisfying the energy constraint, the authors in [33] pro-
posed a Q-Learning-based joint communication and computational resource allocation
mechanism for multiple MEC systems in cellular networks and verified that the proposed
method has better environmental adaptability through simulation experiments. In [34], a
novel software-defined network (SDN) edge cloud-based Q-Learning optimization frame-
work was adopted to formulate offloading decisions and resource allocation for dynamic
offloading scenarios, which can quickly adapt to a communication environment with gradi-
ent updates and a small number of samples. Although the studies [32–34] have achieved
good offloading results in some specific scenarios using Q-learning methods, when the
state and action space of the optimization problem are too large and high-dimensional

Electronics 2023, 12, 4967 5 of 27

continuous, the memory space for storing Q-values will grow exponentially, and a large
time overhead will be incurred in searching for the optimal offloading decision. Thus, deep
learning techniques have been employed to solve the problem of high dimensionality in the
state space where conventional RL exists. Considering the task offloading decision problem
in a multi-user and multi-server MEC scenario, the authors in [35] proposed an online
offloading algorithm based on DRL to address the optimization problem of task offloading.
In [36], a hybrid MEC platform including land-based vehicles and unmanned aerial vehicles
(UAVs) was considered, and a hybrid online offloading algorithm based on deep learning
was proposed to minimize the energy consumption of IoTDs. However, it is limited to
one device’s information input at a time, which does not apply to practical scenarios. The
authors in [37] investigated the joint offloading problem between vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) and proposed a multi-intelligence DRL framework to
achieve the goal of meeting the delay requirements of both V2I and V2V links. However,
the convergence speed is slow.

In contrast to the above work on terrestrial networks, this study mainly focuses on
the next-generation maritime information system, and a DRL-based offloading method is
proposed for maritime MEC networks to support multiple maritime applications. Thus far,
researchers have proposed several task offloading algorithms for maritime MEC, which
conform to the requirements for low latency and high-reliability application services in mar-
itime networks to a certain extent. To optimize the allocation mechanism of computational
and communication resources under energy-limited and delay-sensitive conditions, the au-
thors in [38] analyzed the trade-off between the delay and energy consumption of maritime
communication and proposed a phased joint optimization algorithm. Considering the
difference in network node density between the nearshore and farshore of the ocean, [39]
proposed a task offloading model based on the nearshore and farshore scenarios, which
was established and solved using a genetic algorithm and a particle swarm optimization
algorithm, respectively. The authors in [40] used mixed-integer nonlinear programming to
separate the optimization objectives, efficiently allocate the transmission power, and formu-
late the offloading decision by improving the conventional artificial fish swarm algorithm.
However, the heuristic algorithm not only requires a large number of iterations during the
optimization search but also the computational power of the algorithm decreases signifi-
cantly in complex unloading environments and the solution quality cannot be guaranteed.
Discretizing continuous variables with DQN or DDQN disrupts the continuity of the space,
making it impossible to identify the optimal policy. In order to improve learning stability,
DDPG leverages the experience replay buffer and target network strategies from DQN.
The optimization of DDPG for resource allocation problems with continuous action space
makes it a more efficient approach, and its training performance and dependability surpass
those of the original actor-critic network. With joint consideration of energy consumption,
task delay, and cache fetching cost while adhering to the limited storage and computational
resources in MEC systems, the authors in [41] proposed a DDPG-based algorithm to opti-
mize the long-term average system cost. Similarly, the authors in [42] proposed a temporal
attentional deterministic policy gradient-based DDPG. Although the proposals in [41,42]
have been shown to achieve faster and more reliable convergence compared to DQN, they
consider energy savings more than carbon emission reductions.

In our initial work [25], we introduced a carbon-aware MEC framework for a hybrid
renewable and grid-energy MEC system. We studied the problem of joint task offloading
and resource allocation and proposed a DDPG-based joint optimization strategy consider-
ing stochastic tasks and renewable energy arrivals. The main objective was to minimize the
total carbon emissions and task queue length. This current work includes several added
contributions. First, we propose a new framework for green MEC-enabled maritime IoT
networks and aim to optimize total system execution efficiency in an unpredictable envi-
ronment. Second, we formulate the joint task offloading and resource allocation problem
by maximizing system execution efficiency, which consists of the system execution cost
(including system task latency and carbon emissions) and the size of completed tasks. Third,

Electronics 2023, 12, 4967 6 of 27

we propose a DDPG-based joint optimization strategy, eventually obtaining an effective res-
olution through continuous action space learning in an unpredictable environment. Fourth,
we made a detailed comparison of time-average system execution efficiency, time-average
task latency, and time-average carbon emission with baseline strategies by investigating
metrics in this study. Additionally, apart from the related work reviewed in our earlier
work [25], this article further extensively summarizes and discusses the most pertinent
studies on MEC offloading application scenarios, the algorithms employed, and the curse
of dimensionality, with special attention to the optimization objectives, particularly in terms
of carbon emissions.

Table 1 compares and summarizes the above literature through application scenar-
ios, offloading algorithms, optimization objectives, and the curse of dimensionality. As
depicted in Table 1, the conventional MEC offloading algorithms [27–31,38–40] have high
computational complexity and are always less efficient than AI algorithms. Although
the AI offloading algorithm based on RL [32–34] can achieve high offloading efficiency,
there is a dimensional disaster that is only applicable to small-scale application scenarios.
DRL-based offloading algorithms [35,36] are capable of overcoming the dimensionality
catastrophe, although they are too focused on centralized offloading strategies and are
less adaptable to new environments. As revealed by the comparison, the existing research
on MEC for maritime networks has the following defects. To be specific, there has been
limited research comprehensively considering task offloading and resource allocation in
maritime edge collaborative architectures, and little work has taken into account reducing
the carbon emissions of maritime networks by exploiting renewable energy. Furthermore,
most existing works have slow convergence at high dimensionality and cannot conform to
the requirements of low latency and high-reliability task offloading in maritime networks,
and they are weakly adaptive to rapidly changing maritime environments.

Table 1. MEC offloading model comparison.

Ref. Application
Scenarios

Algorithms
Applied

Dimensionality-
Free Disaster

Optimization Objective

Carbon
Emission Latency Task

Execution Bits

[25] Cellular DDPG
√ √ √

×
[27] Cellular Stackelberg × × × ×
[28] Cellular Successive approximation × × ×

√

[29] Cellular heuristic × ×
√

×
[30] Cellular Dynamic planning × ×

√
×

[31] Cellular Iterative × ×
√

×
[32] IoV Q-learning × ×

√
×

[33] Cellular Q-learning × ×
√ √

[34] Cellular Q-learning × ×
√

×
[35] Cellular DRL

√
×

√
×

[36] Hybrid MEC DNN
√

×
√

×
[37] IoV DRL

√
×

√
×

[38] Maritime Heuristic × ×
√

×
[39] Maritime PSO × ×

√
×

[40] Maritime AFSA × ×
√

×
[41] Cellular DDPG

√
×

√ √

[42] Cellular DDPG
√

×
√

×
Our study Maritime DDPG

√ √ √ √

3. System Model
3.1. Network Architecture

In this study, we propose an offshore MEC architecture based on a renewable energy
supply, which is shown in Figure 1. We consider an uplink transmission scenario for com-
putation offloading in the MEC system with multiple cells and multiple MIoTDs, which
consists of a multi-antenna macro-BS k deployed with an MEC server, a set of multiple

Electronics 2023, 12, 4967 7 of 27

micro-BSs M = {1,2,. . ., M}, each equipped with a high-performance processor, energy
access point (EAP), and energy storage unit (ESN), and a set of multiple MIoTDs (such
as various sensors, smart buoys, and USVs), denoted as N = {1,2,. . ., N}. All MIoTDs
are randomly distributed around micro-BSs, and the number of MIoTDs associated with
micro-BS m composes a set Nm = {1,2,. . ., Nm}, ∀Nm∈N. Each micro-BS covers a certain area
for control information delivery, which can sense the system channel state information (CSI)
by requesting feedback information through the control link. All micro-BSs can connect
to the macro-BS through the wireless links and generate control policies for computation
offloading and resource allocations based on local CSI and computation task requirements.
Each MIoTD can only communicate with an adjacent micro-BS and is unable to commu-
nicate directly with the macro-BS. However, all micro-BSs can establish communication
with the macro-BSs through wireless channels. Any MIoTD contains an EH module and
can draw energy from its linked micro-BS’s EAP as long as its energy queue is not full. In
each TS, the data generated by MIoTD can either be executed or dropped when its delay
constraint cannot be satisfied. Depending on its own capability, MIoTD can be executed
entirely locally or arbitrarily partially offloaded to its connected micro-BS or the macro-BS
through the micro-BS according to the computation and energy resource. We assume that
MIoTDs and micro-BSs can switch to conventional grid power when their ESNs’ energy
is insufficient, while the macro-BS always operates on grid energy. Table 2 lists the main
notations (and their definitions) used in this paper.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 28

Our study Maritime DDPG √ √ √ √

3. System Model
3.1. Network Architecture

In this study, we propose an offshore MEC architecture based on a renewable energy
supply, which is shown in Figure 1. We consider an uplink transmission scenario for com-
putation offloading in the MEC system with multiple cells and multiple MIoTDs, which
consists of a multi-antenna macro-BS k deployed with an MEC server, a set of multiple
micro-BSs M = {1,2,…, M}, each equipped with a high-performance processor, energy ac-
cess point (EAP), and energy storage unit (ESN), and a set of multiple MIoTDs (such as
various sensors, smart buoys, and USVs), denoted as N = {1,2,…, N}. All MIoTDs are ran-
domly distributed around micro-BSs, and the number of MIoTDs associated with micro-
BS m composes a set Nm = {1,2,…, Nm}, ∀Nm∈N. Each micro-BS covers a certain area for
control information delivery, which can sense the system channel state information (CSI)
by requesting feedback information through the control link. All micro-BSs can connect
to the macro-BS through the wireless links and generate control policies for computation
offloading and resource allocations based on local CSI and computation task require-
ments. Each MIoTD can only communicate with an adjacent micro-BS and is unable to
communicate directly with the macro-BS. However, all micro-BSs can establish commu-
nication with the macro-BSs through wireless channels. Any MIoTD contains an EH mod-
ule and can draw energy from its linked micro-BS’s EAP as long as its energy queue is not
full. In each TS, the data generated by MIoTD can either be executed or dropped when its
delay constraint cannot be satisfied. Depending on its own capability, MIoTD can be exe-
cuted entirely locally or arbitrarily partially offloaded to its connected micro-BS or the
macro-BS through the micro-BS according to the computation and energy resource. We
assume that MIoTDs and micro-BSs can switch to conventional grid power when their
ESNs’ energy is insufficient, while the macro-BS always operates on grid energy. Table 2
lists the main notations (and their definitions) used in this paper.

Figure 1. Illustration of a green MEC-enabled MIoT network architecture with hybrid energy.

Assuming that the macro-BS has sufficient computing resources, it can efficiently ex-
ecute multiple parallel tasks without causing a queuing delay. Compared with the data
offloaded to the macro-BS and micro-BSs, its execution result is significantly smaller.
Thus, the transmission delay and energy consumption needed to send the output data
back to the relevant MIoTDs can be ignored.

Figure 1. Illustration of a green MEC-enabled MIoT network architecture with hybrid energy.

Assuming that the macro-BS has sufficient computing resources, it can efficiently
execute multiple parallel tasks without causing a queuing delay. Compared with the data
offloaded to the macro-BS and micro-BSs, its execution result is significantly smaller. Thus,
the transmission delay and energy consumption needed to send the output data back to
the relevant MIoTDs can be ignored.

Electronics 2023, 12, 4967 8 of 27

Table 2. List of main notations.

