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Abstract: The 12-lead resting electrocardiogram (ECG) is commonly used in hospitals to assess heart
health. The ECG can reflect a variety of cardiac abnormalities, requiring multi-label classification.
However, the diagnosis results in previous studies have been imprecise. For example, in some
previous studies, some cardiac abnormalities that cannot coexist often appeared in the diagnostic
results. In this work, we explore how to realize the effective multi-label diagnosis of ECG signals
and prevent the prediction of cardiac arrhythmias that cannot coexist. In this work, a multi-label
classification method based on a convolutional neural network (CNN), long short-term memory
(LSTM), and an attention mechanism is presented for the multi-label diagnosis of cardiac arrhythmia
using resting ECGs. In addition, this work proposes a modified two-category cross-entropy loss
function by introducing a regularization term to avoid the existence of arrhythmias that cannot coexist.
The effectiveness of the modified cross-entropy loss function is validated using a 12-lead resting
ECG database collected by our team. Using traditional and modified cross-entropy loss functions,
three deep learning methods are employed to classify six types of ECG signals. Experimental results
show the modified cross-entropy loss function greatly reduces the number of non-coexisting label
pairs while maintaining prediction accuracy. Deep learning methods are effective in the multi-label
diagnosis of ECG signals, and diagnostic efficiency can be improved by using the modified cross-
entropy loss function. In addition, the modified cross-entropy loss function helps prevent diagnostic
models from outputting two arrhythmias that cannot coexist, further reducing the false positive rate
of non-coexisting arrhythmic diseases, thereby demonstrating the potential value of the modified
loss function in clinical applications.

Keywords: multi-label diagnosis; deep learning; cross-entropy loss function

1. Introduction

Cardiovascular disease (CVD) is one of the leading causes of death, accounting for over
31% of deaths worldwide [1]. There are many types of cardiovascular diseases, and their
impact on human health also varies. Determining the type of CVD plays an important role
in follow-up treatment. In the clinic, one of the most commonly used methods to diagnose
CVD is the resting electrocardiogram (ECG). Medical personnel place electrodes at fixed
positions on the resting patient to acquire and select a high-quality 10 s ECG and make
a diagnosis based on the ECG waveform. According to incomplete statistics, there are
more than 100 kinds of cardiovascular diseases, and the detection of ECGs depends on the
diagnostic experience of medical professionals. Therefore, it is very important to develop
ECG-based diagnostic tools.

Most early ECG diagnostic tools were realized by imitating the logical conclusions of the
physician. Geddes et al. [1] proposed classifying various premature ventricular contractions
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(PVC) using rule-based reasoning. First, the parameters for detection were selected according
to the ECG characteristics of PVC, such as the R-R interval and the duration and shape of the
QRS complex. Then, certain medical rules were used as criteria for assessing the occurrence
of PVC. Kezdi et al. [2] proposed an algorithm for detecting ectopic beats and arrhythmia
based on clinical experience. The R-wave was determined by calculating the slope of the QRS
complex. Supraventricular tachycardia and ventricular ectopy were detected by calculating
the changes in the R-R interval and the width, polarity, and height of the QRS complex. The
parameters selected for these methods are clinically interpretable. However, other feature
extraction methods (except for R-wave) are not accurate enough because of the strong
personalization and nonlinearity of ECG signals, especially in different types of arrhythmias.
Since different types of ECG signals have different time-frequency features, large errors
can easily occur in the calculation of feature parameters, leading to the failure of this type
of method.

Another type of method is pattern recognition. First, certain statistical features are
extracted, and then a classifier is created using machine learning (ML) to classify differ-
ent types of arrhythmias. In many studies, time/morphological statistics [3–7], spectral
features [8,9], and higher-order statistical parameters [10–13] have been used to diagnose
ventricular arrhythmias in malignant arrhythmias. These mathematical features, in combi-
nation with classifiers such as artificial neural networks (ANNs) or support vector machines
(SVMs) [14–16], can efficiently filter out rhythms such as ventricular fibrillation and ven-
tricular tachycardia. The two steps (i.e., feature extraction and classification) in pattern
recognition help in the diagnosis of cardiac arrhythmias. The accuracy and efficiency of
detection are better than simulating the physician’s logical conclusions. The disadvantage
is that the signal features are artificially determined, or more precisely, the quality of the sig-
nal features often depends on artificial experience. Therefore, it is difficult to find effective
statistical features because there are too many types of arrhythmias.

In recent years, with the development of deep learning, researchers have begun to use
deep learning instead of artificial feature extraction methods [17] to evaluate ECG signals.
”Artificial feature extraction methods” refer to the methods used to calculate the features of
electrocardiogram signals from different perspectives (such as the time domain, frequency
domain, and time-frequency domain) for the classification of arrhythmias. The selection of
these features is based on personal subjective experience. Feng et al. [18] employed dynamic
time warping (DTW), C-means clustering, and the BP algorithm to optimize the parameters
of the probabilistic process neural network (PPNN). The method achieved an F1 score of
0.7615 and an accuracy of 74.16% on the Chinese Cardiovascular Disease Database (CCDD).
While PPNN offers advantages such as few-shot learning and computational complexity,
the limited size of its parameters hampers its classification performance. Yıldırım et al. [19]
proposed a new one-dimensional convolutional neural network model (1D CNN) to classify
17 types of cardiac arrhythmias. Its accuracy and F1 score on the MIT-BIH arrhythmia
database were 91.33% and 0.8538, respectively. The model demonstrated efficient and rapid
diagnostic capabilities. Luo et al. [20] conducted a study using the same database and
proposed a hybrid convolutional recurrent neural network (HCRNet), achieving an accuracy
of 99.01%. However, the MIT-BIH data were derived from internal patients, and the ECG
signals exhibited highly personalized characteristics. Thus, a model with high accuracy
might not necessarily possess a high degree of generalizability across different patients. Yao
et al. [21] proposed the ATI-CNN model to address the low performance of a CNN in the
detection of variable-length ECG signals. This model integrated a CNN, recurrent cells, and
an attention module. On the China Physiological Signal Challenge (CPSC) dataset, ATI-CNN
achieved an F1 score of 0.812 and a precision of 0.826. By combining the spatiotemporal
features of ECG signals, ATI-CNN improved accuracy while reducing the number of model
parameters, thereby lowering training costs. However, this model did not consider the one-
to-many relationship between patients and arrhythmia labels. Objectively, deep learning
methods learn features from a large number of data to classify ECG signals, which will be
the development direction of intelligent ECG diagnosis in the future.
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In ECG signals, some arrhythmias can occur simultaneously, whereas others do not.
For example, in ECG signals of a period of sustained atrial fibrillation, PVCs but not prema-
ture atrial fibrillation can occur simultaneously. The relationship between the various des-
ignations is complex, making multi-label classification of ECG signals challenging [22–24].
Yoo et al. [25] optimized the algorithm from the perspective of multi-label classification of
arrhythmia and proposed xECGNet. By incorporating the L2 norm of attention maps of
different disease categories into the loss function, xECGNet achieved a multi-label subset
accuracy of 84.6% in the classification tasks of eight types of arrhythmias on the CPSC
dataset. Yang et al. [26] proposed using a stacking approach to combine the classification
results of ResNet and random forest and obtain the final results through voting. Despite the
method’s accuracy improving to 95%, integrating multiple models increased deployment
costs, making it challenging to apply to general medical embedded devices. Nowadays,
current methods emphasize learning the relationships between labels from research data
(the labels themselves). However, due to the complex relationships between the labels of
ECG signals, it is difficult to learn these relationships from only research data. This causes
the diagnostic models to output some arrhythmias that cannot coexist, leading to the
increased misdiagnosis rate of the multi-label ECG diagnostic algorithm [27].