Notation Definition

T Index set of the time slots (TS)
τ The length of each TS
k The macro-BS
N Set of MIoTDs
M Set of micro-BSs or EAPs

um,n(t) The computational task generated by MIoTD n associated with
micro-BS m at TS t

Gm(t) The energy harvesting capability of micro-BS m in TS t
Im,n(t) The CPU cycles needed to process per input data bit of um,n(t)
Cm,n(t) The size of task um,n(t)
Tmax

m,n (t) The maximum tolerable delay of um,n(t)
χ(t) The system execution efficiency in TS t

pm,n(t)
The transmission power of MIoTD n for offloading to micro-BS m
in TS t

pk,m(t)
The transmission power of micro-BS m for offloading to macro-BS
k in TS t

pmax
m,n

The maximum uplink transmission power of MIoTD n associated
with micro-BS m

pmax
k,m

The maximum uplink transmission power of micro-BS m
associated with macro-BS k

xm,n(t) Binary indicator of MIoTD n’s task um,n(t) in TS t
ϕm,n(t) Drop mode indicator of MIoTD n’s task um,n(t) in TS t

DEm,n(t), TEm,n(t), EEm,n(t) The local computing bits/computation latency/energy
consumption of MIoTD n in TS t

fm,n(t)
The CPU cycles per second for executing tasks locally on MIoTD
n associated with micro-BS m in TS t

f max
m,n

The maximum computing capacity of MIoTD n associated with
micro-BS m

fm(t), fk(t) The CPU cycles per second on micro-BS m/macro-BS k for the
tasks from MIoTDs

f max
m The maximum computing capacity of micro-BS m

f max
k The maximum computing capacity of macro-BS k

DTm,n(t), TTm,n(t), ETm,n(t) The sum of each MIoTD n’s computing task bits/transmission
latency/energy consumption transmitted to micro-BS m in TS t

ξm(t) The offloading data ratio of micro-BS m to macro-BS k in TS t

DEm(t), TEm(t), EEm(t) The sum of all MIoTDs’ computing bits/computing
latency/energy consumption executed in micro-BS m in TS t

DEk(t), TEk(t), EEk(t) The number of computing bits/computing latency/energy
consumption processed in the macro-BS k in TS t

TTk,m(t), ETk,m(t) The latency/energy consumption for uploading data from
micro-BS m to macro-BS k in TS t

D(t), T(t), CER(t) The total number of computing bits/overall system
latency/carbon emissions of system in TS t

w The tradeoff weight between T(t) and CER(t)
COST(t) The weight sum system execution cost of T(t) and CER(t) in TS t
Em(t) The energy usage of micro-BS m in TS t

gm(t) The ratio of green energy consumed by micro-BS m to its total
consumed energy in TS t

Bm(t) The dynamics of the renewable energy level of each EH module
in micro-BS m in TS t

3.2. Communication Model

The consecutive duration of the process is divided into separate time slots (TSs),
wherein each period τ consistently remains at 2 ms. The OFDM access approach has
been adopted to reduce inter-MIoTD interference within the same micro-BS. The available
bandwidth of the micro-BS m, represented as Wm, is divided into Nm subchannels of equal
width, where Nm is the number of MIoTDs connected to the micro-BS m at TS t. Then, the

Electronics 2023, 12, 4967 9 of 27

bandwidth of each MIoTD subchannel can be calculated as BWm = Wm/Nm. Therefore, the
achievable data rate between MIoTD n and its associated micro-BS m is denoted as

rm,n(t) = BWm log2

(
1 +

pm,n(t)hm,n(t)
BWmNm,n

)
, (1)

where pm,n(t), hm,n(t), and Nm,n denote the transmit power of MIoTD n, the channel gain
between MIoTD n and micro-BS m, and the power spectrum density of the additive white
Gaussian noise (AWGN), respectively. Let the maximum allowable transmission power of
MIoTD n be denoted as pmax

m,n , and pm,n(t) ≤ pmax
m,n . Similarly, the available bandwidth Wk

of macro-BSs is divided into M equal-width subchannels for micro-BSs. The bandwidth
of each subchannel assigned to a micro-BS can be formulated as BWk = Wk/M. Hence, the
achievable upload data rate between micro-BS m and macro-BS k can be represented as

rk,m(t) = BWk log2

(
1 +

pk,m(t)hk,m(t)
BWk Nk,m

)
, (2)

where hk,m(t) and Nk,m express the channel gain between micro-BS m and macro-BS k, as well
as the power spectrum density of the AWGN, and pk,m(t) refers to the transmitting power
of micro-BS m for offloading to the macro-BS k. Let the maximum allowable transmission
power of micro-BS m be pmax

k,m and pk,m(t) ≤ pmax
k,m .

3.3. Computing and Energy Consumption Model

In this portion, we illustrate the computation offloading and energy consumption
models that we have studied. It is assumed that each MIoTD possesses restricted processing
capacities, which can be used to handle the requested computation tasks locally. We
consider a stochastic task arrival model in which the computation task of MIoTD n is
defined as um,n(t) = {Im,n(t), Cm,n(t), Tmax

m,n (t)}, with Im,n(t) as the number of CPU cycles
required for computing 1-bit data (cycles per bit) and Cm,n(t) as the data size (kbits) of
the task. Tmax

m,n (t) is the maximum delay tolerance (seconds) of um,n(t). For task um,n(t), the
computation capability required is Im,n(t) Cm,n(t)/Tmax

m,n (t) (cycles per second). In each TS,
each computation task can either be executed or dropped when its delay constraint cannot
be satisfied. ϕm,n(t) denotes the drop mode indicator. ϕm,n(t) = 0 indicates the computation
task is dropped, while ϕm,n(t) = 1 means that the task is executed in the TS. Depending on
its own capability, MIoTD n can opt for either local computing of the task or offloading
it entirely to its connected micro-BS or partially to the macro-BS through the micro-BS.
For each TS t, let xm,n(t) be a binary indicator; that is, 1 if MIoTD n has a task um,n(t) to be
offloaded and 0 otherwise (i.e., locally executed).

3.3.1. Local Computing

When task um,n(t) is chosen for local processing, the processing performance is de-
termined by the quality of MIoTD n’s computing capability, which can be characterized
by the CPU-cycle frequency fm,n(t). The computation latency of MIoTD n can therefore be
presented as follows:

TEm,n(t) =
DEm,n(t)× Im,n(t)

fm,n(t)
, (3)

where DEm,n(t) is the local computing bits of the MIoTD allocated in terms of local execution
in TS t, which can be expressed as

DEm,n(t) = ϕm,n(t)× (1− xm,n(t))× Cm,n(t). (4)

As defined in [43], the energy consumption to execute the tasks locally can be denoted as

EEm,n(t) = ka × f 2
m,n(t)× DEm,n(t), (5)

Electronics 2023, 12, 4967 10 of 27

where ka is a nonnegative coefficient depending on the chip architecture, and kb and kc
mentioned later are similar to ka.

When MIoTDs lack the computing capacities to complete the tasks locally, the tasks
are offloaded to the micro-BS for processing. Specifically, the MIoTD n’s computation task
is initially transmitted to the closest micro-BS m via a wireless connection for processing. If
the micro-BS m lacks adequate computation resources or energy to complete the task, it
can offload the computation task to macro-BS k, which is equipped with more computation
resources, and then retrieve the result once the task is complete.

According to the above, we can obtain the sum of the computing task bits in MIoTD n
transmitted to micro-BS m at TS t, which is

DTm,n(t) = min(rm,n(t)× τ, ϕm,n(t)× xm,n(t)× Cm,n(t)). (6)

when the offloaded data size is more than the maximum number of task bits that can be
transmitted in TS t between micro-BS m and MIoTD n, the MIoTD does not offload the
tasks, i.e., ϕm,n(t) = 0. Correspondingly, the transmission latency and energy consumption
for DTm,n(t) are, respectively,

TTm,n(t) =
DTm,n(t)
rm,n(t)

, (7)

ETm,n(t) = pm,n(t)× TTm,n(t). (8)

3.3.2. Edge Computing

As aforementioned, suppose each computing task can only be offloaded to one micro-
BS, is fine-grained, and can be arbitrarily split into two parts in the micro-BS: one part is
executed on its high-performance processor, while the other is offloaded and processed on
the MEC server in the macro-BS. Let ξm(t) denote the offloading data ratio of micro-BS m to
macro-BS k. The micro-BS m executes ξm(t) × DTm,n(t), and the amount of computing bits
executed by the macro-BS k is (1 − ξm(t)) × DTm,n(t). The sum of all MIoTDs’ computing
bits executed in micro-BS m at TS is

DEm(t) = ξm(t)×
Nm

∑
n=1

DTm,n(t). (9)

The computing tasks transmitted by MIoTDs can be given recourse to the CPU cycles
provided by the high-performance processor of micro-BS m. The needed CPU cycles for
computing tasks from the MIoTDs connected to the m-th high-performance processor
should be no larger than the available CPU cycles of the m-th high-performance processor.
Thus, we have

ξm(t)×
Nm

∑
n=1

[DTm,n(t)× Im,n(t)] ≤ f max
m τ, (10)

where f max
m refers to the m-th high-performance processor’s maximization available com-

putation capability and τ refers to the length of each TS. The related computing latency
and energy consumption of each micro-BS are

TEm(t) =
ξm(t)×

Nm
∑

n=1
[DTm,n(t)× Im,n(t)]

fm(t)
, (11)

EEm(t) = kb × f 2
m(t)× DEm(t), (12)

where fm(t) denotes the computation resources provided by the micro-BS m for the tasks
from MIoTDs.

Electronics 2023, 12, 4967 11 of 27

When computing tasks are offloaded partially to the macro-BS, the number of comput-
ing bits processed in the macro-BS in TS t is

DEk(t) =
M

∑
m=1

Nm

∑
n=1

[(1− ξm(t))× DTm,n(t)]. (13)

Similarly, the computation requirements of the MIoTDs cannot surpass the MEC
server’s available computation capability. Thus, we have

M

∑
m=1

Nm

∑
n=1

[(1− ξm(t))× DTm,n(t)× Im,n(t)] ≤ f max
k τ. (14)

where f max
k refers to the MEC server’s maximization available computation capability and

τ refers to the length of each TS. Let fk(t) denote the computation resources provided by the
macro-BS k for the tasks from MIoTDs. The computing latency and energy consumption of
DEk(t) are

TEk(t) =

M
∑

m=1

Nm
∑

n=1
[(1− ξm(t))× DTm,n(t)× Im,n(t)]

fk(t)
, (15)

EEk(t) = kc × fk
2(t)× DEk(t). (16)

The latency and energy consumption for uploading data from the micro-BS m to the
macro-BS k are

TTk,m(t) =
DEk(t)
rk,m(t)

, (17)

ETk,m(t) = pk,m(t)× TTk,m(t). (18)

Based on the task execution at various offloading modes evidenced above, the total
number of computing bits that have been handled by the system in TS t is

D(t) =
M

∑
m=1

Nm

∑
n=1

DEm,n(t) +
M

∑
m=1

DEm(t) + DEk(t). (19)

The overall system latency includes the latency of the local execution of tasks and
the latency of remote transmission and execution in the system at TS t, which can be
represented as follows:

T(t) =
M

∑
m=1

Nm

∑
n=1

TEm,n(t) +
M

∑
m=1

Nm

∑
n=1

TTm,n(t) +
M

∑
m=1

TEm(t) +
M

∑
m=1

TTk,m(t) + TEk(t). (20)

Correspondingly, the time-average task latency of the system can be denoted
as follows:

TATL = lim
T→∞

1
T

T

∑
t=0

T(t). (21)

According to [16], the energy consumption of micro- or macro-BS can be attributed to
two components: static power offset and energy consumption for task execution or data
transmission. Since their static power consumption is the same for different offloading
schemes, it is negligible in the following model. The energy usage of micro-BS m encom-
passes the energy consumption related to executing tasks locally and transmitting data to
the macro-BS, as well as charging power to its associated MIoTDs. Let η denote the inverse
of the power amplifier efficiency factor for the process of micro-BS to charge an MIoTD.
Assuming equal power amplifier efficiency factor (η) for all MIoTDs, the amount of energy
used by a micro-BS to charge an MIoTD is η times the quantity of energy consumed by the

Electronics 2023, 12, 4967 12 of 27

MIoTD to locally complete the task and transmit its offloaded task to the micro-BS. Hence,
the energy consumption of micro-BS m can be expressed as

Em(t) = EEm(t) + η
Nm

∑
n=1

[EEm,n(t) + ETm,n(t)] + ETk,m(t). (22)

3.4. Carbon Emission Model

It is suggested that the energy-harvesting capability of micro-BS m at TS t is Gm(t). For
realistic considerations, the collected green energy is not the sole source of energy for each
micro-BS and all MIoTDs in the network, which can also use traditional power when the
harvested energy cannot fulfill their energy requirements. Let gm(t) represent the ratio of
green energy used by micro-BS m to its total consumed energy Em(t). Therefore, the green
energy used by each micro-BS can be expressed as Em(t)gm(t). Considering the energy level
of the EH module in micro-BS m at TS t, we have

Em(t)gm(t) ≤ Bm(t). (23)

Therefore, the dynamics of the renewable energy level Bm(t) of each EH module in
micro-BS m is symbolized as

Bm(t + 1) = max[Bm(t)− Em(t) + Gm(t), 0]. (24)

when Bm(t) > 0, micro-BS m operates on renewable energy sources. When Bm(t) ≤ 0, micro-
BS m and its covered MIoTDs switch to a conventional energy supply due to insufficient
renewable energy. It is clear that the second scenario would result in higher carbon
emissions of the system.