In this work, we propose a multi-label diagnostic method based on a modified two-
category cross-entropy loss function. This method first incorporates LSTM and attention
mechanisms to enhance the classification accuracy of the CNN model. Building upon this,
to address the issue of certain conclusions being unable to coexist in arrhythmia diagnosis,
we add a regularization term to the traditional binary cross-entropy loss function, which
disallows the coexistence of certain arrhythmia disease label pairs. The regularization
term helps constrain the network’s learning direction, enabling it to consider the mutually
exclusive relationships between various disease labels. It improves the applicability of the
ECG diagnostic algorithm in real-life diagnosis scenarios.

The main innovative points of this article are:
(A) A new multi-label training loss function is proposed by adding a regularization

term that does not allow the coexistence of some arrhythmias;
(B) A CNN + LSTM + ATTENTION architecture is presented to improve ECG classifi-

cation performance;
(C) More than 10,000 ECG recordings of the six most common cardiac arrhythmias

are used to test the loss function and classification method, and the performance is com-
pared between patients. Our method improves the accuracy of classifying four types of
arrhythmias (normal, sinus tachycardia, atrial flutter, and atrial tachycardia) and reduces
the incidence of misdiagnosing atrial flutter and atrial tachycardia as false positives.

This paper is organized as follows. In Section 2, explanations of the CNN + LSTM +
ATTENTION architecture and the modified cross-entropy loss function are presented. The
new ECG database is described in Section 3. An analysis of the modified cross-entropy
loss function and its comparison with other methods are described in Section 4. Further
details of the presented method and future research topics are given in Section 5. Section 6
presents the conclusions of this paper.

2. Proposed Method
2.1. Deep Learning Model

In this work, a deep learning model, consisting of a convolutional neural network
(CNN) [28], long short-term memory (LSTM) [29], and an attention mechanism [30] is used
to classify ECG signals.

2.1.1. Feature Extraction

A CNN is used for feature extraction, as shown in Figure 1. For the convolution
operation in the CNN, it is assumed that zl

j represents the j-th channel output of the i-th
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convolutional layer and ol
j is the input. The input ol

j and the output zl
j of the l-th layer can

be expressed by Equation (1) and Equation (2), respectively.

σl
j = f (zl

j), (1)

zl
j = ∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j, (2)

where f(·) is the activation function, Mj is the subset of the feature map of the (l− 1)-th
layer, kl

ij is the convolution kernel matrix, bl
j is the bias, and ‘*’ is the convolution symbol.

Input

CNN: feature extraction

Attention

LSTM, 40

Dense, 64, ReLU

Dense, 6, Sigmoid

Figure 1. Structure of the deep learning model for multi-label diagnosis of cardiac arrhythmias.

For the pooling operation in the CNN, α stands for the sampling coefficient and
represents the maximum pooling (·) function. The input ol+1

j and the output zl+1
j of the

(l + 1)-th layer can be expressed by Equation (3) and Equation (4), respectively.

σl
j = f (zl

j)ε, (3)

zl+1
j = αl+1

i ∗MaxPooling(xl
ij) + bl+1

j , (4)

2.1.2. LSTM

The features Z ∈ RT×D obtained by the CNN are input to the following LSTM, where
T is the length of the input features and D is the number of input features. The workflow is
shown in Figure 2.

The internal state Ct ∈ RS between the units in the LSTM layer is used to determine
the relationship between the ECG features extracted by the CNN. S represents the length of
the vector output from the LSTM layer. zt represents the t-th slice in the group of input
features (1 ≤ t ≤ T). ht ∈ RS represents the hidden state of the LSTM layer corresponding
to zt. The final output ht can be calculated as follows:

ft = σ(W f [ht−1, zt] + b f ), (5)

it = σ(Wi[ht−1,Zt] + bi), (6)
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C̃t = tanh(WC̃[ht−1, zt] + bC̃), (7)

Ot = σ(W0[ht−1, zt] + bo), (8)

Ct = ft × Ct−1 + it × C̃t, (9)

ht = Ot × tanh(Ct), (10)

where ft, it, and Ot represent the update results of the forget gate, input gate, and output
gate, respectively. W f , Wi, Wc̃, and Wo represent the weights of the forget gate, input gate,
output gate, and LSTM state unit, respectively.

Dense, 64, ReLU

Dense, 6, Sigmoid

44 × 512

1 × 512 1 × 512 1 × 512

1 × 60 1 × 60 1 × 60

Prediction 1 × 6

LSTM LSTM LSTM

s
u

2
Z

310
Z

1
Z

1
h

2
h

310
h

1
u

2
u 310

u

1
β 2

β 310
β

Z

.  .  .

Figure 2. Structure of LTSM and attention mechanism.

2.1.3. Attention Mechanism

The attention mechanism is used to compute the attention distribution in the hid-
den state ht (1 ≤ t ≤ T) at each time point. The final output features are then formed
by the weighted average of the attention distribution. The computational process is
illustrated below:

ui = tan h(Ws · hi + bs), (11)

βi =
euT

i us

∑i euT
i us

, (12)

z̃ =
s

∑
i=1

βihi, (13)

where Z̃ ∈ RS represents the results after the weighted average, βi represents the weighting
factor in the hidden state hi (1 ≤ t ≤ T) , bs and Ws are both trainable weights, Ws
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represents the query vector, and ui (1 ≤ t ≤ T) represents the intermediate weighting factor
in the calculation.

2.1.4. Fully Connected Layer

Finally, the features Z̃ obtained by the attention mechanism are input to the fully
connected layer to perform the final classification. The final prediction vector z is obtained
as follows:

z1 = f (W1 · z̃ + b1), (14)

z = Sigmiod(W2 · z1 + b2), (15)

where z1 and z2 each represent a weighing matrix in the fully connected layer. b1 and b2

represent the bias matrices. z1 represents the output of the first fully connected layer, and
Sigmiod represents the activation function.

2.2. The Modified Cross-Entropy Loss Function

In multi-label classification, a two-category cross-entropy loss function is usually used
to calculate the loss between the labels and the predicted outcomes. In this work, two types
of cross-entropy loss functions are studied, given by Equations (16) and (17).

loss−1 =
1
n

N

∑
k=1

[ykln(ak) + (1− yk)ln(1− ak)], (16)

loss−2 =
1
n

N

∑
k=1

[ykln(ak) + (1− yk)ln(1− ak)] +
M

∑
l=1

ai ...l∈Ai

In
(

1− sin
(

π · ai · aj

2

))
, (17)

where N is the number of arrhythmia disease types, yk is the k-th element in the real ECG
label vector, and ak is the k-th element in the predicted ECG label vector. M is the number
of combinations belonging to the coexistence of arrhythmia diseases with strong negative
correlations, al is the l-th combination of arrhythmia diseases that cannot coexist, and ai
and aj are the i-th element and j-th element, respectively, in the predicted ECG label vector
in aj.

According to Equation (16), loss−1 is the traditional cross-entropy loss function used
for multi-label classification and is widely used in deep learning. However, the tradi-
tional cross-entropy loss function does not consider the correlations between different
labels [31–33]. This results in cardiac arrhythmias, which almost never occur simultaneously,
in the predicted results.

According to Equation (17), loss−2 is the modified cross-entropy loss function, ob-
tained by introducing a regularization term. The regularization term increases the penalty
of the co-occurrence of cardiac arrhythmias that cannot coexist, which is expected to
improve the prediction performance of deep learning models.