Based on the above, for each TS t, the network’s energy consumption may consist of grid
power and renewable energy. Hence, the system’s grid power usage can be represented as

E(t) = EEk(t) +
M

∑
m=1

Em(t)(1− gm(t)). (25)

Hence, the system’s total carbon emissions and time-average carbon emissions can be
respectively expressed as

CER(t) = E(t)× ε, (26)

TACE = lim
T→∞

1
T

T

∑
t=0

CER(t), (27)

where ε is the carbon emission factor in kg/kWh, i.e., the amount of CO2 released when
using 1 kWh of conventional energy, typically set at 0.998 kg/kWh [25].

We defined the total system execution cost as

COST(t) = w× T(t) + (1− w)× CER(t), (28)

In actuality, COST(t) is a compromised tradeoff between the task latency and carbon
emissions of the system at TS t. w is the weight coefficient. If w is sufficiently large, it
demonstrates that MIoTD n is delay-sensitive with much lower latency. Otherwise, the
importance of reducing traditional energy consumption and carbon emissions can be
significantly highlighted.

3.5. Problem Formulation

In this subsection, the joint optimization problem of computation offloading and
resource allocation is formulated under the uplink MIoT network scenario. We defined

Electronics 2023, 12, 4967 13 of 27

the system execution efficiency as the ratio of system execution cost to the total size of
completed tasks, which can be expressed as

χ(t) =
D(t)

COST(t)
, (29)

Further, we defined the time-average system execution efficiency as

TASEE = lim
T→∞

1
T

T

∑
t=0

χ(t), (30)

Our aim is to reduce the system’s carbon emissions and task delay and improve the
total size of completed tasks, that is, maximize system execution efficiency while fulfilling
the constraints of the task requirements, which can be formulated as follows:

max
1
T

T

∑
t=0

χ(t), (31a)

s.t.
0 ≤ gm(t) ≤ 1, ∀m ∈ M (31b)

ϕm,n(t) ∈ {0, 1}, xm,n(t) ∈ {0, 1}, ∀m ∈ M, n ∈ N (31c)

0 ≤ pm,n(t) ≤ pmax
m,n , 0 ≤ pk,m(t) ≤ pmax

k,m , ∀m ∈ M, n ∈ N (31d)

0 ≤ fm,n(t) ≤ f max
m,n , ∀m ∈ M, n ∈ N (31e)

0 ≤ fm(t) ≤ f max
m , 0 ≤ fk(t) ≤ f max

k , ∀m ∈ M (31f)

ξm(t)×
Nm

∑
n=1

[DTm,n(t)× Im,n(t)] ≤ f max
m τ, ∀m ∈ M, n ∈ N (31g)

M

∑
m=1

Nm

∑
n=1

[(1− ξm(t))× DTm,n(t)× Im,n(t)] ≤ f max
k τ, ∀m ∈ M, n ∈ N (31h)

Em(t)gm(t) ≤ Bm(t), ∀m ∈ M (31i)

0 ≤ ξm(t) ≤ 1, ∀m ∈ M (31j)

Tm,n(t) ≤ Tmax
m,n (t), ∀m ∈ M, n ∈ N (31k)

where (31b) indicates the restriction on the ratio of green energy consumed. (31c) is the zero-
one constraint for the drop and computation mode indicators of task um,n(t) at TS t. (31d)
represents the transmission power constraint in terms of MIoTDs and micro-BSs. (31e) and
(31f) represent the CPU-cycle frequency constraint of any MIoTD, the high-performance
processor, and the MEC server. (31g) and (31h) are the scheduling restrictions of each
micro-BS and the macro-BS. (31i) guarantees that the green energy used by micro-BS m does
not exceed its renewable energy level in TS t. (31j) denotes the constraint of the offloading
data ratio from micro-BS m to macro-BS k. (31k) ensures the latency requirements of each
task. Tm,n(t) refers to the total latency of the task um,n(t) at TS t. Task um,n(t) may be executed
either fully locally or offloaded. For the latter case, the task may be completed entirely at
the micro-BS, or partially at the micro-BS, and the other part is executed at the macro-BS.

Electronics 2023, 12, 4967 14 of 27

Therefore, Tm,n(t) includes the local execution delay or the transmission and execution
delay during offloading and can be represented as follows:

Tm,n(t) = TEm,n(t) + DTm,n(t)×
[

Im,n(t)ξm(t)
fm(t)

+
1

rm,n(t)
+

Im,n(t)(1− ξm(t))
fk(t)

+
1− ξm(t)

rk,m(t)

]
. (32)

Considering the uncertainty of computational tasks and renewable energy in problem
(31), next, we employ DRL techniques to determine the optimal offloading policy.

4. DDPG-Based Algorithm Design for Task Offloading
4.1. Problem Solution by DDPG

In the proposed MEC model, each MIoTD can choose either to execute its task locally
or offload the task to its connected micro-BS or the macro-BS via the micro-BS. The arrival
of computing tasks and renewable energy sources is unpredictable and wireless channel is
time-varying. Therefore, we utilize the DRL technique to learn the optimization computing
offloading policy considering stochastic tasks, renewable energy, and wireless channel
conditions. We employ the DDPG algorithm to continuously learn the optimal scheme for
local execution and task offloading, utilizing a continuous action space. This approach is
an improvement upon DQN [44]. DQN [45] serves as the baseline algorithm of DRL, and it
has seen widespread utilization across many optimization areas. Despite this, the action
spaces of DQN are discrete, while the proposed MEC model’s continuous action space
is required to be discretized when DQN is chosen. If the action space is excessively vast,
the problem of the high-dimensional will emerge. By comparison, DDPG is an extension
of the actor-critic algorithm, which can effectively manage a continuous action space [46].
The actor network modifies the neural network’s parameters, utilizing a deterministic
policy gradient to identify the optimal action in the current state. The critic network
accesses the actor network’s policy by measuring the time difference error. The critic
network adjusts the neural network’s parameters by utilizing the Q-function. Rather than
using a traditional stochastic policy gradient, DDPG selects actions based on the action
distribution. By employing DDPG, a smaller number of data are sampled, which can
enhance the algorithm’s efficiency. DDPG leverages the architecture of DQN in its critic
network and employs an off-policy approach to achieving a balance between exploration
and exploitation.

Figure 2 illustrates that DDPG applies two separate DNNs to model the actor network
µ(s|θµ), i.e., the policy function, and the critic network Q(s, a|θQ), i.e., the Q-value function,
respectively. Moreover, the actor and critic networks have a corresponding target network
with an identical structure: A critic target network Q′ with parameters θQ′ and an actor
target network µ′ with parameters θµ′ . Analogous to DQN, the critic network Q(s, a|θQ) is
updated as follows:

L
(

θQ
)
= Eµ′

[(
yi −Q

(
si, ai |θQ

))2
]

, (33)

where
yi = ri + γQ

(
si+1, µ(si+1) |θQ

)
. (34)

Silver et al. [47] have demonstrated that the policy gradient can be revised using the
chain rule.

∇θµ J ≈ Eµ′
[
∇θµ Q

(
s, a |θQ

)
|s=si ,a=µ(si |θµ)

]
= Eµ′

[
∇aQ

(
s, a |θQ

)
|s=si ,a=µ(si |θµ)∇θµ µ(s |θµ) |s=si

]
. (35)

Electronics 2023, 12, 4967 15 of 27

Electronics 2023, 12, x FOR PEER REVIEW 15 of 28

function, respectively. Moreover, the actor and critic networks have a corresponding tar-
get network with an identical structure: A critic target network Q’ with parameters θQ’
and an actor target network µ’ with parameters θµ’. Analogous to DQN, the critic network
Q(s, a|θQ) is updated as follows:

() ()()2

' |μθ θ = −  
Q Q

i i iL y Q s aE ,
,
 (33)

where

()()1 1 |γ μ θ+ += + Q
i i i iy r Q s s,

.

(34)

Silver et al. [47] have demonstrated that the policy gradient can be revised using the
chain rule.

() () () () ()' '| |
| | | | | |μ μ μμ μ

μ
μ μθ θ θμ θ μ θ

θ θ μ θ == = = =
   ∇ ≈ ∇ = ∇ ∇      ii i i i

Q Q
a s ss s a s s s a s

J Q s a Q s a s
, ,

E , E ,
.

 (35)

Figure 2. Structure of the DDPG-based joint computation offloading and resource allocation algo-
rithm.

The DDPG algorithm’s entire training process is concluded in the following. The cor-
relation between exploration and exploitation should be assessed after the actor network
µ produces µ(si) from the prior training stage to ensure a thorough exploration of the state
space. We can conduct the investigation of DDPG independently of the training procedure
since DDPG refers to an off-policy algorithm. Consequently, the action space is created by
incorporating behavior noise ni for obtaining action ai = µ(si) + ni, for which ni follows a
Gaussian distribution ni~N(µe, σe,i

2), with σe,I as the standard deviation and µe as the mean.
Upon executing at in the environment, the agent will be able to witness si+1 as the subse-
quent state and be rewarded with rt. Next, the experience replay buffer stores the transi-
tion (si, ai, ri, si+1). Subsequently, the algorithm randomly selects N transition (sj, aj, rj, sj+1)

Figure 2. Structure of the DDPG-based joint computation offloading and resource allocation algorithm.

The DDPG algorithm’s entire training process is concluded in the following. The
correlation between exploration and exploitation should be assessed after the actor network
µ produces µ(si) from the prior training stage to ensure a thorough exploration of the state
space. We can conduct the investigation of DDPG independently of the training procedure
since DDPG refers to an off-policy algorithm. Consequently, the action space is created
by incorporating behavior noise ni for obtaining action ai = µ(si) + ni, for which ni follows
a Gaussian distribution ni~N(µe, σ2

e,i), with σe,I as the standard deviation and µe as the
mean. Upon executing at in the environment, the agent will be able to witness si+1 as the
subsequent state and be rewarded with rt. Next, the experience replay buffer stores the
transition (si, ai, ri, si+1). Subsequently, the algorithm randomly selects N transition (sj, aj,
rj, sj+1) from the buffer, such that a mini-batch can be established. Next, the established
mini-batch is introduced into the actor network and the critic network. The actor target µ′

network produces the action µ′(sj+1). Afterward, µ′(sj+1) is sent to the critic target network
Q′ via the mini-batch. Using mini-batch and µ′(sj+1), the critic network can determine the
target value yj in accordance with (35).

The Q critic network should be modified using an optimizer (e.g., the Adam Op-
timizer) for a reduction in the loss function. Subsequently, the actor network µ sup-
plies the minibatch action a = µ(sj) to the critic network to acquire the action’s gradient
∇aQ(s, a|θQ)|s=sj, a=µ(sj). The value of ∇θµµ(s|θµ)|s=sj can be determined using its opti-
mizer. Using the above-described two gradients, the actor network can be updated with
the following approximation:

∇θµ J ≈ 1
N ∑

j

[
∇aQ

(
s, a |θQ

)
|s=sj ,a=µ(sj |θµ)∇θµ µ(s |θµ) |s=sj

]
. (36)

Lastly, the DDPG agent applies a minor fixed value τ0 to gradually update the actor
target network and the critic target network, separately

θQ′ ← θQ + (1− τ0)θ
Q′, (37)

Electronics 2023, 12, 4967 16 of 27

θµ′ ← θµ + (1− τ0)θ
µ′. (38)

4.2. DDPG-Based Algorithm

In this section, we first thoroughly define the core components of the DRL agent,
including specific states, actions, and rewards. Then we propose a DDPG-based joint
computation offloading and resource allocation algorithm to find the most cost-effective
policy adaptively. The agent retrieves the current micro-BS state st by regularly commu-
nicating with the associated micro-BS. This agent then generates an action at based on st
via a strategy, for example, a deterministic policy, as guidance. Once action at is taken in
micro-BS m, the reward rt(st, at) is provided instantly. By finding the best action policy, the
agent aims to maximize the long-term reward Rt in a decision episode. The state space,
action space, and reward function are outlined as follows.

4.2.1. State Space

At TS t, the status of micro-BS m contains five parameters, including attributes related
to the task and environment variables. The task attributes include the requested task
profiles of task um,n(t) (including the size of the computation task Cm,n(t), the maximum
tolerable delay T max

m,n (t), and the number of CPU cycles needed to process per input data
bit of Im,n(t)). The size of the energy packet Gm(t) and the energy level of micro-BS m Bm(t)
at t-th TS and the system state st at TS t can be described as

st = {Cm,n(t), Im,n(t), Tmax
m,n (t), Gm(t), Bm(t)}. (39)

4.2.2. Action Space

Given the current state and observed environment of the system, the action at can be
defined as

at = {xm,n(t), ξm(t), gm(t), fm,n(t), fm(t), fk(t), pm,n(t), pk,m(t)
}

. (40)

Clearly, at is a direct solution to the MIoTD’s task of dynamically offloading computa-
tions and allocating resources. The action space for MIoTD’s task um,n(t) encompasses the
possible actions for the variables: xm,n(t) ∈ {0,1} represents the available offloading modes
to execute the computation task, ξm ∈ [0,1], gm(t) ∈ [0,1], the uplink transmit power of each
MIoTD and micro-BS, represented as pm,n(t) ≤ pmax

m,n and pk,m(t) ≤ pmax
k,m , the computation

resource allocated to each MIoTD, micro-BS and macro-BS, denoted as fm,n(t) ≤ f max
m,n ,

fm(t) ≤ f max
m , and fk(t) ≤ f max

k . Variables in a continuous action space can be optimized
precisely and jointly.

4.2.3. Reward Function

The agent interacts with the environment using st and decides on at to receive an
immediate reward rt(st, at), which is then added to the cumulative reward from the previous
state st-1. Generally, the reward function is usually associated with the objective function.
We define the system execution efficiency from Equation (29) as the immediate reward
upon completing a series of actions for requested tasks, and it can be depicted as follows:

rt(st, at) = χ(t). (41)

Consequently, the learning process aims to minimize the overall system execution cost
while improving the size of completed tasks in order to maximize the expected cumulative
rewards. We define the long-time reward value Rt of micro-BS m as

Rt = max

[
lim

T→∞

1
T

T

∑
t=0

(γt · rt(st, at))

]
, (42)

Electronics 2023, 12, 4967 17 of 27

where γt is the discount factor to determine how much importance should be given to the
immediate reward rt (st, at) that is received over time, with 0 ≤ γt ≤ 1. A desirable reward
achieves a higher return of Rt, and the goal of our agent is to maximize the value of Rt
within a period of time.

4.2.4. Algorithm Description and Complexity Analysis

Herein, because discrete and continuous variables are intermingled and continuous
variables have infinite values, the DQN scheme cannot be utilized directly. The size of the
action space increases exponentially as the discrete level expands, leading to a reduction
in performance since discretizing a continuous variable into a finite level will result in
quantization error [48]. To address the problem of continuous variables, we developed
the DDPG-based algorithm. As previously mentioned, each micro-BS stores computation-
intensive tasks offloaded by MIoTDs and determines the offloading ratio for each task to
the macro-BS. We illustrate the training process for the agent on micro-BS m, as depicted
in Algorithm 1. The target networks for the critic and actor networks are replicas of their
corresponding online networks (Step 2). Steps 10–17 outline the details of the DCTORA
method. In steps 18 and 19, the Adam optimizer and soft update are employed to adjust
the weight vectors of the critic and actor networks, both for the online and target networks.
The training stops once the pre-set number of episodes, i.e., Emax, has been completed.

Algorithm 1: Joint optimization method based on the proposed DCTORA

1: Randomly initialize the weights of actor network θµ and critic network θQ, respectively.
2: Initialize the target network with weights θµ←θµ′ and θQ←θQ′ , respectively.
3: Empty the experience replay buffer D.
4: for episode = 1 to Emax do
5: for t = 1 to T do
6: Reset simulation parameters of the system and obtain initial observation state s1.
7: Normalize state st to st′ .
8: Get the action with actor network θµ and perform action at according to (40).
9: Obtain the reward rt according to (41) and observe the next state st+1.
10: if the replay buffer is not full then
11: Store transition (st′ , at, rt, st′+1) in replay buffer D.
12: else
13: Randomly replace a transition in replay buffer D with (st′ , at, rt, st′+1).

14:
Randomly sample N transition tuples from experience replay memory M as mini-batch data for
training the main network of the actor and the critic.

15: Calculate the gradient ∇θ
QL of the critic’s main network according to (33) and (34).

16: Update the parameters θQ of the critic’s main network using the Adam optimizer.
17: Calculate the policy gradient ∇θ

µL of the actor’s main network according to (35).
18: Update the parameter θµ of the actor’s main network using the Adam optimizer.

19: Soft update the parameters θQ′ , and θµ′ of the actor’s target network and the critic’s target network
according to (37) and (38), where τ0 = 0.001.

20: end if
21: end for
22: end for

We analyze the proposed algorithm’s time complexity in terms of floating-point
operations per second (FPOPS). The time complexity of Algorithm 1 is largely dependent
on the number of MIoTDs and the neural network structure employed for implementing
the DDPG networks of each micro-BS agent. We assume that each actor network and each
critic network comprise K and H fully connected layers, respectively. Moreover, υactor,k and
υcritic,h are the input sizes of the k-th layer actor network and the h-th layer critic network.
Each layer in the actor network has a vector υactor,k and a matrix υactor,k×υactor,k+1 to perform
the dot product. Similarly, each layer in the critic network has a vector υcritic,h and a matrix
υcritic,h×υcritic,h+1 to perform the dot product. According to the FPOPS, the computation is

Electronics 2023, 12, 4967 18 of 27

(2υactor,k − 1)×υactor,k+1, and every column in the matrix needs to be multiplied υactor,k times
and added υactor,k − 1 times. Therefore, the time complexity of Algorithm 1 is formulated as

2
K−1
∑

k=0
((2vactor, k − 1) · vactor, k+1 + vvactor, k+1) + 2

H−1
∑

h=1
((2vcritic, h − 1) · vcritic, h+1 + vvcritic, h+1)

= O
(

K−1
∑

k=0
vactor, k · vactor, k+1 +

H−1
∑

h=0
vcritic, h · vcritic, h+1

) (43)

where v refers to the coefficient that is based on the type of activation layer used in the
corresponding network.

5. Simulation Results and Analysis

In this section, we evaluate the performance of our proposal through extensive sim-
ulations using Matlab 2020a to illustrate how well it performs in the MEC-enabled MIoT
system for computation offloading. Initially, the simulation parameters are outlined. The
performance of the proposed algorithm (DCTORA) is then compared to four benchmark
algorithms described below in terms of the time-average cumulative reward, time-average
system execution efficiency, time-average task latency, and time-average carbon emissions
across different scenarios. For convenience, we will abbreviate “time-average cumulative
reward”, “time-average system execution efficiency”, “time-average task latency” and
“time-average carbon emission” as “cumulative reward”, “execution efficiency”, “task
latency” and “carbon emission”, respectively, in this section:

• Full local execution (FL): All MIoTDs independently perform their tasks using their
local computing resources.

• Full offloading (FO): Each MIoTD offloads its tasks to its connected micro-BS with the
allocated transmit power or transmits the tasks to the macro-BS through the micro-BS;
that is, all computation tasks are executed by utilizing the computation resources of
the micro-BS’s high-performance processors or the MEC server of the macro-BS.

• Greedy policy (GP): The system utilizes its maximum power to complete computing
tasks either locally or remotely, completing tasks as often as possible.

• DQN-based offloading Scheme (DOS): Each agent adopts the DQN approach to train
its model for joint optimization of task offloading and resource allocation, in which
computing resource and power allocation are separated into 10 levels with values
ranging from 0 to their maximum values.

5.1. Simulation Settings

In our simulations, we consider a system with multiple cells each with a micro-BS, and
each micro-BS coverage radius is 600 m, where the macro-BS is located at the center of the
micro-BS and multi-MIoTDs are randomly distributed between [50, 200] m from each micro-BS
and [200, 1000] m from the macro-BS. The length of each TS is set to 2 ms, and the number of
participating MIoTDs is randomly chosen from [30, 54]. When an MIoTD is within a certain
distance (d) from a micro-BS, it can communicate with the micro-BS directly. We assume the
path loss models of micro-BSs and macro-BSs follow PL(dB) = 142.7 + 35.5 log10d, where
d represents the distance between a micro-BS and its connected MIoTDs, as well as the distance
between a micro-BS and the macro-BS, both measured in kilometers. The communication
bandwidth of each micro-BS and each MIoTD node are 6 MHz and 2 MHz, respectively,
which undergo Rayleigh fading. The noise power spectral density is N0 = −174 dBm/Hz.
Moreover, we consider that the size of tasks generated by each MIoTD obeys a uniform
distribution between [200, 1200] KB, and the maximum computation capacities of an MIoTD
and a macro-BS are 1 GHz and 25 GHz, respectively. The maximum computation capacity of
each micro-BS is between 3 GHz to 7 GHz. The inverse of the power amplifier efficiency factor
for the process of a micro-BS charging an MIoTD is η = 1. The energy-harvesting capability of
the micro-BS is uniformly distributed between 0 and 80 J.

The DRL-based framework (DCTORA and DOS) employs neural networks in the
simulations, specifically for each micro-BS agent. These neural networks are comprised of

Electronics 2023, 12, 4967 19 of 27

an input layer, two hidden layers that are fully connected, and an output layer. In order
to obtain the optimal objective value through the implementation of the gradient descent
algorithm, it is necessary to periodically update the parameters of the target network and
enhance the algorithm’s convergence by employing experience replay memory. The actor
network and the critic network have different learning rates of 0.0001 and 0.001, respectively,
whereas the DOS utilizes a learning rate of 0.001. The neural network is composed of two
hidden layers, including 200 and 100 neurons, respectively. Furthermore, the size of the
experience replay buffer is set to 2000, the mini-batch size is set to 32, and the discount
factor is set to 0.95. The maximum number of episodes is set to 1000, and the frequency of
learning is set to 5. Table 3 provides a summary of the main parameter settings.

Table 3. Parameter values used in the simulations.

Parameters Value Range Value

Number of macro-BS 1
Number of micro-BS [5, 9]
Number of MIoTDs [30, 54]

The communication bandwidth of each micro-BS 6 MHz
The communication bandwidth of each MIoTD node 2 MHz

Distance between MIoTD and micro-BS [50, 200] m
Distance between MIoTD and macro-BS [200, 1000] m

Noise power spectral density −174 dBm/Hz
Task input size of each MIoTD in TS t [200, 1200] KB

Energy harvesting capability of micro-BS m in TS t [0, 80] J
The maximum latency of each task [10, 80] ms

The maximum computation capacities of MIoTD, and macro-BS 1, 25 GHz
The maximum computation capacities of micro-BS [3, 7] GHz

The maximum number of episodes 1000
The replay memory size 2000

The frequency of learning 5
The mini-batch size 32

The Adam optimizer’s learning rate 0.01
The discount factor 0.95

The soft updating rate of target networks 0.001
The target network update frequency 50

5.2. Performance Analysis

We first evaluate the convergence of the proposed DCTORA algorithm. Following
this, we analyze the impact of coefficient values on the cumulative reward, task latency,
and carbon emissions. Moreover, we discuss the system performance of our solution in
different scenarios by comparing it with benchmarks.

5.2.1. Convergence Analysis

Figure 3 shows the convergence performance of the proposed DCTORA algorithm
with different values of w that are used in Equation (28). In the simulation, the number
of participating MIoTDs is 30. Furthermore, the number of micro-BSs is 6 and its CPU
frequency is 3 GHz. The energy-harvesting capability Gm(t) of each micro-BS is set to 30 J.
Then, we use our proposed Algorithm 1 to obtain the optimal task offloading strategy.

From Figure 3, we can observe that the cumulative reward converges to near-optimal
values within 500 training episodes. Although the values of cumulative reward are in an
unstable state with large fluctuations in the beginning, this indicates that each agent is
constantly exploring the environment randomly. After a period of learning, the cumulative
reward gradually stabilizes, and the fluctuation range decreases, regardless of the value
of w. Therefore, we can conclude that our proposed algorithm has good convergence
performance. In addition, it can be found that in Figure 3, when w decreases, the agent
yields the highest efficacy of cumulative reward performance with w = 0.2, followed by
w = 0.5 and then w = 0.9.

Electronics 2023, 12, 4967 20 of 27

Electronics 2023, 12, x FOR PEER REVIEW 20 of 28

Distance between MIoTD and micro-BS [50, 200] m
Distance between MIoTD and macro-BS [200, 1000] m

Noise power spectral density −174 dBm/Hz
Task input size of each MIoTD in TS t [200, 1200] KB

Energy harvesting capability of micro-BS m in TS t [0, 80] J
The maximum latency of each task [10, 80] ms

The maximum computation capacities of MIoTD, and macro-BS 1, 25 GHz
The maximum computation capacities of micro-BS [3, 7] GHz

The maximum number of episodes 1000
The replay memory size 2000

The frequency of learning 5
The mini-batch size 32

The Adam optimizer’s learning rate 0.01
The discount factor 0.95

The soft updating rate of target networks 0.001
The target network update frequency 50

5.2. Performance Analysis
We first evaluate the convergence of the proposed DCTORA algorithm. Following

this, we analyze the impact of coefficient values on the cumulative reward, task latency,
and carbon emissions. Moreover, we discuss the system performance of our solution in
different scenarios by comparing it with benchmarks.

5.2.1. Convergence Analysis
Figure 3 shows the convergence performance of the proposed DCTORA algorithm

with different values of w that are used in Equation (28). In the simulation, the number of
participating MIoTDs is 30. Furthermore, the number of micro-BSs is 6 and its CPU fre-
quency is 3 GHz. The energy-harvesting capability Gm(t) of each micro-BS is set to 30 J.
Then, we use our proposed Algorithm 1 to obtain the optimal task offloading strategy.

From Figure 3, we can observe that the cumulative reward converges to near-optimal
values within 500 training episodes. Although the values of cumulative reward are in an
unstable state with large fluctuations in the beginning, this indicates that each agent is
constantly exploring the environment randomly. After a period of learning, the cumula-
tive reward gradually stabilizes, and the fluctuation range decreases, regardless of the
value of w. Therefore, we can conclude that our proposed algorithm has good convergence
performance. In addition, it can be found that in Figure 3, when w decreases, the agent
yields the highest efficacy of cumulative reward performance with w = 0.2, followed by w
= 0.5 and then w = 0.9.

0 500 1000

4

6

8

10

12

14

Number of episodes

T
im

e-
A

ve
ra

ge
 C

um
ul

at
iv

e
R

ew
ar

d

DCTORA_w=0.9
DCTORA_w=0.5
DCTORA_w=0.2

Figure 3. Cumulative reward of the proposed DCTORA algorithm under different values of coeffi-
cient, where Cm,n(t) = 600, Gm(t) = 30, M = 6, and N = 30.

5.2.2. Effect of Coefficient Value on Performance Metrics

To focus on the impact of w, we fix other parameters that are consistent with Figure 3.
The results of the task latency and the carbon emission with different values of w are shown
in Figure 4. As a whole, the values of task latency and carbon emission gradually increase
initially and then converge to different stable values. As we can see from Figure 4a,b, the
best outcome result in carbon emissions is attained when w = 0.2, followed by w = 0.5, and
w = 0.9 has the lowest performance. The statistical results show that the carbon emission
achieved with w = 0.9 surpasses that of w = 0.5 by a significant 35% and exceeds w = 0.2 by
an impressive 38.24% across all 1000 training rounds. The task latency, when w = 0.2, shows
an increase of 27.14% compared to w = 0.5 and a substantial 18.27% increase compared to
w = 0.9. From (28) and (29), we can directly observe that when w < 0.5, more emphasis is
placed on the effect of carbon emission. Conversely, when w > 0.5, more emphasis is placed
on the impact of task latency. To balance the trade-off between task latency and carbon
emissions, we choose w = 0.5 for the rest of the simulations in which the value of w is not
the variable.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 28

Figure 3. Cumulative reward of the proposed DCTORA algorithm under different values of coeffi-
cient, where Cm,n(t) = 600, Gm(t) = 30, M = 6, and N = 30.

5.2.2. Effect of Coefficient Value on Performance Metrics
To focus on the impact of w, we fix other parameters that are consistent with Figure

3. The results of the task latency and the carbon emission with different values of w are
shown in Figure 4. As a whole, the values of task latency and carbon emission gradually
increase initially and then converge to different stable values. As we can see from Figure
4a,b, the best outcome result in carbon emissions is attained when w = 0.2, followed by w
= 0.5, and w = 0.9 has the lowest performance. The statistical results show that the carbon
emission achieved with w = 0.9 surpasses that of w = 0.5 by a significant 35% and exceeds
w = 0.2 by an impressive 38.24% across all 1000 training rounds. The task latency, when w
= 0.2, shows an increase of 27.14% compared to w = 0.5 and a substantial 18.27% increase
compared to w = 0.9. From (28) and (29), we can directly observe that when w < 0.5, more
emphasis is placed on the effect of carbon emission. Conversely, when w > 0.5, more em-
phasis is placed on the impact of task latency. To balance the trade-off between task la-
tency and carbon emissions, we choose w = 0.5 for the rest of the simulations in which the
value of w is not the variable.

Figure 4. Average system performance metrics of DCTORA: (a) task latency, (b) carbon emission,
where Cm,n(t) = 600, Gm(t) = 30, M = 6, and N = 30.

5.2.3. Performance Metrics Versus Varying Data Size of MIoTD
Figure 5 compares the performance of different offloading schemes in terms of exe-

cution efficiency, task latency, and carbon emissions under different values of Cm,n(t),
where w = 0.5, Gm(t) = 40, fm

max = 4, pm,n
max = 15, and M = 6. In Figure 5a, as Cm,n(t) increases,

the values of execution efficiency gradually decrease. The execution efficiency is com-
posed of the task latency and carbon emissions; a larger Cm,n(t) implies tasks with larger
sizes arriving in each TS, which usually leads to heavier computation and transmission
burdens for task offloading and results in larger task latency and carbon emissions, subject
to the limited computing capacity of MIoTDs. Meanwhile, our proposal achieves better
execution efficiency performance than the others in each case (at least 50% larger than FL),
and the DDPG-based agents perform better than the DQN-based ones. The GP method
seeks to complete more tasks and consumes too much traditional energy, which makes
short-sighted choices based on the task latency but does not consider the carbon emission.
The FO scheme does not employ local computing, so there is a gap in GP. Furthermore,
the FL algorithm overly relies on local execution capabilities, leading to its long latency.

Figure 4. Average system performance metrics of DCTORA: (a) task latency, (b) carbon emission,
where Cm,n(t) = 600, Gm(t) = 30, M = 6, and N = 30.

5.2.3. Performance Metrics Versus Varying Data Size of MIoTD

Figure 5 compares the performance of different offloading schemes in terms of execu-
tion efficiency, task latency, and carbon emissions under different values of Cm,n(t), where
w = 0.5, Gm(t) = 40, f max

m = 4, pmax
m,n = 15, and M = 6. In Figure 5a, as Cm,n(t) increases, the

Electronics 2023, 12, 4967 21 of 27

values of execution efficiency gradually decrease. The execution efficiency is composed
of the task latency and carbon emissions; a larger Cm,n(t) implies tasks with larger sizes
arriving in each TS, which usually leads to heavier computation and transmission bur-
dens for task offloading and results in larger task latency and carbon emissions, subject
to the limited computing capacity of MIoTDs. Meanwhile, our proposal achieves better
execution efficiency performance than the others in each case (at least 50% larger than FL),
and the DDPG-based agents perform better than the DQN-based ones. The GP method
seeks to complete more tasks and consumes too much traditional energy, which makes
short-sighted choices based on the task latency but does not consider the carbon emission.
The FO scheme does not employ local computing, so there is a gap in GP. Furthermore, the
FL algorithm overly relies on local execution capabilities, leading to its long latency. To
gain a more insightful understanding, we plot the task latency and carbon emission with
different values of Cm,n(t) in Figure 5b,c.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 28

To gain a more insightful understanding, we plot the task latency and carbon emission
with different values of Cm,n(t) in Figure 5b,c.

In Figure 5b,c, the trend of the task latency and carbon emissions both go up, with
Cm,n(t) becoming larger and larger. In Figure 5b, the difference in task latency among the
five policies is slight when Cm,n(t) < 600. The DCTORA exhibits the smallest delay, while
the FL has the largest delay. The GP’s task latency is less than the FO and FL algorithms.
This is because the FL algorithm has the lowest computing capacity, resulting in its task
latency being the longest. The GP algorithm seeks to complete more tasks locally or re-
motely; however, it ignores energy consumption. In contrast to GP, FO lacks local execu-
tions, so its task latency is slightly longer than GP. In Figure 5c, we can observe a signifi-
cant increase in carbon emissions as Cm,n(t) increases. DCTORA exhibits the smallest value,
surpassing the GP algorithm by 18%, followed by DOS, FL, FO, and GP. The main reason
is that as Cm,n(t) rises, more tasks are required to be executed either locally or transferred
to the micro- or macro-BS. This leads to higher power consumption, potentially resulting
in renewable energy sources failing to meet the system’s energy demand. Consequently,
additional grid energy is consumed, leading to increased carbon emissions. The FL algo-
rithm has lower local computing energy consumption for MIoTD compared to the server,
resulting in reduced carbon emissions compared to the FO and GP algorithms. Although
the FL algorithm may contribute to a carbon emission reduction, it ignores the issue of
task latency.

Furthermore, we can conclude from the above that two DRL-based methods (DOS
and DDPG) outperform other benchmarks in terms of execution efficiency, task latency,
and carbon emission performances. In each Cm,n(t) case, the DCTORA scheme exhibits a
reduced task delay and carbon emissions compared to the DOS, providing additional ev-
idence of its effectiveness in addressing high-dimensional complex problems involving
continuous action-state spaces.

Figure 5. (a) Execution efficiency, (b) task latency, and (c) carbon emissions versus different sizes of
tasks under different schemes, where w = 0.5, Gm(t) = 40, fm

max = 4, pm,n
max = 15, and M = 6.

5.2.4. Performance Metrics Versus Varying Energy-Harvesting Capability of Micro-BS
Figure 6 shows the performance comparison in terms of execution efficiency, task

latency, and carbon emissions under different energy-harvesting capabilities of micro-BS,
where w = 0.5, Cm,n(t) = 600, fm

max = 4, pm,n
max = 15, and M = 6. As we can see from Figure 6a,

the execution efficiency gradually increases with an increase in Gm(t). This is because, with
a higher value of Gm(t), the system has more renewable energy and prefers to process more
tasks locally or offload them to the edge servers. As Gm(t) > 60, the harvested renewable
energy in real-time is sufficient to support the requirement of task executions, execution
efficiency remains relatively constant regardless of the increase in the capability of energy
harvesting. In Figure 6b,c, the task latency and carbon emission gradually decrease and
then also converge to stable values with the increase in the Gm(t). The reason is that, as
Gm(t) increases, more green energy becomes available for the system, reducing grid energy
consumption and decreasing carbon emissions. Additionally, more available green energy

200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

DOS
DCTORA

FO
GP

FL

Data size of task Cm,n(t)(kbits)
(a)

200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Ta
sk

 L
at

en
cy

 (m
s)

FL
FO
GP
DOS
DCTORA

(b)
Data size of task Cm,n(t)(kbits)

200 400 600 800 1000 1200

4

6

8

10

12

C
ar

bo
n

Em
is

si
on

(k
g)

DOS
DCTORA

FL

GP
FO

Data size of task Cm,n(t)(kbits)
(c)

Figure 5. (a) Execution efficiency, (b) task latency, and (c) carbon emissions versus different sizes of
tasks under different schemes, where w = 0.5, Gm(t) = 40, f max

m = 4, pmax
m,n = 15, and M = 6.

In Figure 5b,c, the trend of the task latency and carbon emissions both go up, with
Cm,n(t) becoming larger and larger. In Figure 5b, the difference in task latency among the
five policies is slight when Cm,n(t) < 600. The DCTORA exhibits the smallest delay, while the
FL has the largest delay. The GP’s task latency is less than the FO and FL algorithms. This
is because the FL algorithm has the lowest computing capacity, resulting in its task latency
being the longest. The GP algorithm seeks to complete more tasks locally or remotely;
however, it ignores energy consumption. In contrast to GP, FO lacks local executions, so its
task latency is slightly longer than GP. In Figure 5c, we can observe a significant increase in
carbon emissions as Cm,n(t) increases. DCTORA exhibits the smallest value, surpassing the
GP algorithm by 18%, followed by DOS, FL, FO, and GP. The main reason is that as Cm,n(t)
rises, more tasks are required to be executed either locally or transferred to the micro- or
macro-BS. This leads to higher power consumption, potentially resulting in renewable
energy sources failing to meet the system’s energy demand. Consequently, additional
grid energy is consumed, leading to increased carbon emissions. The FL algorithm has
lower local computing energy consumption for MIoTD compared to the server, resulting
in reduced carbon emissions compared to the FO and GP algorithms. Although the FL
algorithm may contribute to a carbon emission reduction, it ignores the issue of task latency.

Furthermore, we can conclude from the above that two DRL-based methods (DOS
and DDPG) outperform other benchmarks in terms of execution efficiency, task latency,
and carbon emission performances. In each Cm,n(t) case, the DCTORA scheme exhibits
a reduced task delay and carbon emissions compared to the DOS, providing additional
evidence of its effectiveness in addressing high-dimensional complex problems involving
continuous action-state spaces.

5.2.4. Performance Metrics Versus Varying Energy-Harvesting Capability of Micro-BS

Figure 6 shows the performance comparison in terms of execution efficiency, task
latency, and carbon emissions under different energy-harvesting capabilities of micro-BS,
where w = 0.5, Cm,n(t) = 600, f max

m = 4, pmax
m,n = 15, and M = 6. As we can see from Figure 6a,

Electronics 2023, 12, 4967 22 of 27

the execution efficiency gradually increases with an increase in Gm(t). This is because, with
a higher value of Gm(t), the system has more renewable energy and prefers to process more
tasks locally or offload them to the edge servers. As Gm(t) > 60, the harvested renewable
energy in real-time is sufficient to support the requirement of task executions, execution
efficiency remains relatively constant regardless of the increase in the capability of energy
harvesting. In Figure 6b,c, the task latency and carbon emission gradually decrease and
then also converge to stable values with the increase in the Gm(t). The reason is that, as
Gm(t) increases, more green energy becomes available for the system, reducing grid energy
consumption and decreasing carbon emissions. Additionally, more available green energy
enables local and remote task execution and powers more computations, leading to reduced
task latency and, as a result, improved execution efficiency.

Electronics 2023, 12, x FOR PEER REVIEW 23 of 28

enables local and remote task execution and powers more computations, leading to re-
duced task latency and, as a result, improved execution efficiency.

As a whole, we can demonstrate that the DRL-based algorithms can make proper
offloading decisions to achieve better performance, and the simulation results show that
the performance of the DCTORA algorithm is higher than the other schemes. As for the
traditional algorithms, the GP’s result is better than the other methods, but it only makes
short-sighted choices based on the task latency, not considering the carbon emissions.
When the value of Gm(t) increases, all algorithms’ execution efficiencies increase, and task
latency and carbon emission decrease (compared with the GP algorithm, the DCTORA
algorithm has changed more than 26% and 18% in task latency and carbon emissions,
respectively).

Figure 6. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different energy-
harvesting capabilities Gm(t) under different schemes, where w = 0.5, Cm,n(t) = 600, fm

max = 4, pm,n
max =

15, and M = 6.

5.2.5. Performance Metrics Versus Maximum Transmit Power of MIoTD
The maximum transmission power of MIoTD has a significant impact on the data

transmission delay, energy consumption, carbon emissions, and the number of data bits
executed by the system. Hence, this section will delve into exploring how pm,n

max influences
the system’s performance. Figure 7 shows the correlation between the system perfor-
mance and pm,n

max of MIoTDs by different offloading policies, where w = 0.5, Gm(t) = 50,
Cm,n(t) = 600, fm

max = 4, and M = 6. Figure 7a illustrates the execution efficiency under dif-
ferent pm,n

max constraints at the MIoTD for different offloading schemes. The curves show
that the execution efficiency of different algorithms except FL increases as pm,n

max increases.
The increase in pm,n

max indicates a high available transmission rate between MIoTD and the
micro-BS, which can facilitate task offloading and increase energy consumption to a cer-
tain extent, while also leading to increased carbon emissions when renewable energy is
Insufficient. The DCTORA scheme achieves better performance than other offloading
methods under different pm,n

max constraints, which indicates its effectiveness.
We can see from Figure 7b,c that the FL algorithm is almost not affected by the change

in pm,n
max, other schemes are highly dependent on the pm,n

max constraint, the task latency de-
creases significantly as pm,n

max increases, and the carbon emissions show a rising trend with
an increase in pm,n

max. This is because in FL, each MIoTD executes tasks locally without send-
ing them to micro-BSs. For other schemes, higher levels of power allocated to MIoTDs can
directly improve MIoTDs’ transmission rates, and the MIoTDs will prefer to offload tasks
to the high-performance processor within their competence, which can facilitate task of-
floading and increase carbon emissions to a certain extent. According to Figure 7b, the FL,
FO, and GP algorithms are ineffective at minimizing task delay, with increases of 35.9%,
25.5%, and 10.1%, respectively, as compared to the proposed algorithm. Meanwhile, the

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
0

10

20

30

40

50

TA
TL

 (m
s)

FL
FO
GP
DOS
DCTORA

6(b)
Harvested Green energy size Gm(t) (J)

10 20 30 40 50 60 70 80
4

5

6

7

8

9

10

11

12

TA
C

E
(k

g)

GP
FO
FL
DOS
DCTORA

6(c)
Harvested Green energy size Gm(t) (J)

10 20 30 40 50 60 70 80
0

2

4

6

8

10

TA
SE

E

FL
FO
GP
DOS
DCTORA

Harvested Green energy size Gm(t) (J)
6(a)

10

8

6

4

2

0

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

12

11

10

9

8

7

6

5

4

C
ar

bo
n

Em
is

si
on

(k
g)

10 20 30 40 50 60 70 80
Energy harvesting capability Gm(t) of micro-BS (J)

(b)

10 20 30 40 50 60 70 80
Energy harvesting capability Gm(t) of micro-BS (J)

(c)

50

40

30

20

10

0

Ta
sk

 L
at

en
cy

 (m
s)

10 20 30 40 50 60 70 80
Energy harvesting capability Gm(t) of micro-BS (J)

(a)

Figure 6. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different energy-
harvesting capabilities Gm(t) under different schemes, where w = 0.5, Cm,n(t) = 600, f max

m = 4,
pmax

m,n = 15, and M = 6.

As a whole, we can demonstrate that the DRL-based algorithms can make proper
offloading decisions to achieve better performance, and the simulation results show that
the performance of the DCTORA algorithm is higher than the other schemes. As for the
traditional algorithms, the GP’s result is better than the other methods, but it only makes
short-sighted choices based on the task latency, not considering the carbon emissions. When
the value of Gm(t) increases, all algorithms’ execution efficiencies increase, and task latency
and carbon emission decrease (compared with the GP algorithm, the DCTORA algorithm
has changed more than 26% and 18% in task latency and carbon emissions, respectively).

5.2.5. Performance Metrics Versus Maximum Transmit Power of MIoTD

The maximum transmission power of MIoTD has a significant impact on the data
transmission delay, energy consumption, carbon emissions, and the number of data bits
executed by the system. Hence, this section will delve into exploring how pmax

m,n influences
the system’s performance. Figure 7 shows the correlation between the system perfor-
mance and pmax

m,n of MIoTDs by different offloading policies, where w = 0.5, Gm(t) = 50,
Cm,n(t) = 600, f max

m = 4, and M = 6. Figure 7a illustrates the execution efficiency under
different pmax

m,n constraints at the MIoTD for different offloading schemes. The curves show
that the execution efficiency of different algorithms except FL increases as pmax

m,n increases.
The increase in pmax

m,n indicates a high available transmission rate between MIoTD and
the micro-BS, which can facilitate task offloading and increase energy consumption to a
certain extent, while also leading to increased carbon emissions when renewable energy
is Insufficient. The DCTORA scheme achieves better performance than other offloading
methods under different pmax

m,n constraints, which indicates its effectiveness.

Electronics 2023, 12, 4967 23 of 27

Electronics 2023, 12, x FOR PEER REVIEW 24 of 28

simulation results showed that the DOS scheme had a task latency that was 4.9% greater
than that of the proposed algorithm.

Figure 7. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different maxi-
mum transmit powers of MIoTDs under different schemes, where w = 0.5, Gm(t) = 50, Cm,n(t) = 600,
fm
max = 4, and M = 6.

5.2.6. Performance Metrics Versus Different Computation Capacity of Micro-BS
Figure 8 presents the influence of different values of fm

max (ranging from 3 GHz to 7
GHz) on system performance under different schemes with a fixed number of micro-BSs,
where we set Gm(t) = 20, Cm,n(t) = 600, pm,n

max = 13, and M = 6. As we can see from Figure 8a,
the execution efficiency values of all curves increase when the computation capacity of the
micro-BS increases. This is because a larger fm

max means more computing capability can be
provided, and it will considerably decrease the task execution latency at the micro-BS.
When the computation capacity of the micro-BS reaches up to 5, the execution efficiency
of all algorithms increases slowly.

Figure 8. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different compu-
tation capacities of micro-BS under different schemes, where w = 0.5, Gm(t) = 20, Cm,n(t) = 600, pm,n

max =
13, and M = 6.

The effect of fm
max on task latency and carbon emissions is shown in Figure 8b,c,

where we fix fm,n
 max and increase fm

max of the micro-BS. We can observe that the task latency
and carbon emissions of the FL algorithm are less affected by fm

max. Under different values
of fm

max, the DOS and DCTORA schemes can achieve better performance than the other
three benchmarks, and the performance of the DCTORA paradigm is slightly better than
the DOS paradigm. When fm

max < 5 GHz/s, except FL, the task latency of all algorithms
obviously decreases. This is because the processing speed of the micro-BS is faster than
that of the MIoTD, and each MIoTD chooses to offload more tasks to the micro-BS. When
5 GHz/s ≤ fm

max ≤ 7 GHz/s, the downward trend of task latency slows down. Numerically,
DCTORA is 18.4%, 38.9%, 23.5%, and 21.2% better than DOS, FL, FO, and GP in task

10 15 20 25
0

5

10

15

20

FL
FO
GP
DOS
DCTORA

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

Maximum transmit power of MIoTs (dBm)
(a)

10 15 20 25
10

20

30

40

FL

DCTORA
DOS
GP
FO

Maximum transmit power of MIoTs (dBm)
Ta

sk
 L

at
en

cy
 (m

s)
(b)

10 15 20 25
0

5

10

15

20

DCTORA
DQN
FL
FO
GP

C
ar

bo
n

Em
is

si
on

 (k
g)

Maximum transmit power of MIoTs (dBm)
(c)

3 4 5 6 7
2

4

6

8

10

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

(a)
Computation capacity of micro-BS (GHz)

FL
FO
GP
DOS
DCTORA

3 4 5 6 7
20

25

30

35

40

45

Ta
sk

 L
at

en
cy

 (m
s) DCTORA

DOS
GP
FO
FL

(b)
Computation capacity of micro-BS (GHz)

3 4 5 6 7
0

5

10

C
ar

bo
n

Em
is

si
on

 (k
g)

DCTORA
DOS

FO
GP

FL

(c)
Computation capacity of micro-BS (GHz)

Figure 7. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different maximum
transmit powers of MIoTDs under different schemes, where w = 0.5, Gm(t) = 50, Cm,n(t) = 600,
f max
m = 4, and M = 6.

We can see from Figure 7b,c that the FL algorithm is almost not affected by the change
in pmax

m,n , other schemes are highly dependent on the pmax
m,n constraint, the task latency

decreases significantly as pmax
m,n increases, and the carbon emissions show a rising trend

with an increase in pmax
m,n . This is because in FL, each MIoTD executes tasks locally without

sending them to micro-BSs. For other schemes, higher levels of power allocated to MIoTDs
can directly improve MIoTDs’ transmission rates, and the MIoTDs will prefer to offload
tasks to the high-performance processor within their competence, which can facilitate task
offloading and increase carbon emissions to a certain extent. According to Figure 7b, the
FL, FO, and GP algorithms are ineffective at minimizing task delay, with increases of 35.9%,
25.5%, and 10.1%, respectively, as compared to the proposed algorithm. Meanwhile, the
simulation results showed that the DOS scheme had a task latency that was 4.9% greater
than that of the proposed algorithm.

5.2.6. Performance Metrics Versus Different Computation Capacity of Micro-BS

Figure 8 presents the influence of different values of f max
m (ranging from 3 GHz to

7 GHz) on system performance under different schemes with a fixed number of micro-BSs,
where we set Gm(t) = 20, Cm,n(t) = 600, pmax

m,n = 13, and M = 6. As we can see from Figure 8a,
the execution efficiency values of all curves increase when the computation capacity of the
micro-BS increases. This is because a larger f max

m means more computing capability can
be provided, and it will considerably decrease the task execution latency at the micro-BS.
When the computation capacity of the micro-BS reaches up to 5, the execution efficiency of
all algorithms increases slowly.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 28

simulation results showed that the DOS scheme had a task latency that was 4.9% greater
than that of the proposed algorithm.

Figure 7. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different maxi-
mum transmit powers of MIoTDs under different schemes, where w = 0.5, Gm(t) = 50, Cm,n(t) = 600,
fm
max = 4, and M = 6.

5.2.6. Performance Metrics Versus Different Computation Capacity of Micro-BS
Figure 8 presents the influence of different values of fm

max (ranging from 3 GHz to 7
GHz) on system performance under different schemes with a fixed number of micro-BSs,
where we set Gm(t) = 20, Cm,n(t) = 600, pm,n

max = 13, and M = 6. As we can see from Figure 8a,
the execution efficiency values of all curves increase when the computation capacity of the
micro-BS increases. This is because a larger fm

max means more computing capability can be
provided, and it will considerably decrease the task execution latency at the micro-BS.
When the computation capacity of the micro-BS reaches up to 5, the execution efficiency
of all algorithms increases slowly.

Figure 8. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different compu-
tation capacities of micro-BS under different schemes, where w = 0.5, Gm(t) = 20, Cm,n(t) = 600, pm,n

max =
13, and M = 6.

The effect of fm
max on task latency and carbon emissions is shown in Figure 8b,c,

where we fix fm,n
 max and increase fm

max of the micro-BS. We can observe that the task latency
and carbon emissions of the FL algorithm are less affected by fm

max. Under different values
of fm

max, the DOS and DCTORA schemes can achieve better performance than the other
three benchmarks, and the performance of the DCTORA paradigm is slightly better than
the DOS paradigm. When fm

max < 5 GHz/s, except FL, the task latency of all algorithms
obviously decreases. This is because the processing speed of the micro-BS is faster than
that of the MIoTD, and each MIoTD chooses to offload more tasks to the micro-BS. When
5 GHz/s ≤ fm

max ≤ 7 GHz/s, the downward trend of task latency slows down. Numerically,
DCTORA is 18.4%, 38.9%, 23.5%, and 21.2% better than DOS, FL, FO, and GP in task

10 15 20 25
0

5

10

15

20

FL
FO
GP
DOS
DCTORA

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

Maximum transmit power of MIoTs (dBm)
(a)

10 15 20 25
10

20

30

40

FL

DCTORA
DOS
GP
FO

Maximum transmit power of MIoTs (dBm)

Ta
sk

 L
at

en
cy

 (m
s)

(b)

10 15 20 25
0

5

10

15

20

DCTORA
DQN
FL
FO
GP

C
ar

bo
n

Em
is

si
on

 (k
g)

Maximum transmit power of MIoTs (dBm)
(c)

3 4 5 6 7
2

4

6

8

10

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

(a)
Computation capacity of micro-BS (GHz)

FL
FO
GP
DOS
DCTORA

3 4 5 6 7
20

25

30

35

40

45

Ta
sk

 L
at

en
cy

 (m
s) DCTORA

DOS
GP
FO
FL

(b)
Computation capacity of micro-BS (GHz)

3 4 5 6 7
0

5

10

C
ar

bo
n

Em
is

si
on

 (k
g)

DCTORA
DOS

FO
GP

FL

(c)
Computation capacity of micro-BS (GHz)

Figure 8. (a) Execution efficiency, (b) task latency, and (c) carbon emission versus different com-
putation capacities of micro-BS under different schemes, where w = 0.5, Gm(t) = 20, Cm,n(t) = 600,
pmax

m,n = 13, and M = 6.

The effect of f max
m on task latency and carbon emissions is shown in Figure 8b,c, where

we fix f max
m,n and increase f max

m of the micro-BS. We can observe that the task latency and
carbon emissions of the FL algorithm are less affected by f max

m . Under different values

Electronics 2023, 12, 4967 24 of 27

of f max
m , the DOS and DCTORA schemes can achieve better performance than the other

three benchmarks, and the performance of the DCTORA paradigm is slightly better than
the DOS paradigm. When f max

m < 5 GHz/s, except FL, the task latency of all algorithms
obviously decreases. This is because the processing speed of the micro-BS is faster than
that of the MIoTD, and each MIoTD chooses to offload more tasks to the micro-BS. When
5 GHz/s≤ f max

m ≤ 7 GHz/s, the downward trend of task latency slows down. Numerically,
DCTORA is 18.4%, 38.9%, 23.5%, and 21.2% better than DOS, FL, FO, and GP in task
latency, respectively. From Figure 8c, we can observe that the carbon emissions of all
algorithms, except FL, increase with an increase 0k f max

m when 5 GHz/s ≤ f max
m ≤ 6 GHz/s

and gradually stabilizes at f max
m > 6 GHz/s. When f max

m > 6 GHz/s, the system’s energy
consumption has reached saturation, even if increasing f max

m has little influence on the
system’s carbon emissions. Furthermore, the performance of DCTORA is superior to other
algorithms. The GP algorithm seeks to accomplish more tasks, so it has the highest carbon
emissions. FO and FL algorithms take into account the carbon emissions factor, but the FL
algorithm lacks BS-aided computing with traditional energy supply, so it has slightly lower
carbon emissions. To summarize, DCTORA is 8.9%, 6.1%, 29.9%, and 31.9% lower than
DOS, FL, FO, and GP in carbon emissions, respectively.

5.2.7. Performance Metrics Versus Different Numbers of Micro-BSs

To gain a more insightful understanding of the DCTORA agent, we plot the execution
efficiency, task latency, and carbon emission values with different numbers of micro-
BSs. We take a random number between [30, 54] as the total number of MIoTDs and set
f max
m = 4 GHz/sec, Gm(t) = 20, and Cm,n(t) = 600. Taken as a whole, except for FL, the other

algorithms’ execution efficiencies increase, task latency decreases, and carbon emissions
increase as the number of micro-BSs grows, as shown in Figure 9. Our proposed DCTORA
algorithm can achieve the best result, and the DOS follows with a small gap. The reason
for this is that increased micro-BS availability offers more computational resources, and
MIoTDs are closer to the micro-BS, which allows more MIoTDs to transfer their tasks
to neighboring micro-BSs for processing, resulting in lower transmission and execution
latency and improved system execution efficiency but increasing carbon emissions to some
extent. The performance of FL remains unaffected by the increasing number of micro-BSs,
mainly because local computing does not employ the computational resources offered by
micro-BSs’ high-performance processors.

Electronics 2023, 12, x FOR PEER REVIEW 25 of 28

latency, respectively. From Figure 8c, we can observe that the carbon emissions of all al-
gorithms, except FL, increase with an increase 0k fm

max when 5 GHz/s ≤ fm
max ≤ 6 GHz/s

and gradually stabilizes at fm
max > 6 GHz/s. When fm

max > 6 GHz/s, the system’s energy
consumption has reached saturation, even if increasing fm

max has little influence on the sys-
tem’s carbon emissions. Furthermore, the performance of DCTORA is superior to other
algorithms. The GP algorithm seeks to accomplish more tasks, so it has the highest carbon
emissions. FO and FL algorithms take into account the carbon emissions factor, but the FL
algorithm lacks BS-aided computing with traditional energy supply, so it has slightly
lower carbon emissions. To summarize, DCTORA is 8.9%, 6.1%, 29.9%, and 31.9% lower
than DOS, FL, FO, and GP in carbon emissions, respectively.

5.2.7. Performance Metrics Versus Different Numbers of Micro-BSs
To gain a more insightful understanding of the DCTORA agent, we plot the execu-

tion efficiency, task latency, and carbon emission values with different numbers of micro-
BSs. We take a random number between [30, 54] as the total number of MIoTDs and set
fm
max = 4 GHz/sec, Gm(t) = 20, and Cm,n(t) = 600. Taken as a whole, except for FL, the other

algorithms’ execution efficiencies increase, task latency decreases, and carbon emissions
increase as the number of micro-BSs grows, as shown in Figure 9. Our proposed DCTORA
algorithm can achieve the best result, and the DOS follows with a small gap. The reason
for this is that increased micro-BS availability offers more computational resources, and
MIoTDs are closer to the micro-BS, which allows more MIoTDs to transfer their tasks to
neighboring micro-BSs for processing, resulting in lower transmission and execution la-
tency and improved system execution efficiency but increasing carbon emissions to some
extent. The performance of FL remains unaffected by the increasing number of micro-BSs,
mainly because local computing does not employ the computational resources offered by
micro-BSs’ high-performance processors.

Figure 9. (a) Execution efficiency, (b) task latency, and (c) carbon emissions versus different numbers
of micro-BSs under different schemes, where w = 0.5, Gm(t) = 20, Cm,n(t) = 600, fm

max = 4, and pm,n
max =

15.

6. Conclusions
In this paper, we investigate the joint optimization of task offloading and resource

allocation in MEC-enabled maritime IoT networks. We propose a framework for green
MEC-enabled MIoT networks and present the total system execution efficiency as the sys-
tem’s performance metric that covers the total size of completed tasks, task execution la-
tency, and the system’s carbon emissions. The joint task offloading and resource allocation
problem is formulated by optimizing the total system execution efficiency, and a DDPG-
based joint optimization strategy is proposed to solve the problem. By interacting with the
time-varying wireless channel conditions, randomly arriving renewable energy and com-
puting tasks, and continuous action space, our algorithm can learn the optimal strategy to
significantly reduce the system’s carbon emissions and task delay and improve the total

5 6 7 8 9
0

10

20

30

40

50

TA
TL

 (m
s)

Number of micro-BSs
9(b)

DOS

FL

DCTORA

FO
GP

5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12

TA
SE

E

DCTORA
DOS
GP
FO
FL

Number of micro-BSs
9(a)

5 6 7 8 9
5

10

15

20

TA
C

E
(k

g)

GP

Number of micro-BSs
9(c)

FL

DCTORA

FO

DOS

5 6 7 8 9
Number of micro-BSs

(a)

12
11
10

9
8
7
6
5
4
3
2
1

Ex
ec

ut
io

n
Ef

fi
ci

en
cy

5 6 7 8 9
Number of micro-BSs

(b)

50

40

30

20

10

0

Ta
sk

 L
at

en
cy

(m
s)

5 6 7 8 9
Number of micro-BSs

(c)

20

15

10

5

C
ar

bo
n

Em
is

si
on

(k
g)

Figure 9. (a) Execution efficiency, (b) task latency, and (c) carbon emissions versus different numbers
of micro-BSs under different schemes, where w = 0.5, Gm(t) = 20, Cm,n(t) = 600, f max

m = 4, and
pmax

m,n = 15.

6. Conclusions

In this paper, we investigate the joint optimization of task offloading and resource
allocation in MEC-enabled maritime IoT networks. We propose a framework for green MEC-
enabled MIoT networks and present the total system execution efficiency as the system’s
performance metric that covers the total size of completed tasks, task execution latency, and
the system’s carbon emissions. The joint task offloading and resource allocation problem is

Electronics 2023, 12, 4967 25 of 27

formulated by optimizing the total system execution efficiency, and a DDPG-based joint
optimization strategy is proposed to solve the problem. By interacting with the time-varying
wireless channel conditions, randomly arriving renewable energy and computing tasks, and
continuous action space, our algorithm can learn the optimal strategy to significantly reduce
the system’s carbon emissions and task delay and improve the total size of completed
tasks. The simulation results verify the superior performance of our algorithm. In the
future, we will delve into other novel methods, such as federated learning, model pruning,
and knowledge distillation, to effectively minimize the computational burden on models,
further improve the utilization of renewable energy, and reduce greenhouse gas emissions.

Author Contributions: Conceptualization, Z.W., R.H. and C.S.; methodology, Z.W. and R.H.; soft-
ware, Z.W. and Y.L.; formal analysis, Z.W. and R.H.; investigation, Z.W. and C.S.; writing—original
draft preparation, Z.W. and R.H.; writing—review and editing, Z.W., R.H., Y.L. and C.S.; visualization,
Z.W.; supervision, R.H.; project administration, R.H.; funding acquisition, R.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of
China (61371091, 61801074, and 62371085) and the Dalian Science and Technology Innovation Fund
(2019J11CY015).

Institutional Review Board Statement: No applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the editors and reviewers for their comments
on the manuscript of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qiu, T.; Zhao, Z.; Zhang, T.; Chen, C.; Chen, C.P. Underwater Internet of Things in smart ocean: System architecture and open

issues. IEEE Trans. Ind. Inform. 2019, 16, 4297–4307. [CrossRef]
2. Nomikos, N.; Gkonis, P.K.; Bithas, P.S.; Trakadas, P. A Survey on UAV-Aided Maritime Communications: Deployment Considera-

tions, Applications, and Future Challenges. IEEE Open J. Commun. Soc. 2023, 4, 56–78. [CrossRef]
3. Li, K.; Wang, X.; Ni, Q.; Huang, M. Entropy-based Reinforcement Learning for computation offloading service in software-defined

multi-access edge computing. Future Gener. Comp. Syst. 2022, 136, 241–251. [CrossRef]
4. Lin, Z.; Chen, X.; Chen, P. Energy harvesting space-air-sea integrated networks for MEC-enabled maritime Internet of Things.

China Commun. 2022, 19, 47–57. [CrossRef]
5. Giannopoulos, A.; Nomikos, N.; Ntroulias, G.; Syriopoulos, T.; Trakadas, P. Maritime Federated Learning for Decentralized

On-Ship Intelligence. In Proceedings of the International Conference on Artificial Intelligence Applications and Innovations,
León, Spain, 14–17 June 2023.

6. Jang, J.; Tulkinbekov, K.; Kim, D.-H. Task Offloading of Deep Learning Services for Autonomous Driving in Mobile Edge
Computing. Electronics 2023, 12, 3223. [CrossRef]

7. Xiao, G.; Zhang, H.; Hassan, H.; Chen, Y.; Huang, Z.; Sun, N. A cooperative offloading game on data recovery for reliable
broadcast in VANET. Concurr. Comput.-Pract. Exp. 2017, 29, e3938. [CrossRef]

8. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

9. Barbarossa, S.; Sardellitti, S.; Di Lorenzo, P. Communicating while computing: Distributed mobile cloud computing over 5G
heterogeneous networks. IEEE Signal Proc. Mag. 2014, 31, 45–55. [CrossRef]

10. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under stochastic wireless
channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

11. Borkar, V.S.; Choudhary, S.; Gupta, V.K.; Kasbekar, G.S. Scheduling in wireless networks with spatial reuse of spectrum as restless
bandits. Perform. Eval. 2021, 149–150, 102208. [CrossRef]

12. Niu, Z. TANGO: Traffic-aware network planning and green operation. IEEE Wirel. Commun. 2011, 18, 25–29. [CrossRef]
13. Wang, J.; Ge, Y. A radio frequency energy harvesting-based multihop clustering routing protocol for cognitive radio sensor

networks. IEEE Sens. J. 2022, 22, 7142–7156. [CrossRef]
14. Hu, H.; Da, X.; Ni, L.; Huang, Y.; Zhang, H. Green energy powered cognitive sensor network with cooperative sensing. IEEE

Access 2019, 7, 17354–17364. [CrossRef]
15. Sun, Y.; He, Q. Computational Offloading for MEC Networks with Energy Harvesting: A Hierarchical Multi-Agent Reinforcement

Learning Approach. Electronics 2023, 12, 1304. [CrossRef]

https://doi.org/10.1109/TII.2019.2946618
https://doi.org/10.1109/OJCOMS.2022.3225590
https://doi.org/10.1016/j.future.2022.06.002
https://doi.org/10.23919/JCC.2022.09.005
https://doi.org/10.3390/electronics12153223
https://doi.org/10.1002/cpe.3938
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/MSP.2014.2334709
https://doi.org/10.1109/TWC.2013.072513.121842
https://doi.org/10.1016/j.peva.2021.102208
https://doi.org/10.1109/MWC.2011.6056689
https://doi.org/10.1109/JSEN.2022.3156088
https://doi.org/10.1109/ACCESS.2019.2894962
https://doi.org/10.3390/electronics12061304

Electronics 2023, 12, 4967 26 of 27

16. Pasha, M.; Rahman Khan, K.U. Scalable and energy efficient task offloading schemes for vehicular cloud computing. Int. J.
Comput. Netw. Commun. 2018, 10, 35–52. [CrossRef]

17. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-delay tradeoff for dynamic offloading in mobile-edge computing system
with energy harvesting devices. IEEE Trans. Ind. Inform. 2018, 14, 4642–4655. [CrossRef]

18. Zhang, Y.; He, J.; Guo, S. Energy-Efficient Dynamic Task Offloading for Energy Harvesting Mobile Cloud Computing. In
Proceedings of the 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), Chongqing, China,
11–14 October 2018.

19. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018.

20. Giannopoulos, A.; Spantideas, S.; Capsalis, N.; Gkonis, P.; Karkazis, P.; Sarakis, L.; Trakadas, P.; Capsalis, C. WIP: Demand-Driven
Power Allocation in Wireless Networks with Deep Q-Learning. In Proceedings of the 2021 IEEE 22nd International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 7–11 June 2021.

21. Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE J.
Sel. Areas Commun. 2020, 38, 1133–1146. [CrossRef]

22. Ma, H.; Huang, P.; Zhou, Z.; Zhang, X.; Chen, X. GreenEdge: Joint green energy scheduling and dynamic task offloading in
multi-tier edge computing systems. IEEE Trans. Veh. Technol. 2022, 71, 4322–4335. [CrossRef]

23. Vamvoudakis, K.G.; Lewis, F.L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control
problem. Automatica 2010, 46, 878–888. [CrossRef]

24. Wei, Y.; Yu, F.R.; Song, M.; Han, Z. User scheduling and resource allocation in HetNets with hybrid energy supply: An actor-critic
reinforcement learning approach. IEEE Trans. Wirel. Commun. 2017, 17, 680–692. [CrossRef]

25. Wei, Z.; He, R.; Li, Y. Deep Reinforcement Learning Based Task Offloading and Resource Allocation for MEC-Enabled IoT
Networks. In Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops),
Dalian, China, 10–12 August 2023.

26. Fang, X.; Feng, W.; Wang, Y.; Chen, Y.; Ge, N.; Ding, Z. NOMA-Based Hybrid Satellite-UAV-Terrestrial Networks for Beyond 5G
Maritime Internet of Things. IEEE Trans. Wirel. Commun. 2021, 22, 138–152. [CrossRef]

27. Anbalagan, S.; Kumar, D.; Raja, G.; Balaji, A. SDN assisted Stackelberg Game model for LTE-WiFi offloading in 5G networks.
Digit. Commun. Netw. 2019, 5, 268–275. [CrossRef]

28. El Haber, E.; Nguyen, T.M.; Assi, C. Joint optimization of computational cost and devices energy for task offloading in multi-tier
edge-clouds. IEEE Trans. Commun. 2019, 67, 3407–3421. [CrossRef]

29. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things 2018, 6, 4804–4814. [CrossRef]

30. Jiang, F.; Wei, F.; Wang, J.; Liu, X. Delay-Aware Energy Minimization Offloading Scheme for Mobile Edge Computing.
In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China,
9–11 August 2020.

31. Hu, X.; Wang, L.; Wong, K.K.; Tao, M.; Zhang, Y.; Zheng, Z. Edge and central cloud computing: A perfect pairing for high energy
efficiency and low-latency. IEEE Trans. Wirel. Commun. 2019, 19, 1070–1083. [CrossRef]

32. Ma, X.; Zhao, J.; Li, Q.; Gong, Y. Reinforcement Learning Based Task Offloading and Take-Back in Vehicle Platoon Networks.
In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China,
10–24 May 2019.

33. Xu, S.; Liu, Q.; Gong, B.; Qi, F.; Guo, S.; Qiu, X.; Yang, C. RJCC: Reinforcement-learning-based joint communicational-and-
computational resource allocation mechanism for smart city IoT. IEEE Internet Things 2020, 7, 8059–8076. [CrossRef]

34. Kiran, N.; Pan, C.; Wang, S.; Yin, C. Joint resource allocation and computation offloading in mobile edge computing for SDN
based wireless networks. J. Commun. Netw. 2019, 22, 1–11. [CrossRef]

35. Li, Y.; Wang, T.; Wu, Y.; Jia, W. Optimal dynamic spectrum allocation-assisted latency minimization for multiuser mobile edge
computing. Digit. Commun. Netw. 2022, 8, 247–256. [CrossRef]

36. Jiang, F.; Wang, K.; Dong, L.; Pan, C.; Xu, W.; Yang, K. Deep-learning-based joint resource scheduling algorithms for hybrid MEC
networks. IEEE Internet Things 2019, 7, 6252–6265. [CrossRef]

37. Wang, R.; Jiang, X.; Zhou, Y.; Li, Z.; Wu, D.; Tang, T.; Fedotov, A.; Badenko, V. Multi-agent reinforcement learning for edge
information sharing in vehicular networks. Digit. Commun. Netw. 2022, 8, 267–277. [CrossRef]

38. Yang, T.; Feng, H.; Gao, S.; Jiang, Z.; Qin, M.; Cheng, N.; Bai, L. Two-stage offloading optimization for energy-latency tradeoff
with mobile edge computing in maritime Internet of Things. IEEE Internet Things 2019, 7, 5954–5963. [CrossRef]

39. Su, X.; Xue, H.; Zhou, Y.; Zhu, J. Research on computing offloading method for maritime observation monitoring sensor network.
J. Commun. 2021, 42, 149–163. [CrossRef]

40. Su, X.; Wang, Z.Y.; Wang, Y.P.; Zhou, S.Y. Multi-access edge computing offloading in maritime monitoring sensor networks. Chin.
J. Internet Things 2021, 5, 36–52. [CrossRef]

41. Nath, S.; Wu, J. Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile
edge computing systems. Intell. Converg. Net. 2020, 1, 181–198. [CrossRef]

42. Chen, J.; Xing, H.; Xiao, Z.; Xu, L.; Tao, T. A DRL agent for jointly optimizing computation offloading and resource allocation in
MEC. IEEE Internet Things 2021, 8, 17508–17524. [CrossRef]

https://doi.org/10.5121/ijcnc.2018.10603
https://doi.org/10.1109/TII.2018.2843365
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/TVT.2022.3147027
https://doi.org/10.1016/j.automatica.2010.02.018
https://doi.org/10.1109/TWC.2017.2769644
https://doi.org/10.1109/TWC.2022.3191719
https://doi.org/10.1016/j.dcan.2019.10.006
https://doi.org/10.1109/TCOMM.2019.2895040
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1109/TWC.2019.2950632
https://doi.org/10.1109/JIOT.2020.3002427
https://doi.org/10.1109/JCN.2019.000046
https://doi.org/10.1016/j.dcan.2021.10.008
https://doi.org/10.1109/JIOT.2019.2954503
https://doi.org/10.1016/j.dcan.2021.08.006
https://doi.org/10.1109/JIOT.2019.2958662
https://doi.org/10.11959/j.issn.1000-436x.2021067
https://doi.org/10.11959/j.issn.2096-3750.2021.00205
https://doi.org/10.23919/ICN.2020.0014
https://doi.org/10.1109/JIOT.2021.3081694

Electronics 2023, 12, 4967 27 of 27

43. Rabaey, J.M. Digital Integrated Circuits a Design Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
44. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
45. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.
46. Cao, S.; Chen, S.; Chen, H.; Zhang, H.; Zhan, Z.; Zhang, W. HCOME: Research on Hybrid Computation Offloading Strategy for

MEC Based on DDPG. Electronics 2023, 12, 562. [CrossRef]
47. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjel, A.K.; Ostrovski,

O.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
48. Jo, S.; Kim, U.; Kim, J.; Jong, C.; Pak, C. Deep reinforcement learning-based joint optimization of computation offloading and

resource allocation in F-RAN. IET Commun. 2023, 17, 549–564. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics12030562
https://doi.org/10.1038/nature14236
https://doi.org/10.1049/cmu2.12562

	Introduction
	Related Works
	System Model
	Network Architecture
	Communication Model
	Computing and Energy Consumption Model
	Local Computing
	Edge Computing

	Carbon Emission Model
	Problem Formulation

	DDPG-Based Algorithm Design for Task Offloading
	Problem Solution by DDPG
	DDPG-Based Algorithm
	State Space
	Action Space
	Reward Function
	Algorithm Description and Complexity Analysis

	Simulation Results and Analysis
	Simulation Settings
	Performance Analysis
	Convergence Analysis
	Effect of Coefficient Value on Performance Metrics
	Performance Metrics Versus Varying Data Size of MIoTD
	Performance Metrics Versus Varying Energy-Harvesting Capability of Micro-BS
	Performance Metrics Versus Maximum Transmit Power of MIoTD
	Performance Metrics Versus Different Computation Capacity of Micro-BS
	Performance Metrics Versus Different Numbers of Micro-BSs

	Conclusions
	References