Specifically, when the model predicts the presence of non-coexisting arrhythmia disease
label pairs in the results due to the logarithmic function’s derivative property, it rapidly
increases the value of the regularization term, allowing the model to continue training.
Conversely, this regularization term tends toward 0, resulting in the degeneration of the loss
function into a binary cross-entropy loss function, which does not affect the prediction of
other coexisting disease labels.
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3. ECG Database

This work is based on the 12-lead ECG data collected by SID MEDICAL TECHNOLOGY
CO., LTD from many hospitals in Shanghai. The device used to acquire the ECG signals was
the Inno-12 ECG acquisition workstation, as shown in Figure 3. The ECG signals collected
were 10 seconds long, and the sampling frequency was 500 Hz. The ECG signals were first
magnified 400 times using electrode tabs and then discretized, ensuring the accuracy of
acquisition. Considering the power frequency interference, a trap filter was developed in
the hardware circuit. Each ECG sample was processed with a Butterworth bandpass filter
(0.5~100 Hz) to remove high- and low-frequency noise.

A total of 39,069 data were collected, including six types of ECGs: normal ECG, sinus
tachycardia, sinus bradycardia, atrial flutter, atrial tachycardia, and premature ventricular
contraction (PVC), as shown in Figure 4. In a 10-second ECG signal, atrial flutter and atrial
tachycardia cannot coexist simultaneously. In this work, they are considered non-coexisting
arrhythmia disease label pairs. All ECG data were labeled by two professional cardiologists.
If the two cardiologists disagreed, the label was determined by a third chief cardiologist.
Then, these ECG data were divided into a training dataset (23,322), a validation dataset
(2591), and a test dataset (13,156). The distribution of arrhythmias in the different datasets
is shown in Table 1.

Table 1. Distribution of cardiac arrhythmias in different datasets.

Total Normal Sinus Tachycardia Sinus Bradycardia Atrial Flutter Atrial Tachycardia PVC

Training 23,322 9653 4462 4650 4557 2568 4194
Validation 2591 1057 524 555 455 292 458

Test 13,156 3728 2431 4816 2181 250 1692

Note: atrial flutter and atrial tachycardia are non-coexisting arrhythmia disease label pairs.

Figure 3. Inno-12 ECG acquisition workstation.
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Figure 4. The lead-II ECG signals of different arrhythmias. mV represents voltage. (a) Normal; (b) Sinus
tachycardia; (c) Sinus bradycardia; (d) Atrial flutter; (e) Atrial tachycardia; (f) PVC.

4. Experimental Setup and Analysis
4.1. Experimental Setup

In terms of hardware, all experiments were carried out on a Dell T5820 workstation
with an Intel Core i9-10900X CPU, 64 GB of RAM, and two graphics cards (NVIDIA RTX
3060 12GB) sourced from Dell in Shanghai, China. In terms of software, all deep learning
models were constructed using Numpy 1.19.5, TensorFlow 1.13.1, and Keras 2.2.4, which
were installed on Ubuntu 20.04.

4.2. Parameter Setting
4.2.1. The Deep Learning Model

Three CNN models (i.e., 1D VGG16 [34], 1D ResNet34 [35], and 1D ResNet50 [35]) were
used to compare whether our proposed method leads to performance improvements in the
CNN models, as shown in Figure 5. In our method, only one CNN model is used for feature
extraction. The character ‘/2’ in each sub-image means that the stride size in the correspond-
ing network layer is 2. The VGG16 model comprises 16 convolutional layers and adopts
the traditional stacked convolution layer approach. Its model structure is relatively deep
but simple. The ResNet34 model has 34 convolutional layers and adds residual structures,
in contrast to VGG16. It resolves the issue of gradient vanishing during model training by
incorporating skip connections that directly add the input to the output. The ResNet50 model,
on the other hand, has 50 convolutional layers and utilizes bottleneck structures to reduce
computational complexity and improve model efficiency.

Three deep learning models (i.e., VGG16 + LSTM + ATTENTION, ResNet34 + LSTM +
ATTENTION, and ResNet34 + LSTM + ATTENTION) were used to verify whether our pro-
posed method leads to performance improvements in the CNN models. The corresponding
parameter settings and network structures are shown in Table 2. The input size of all three
deep learning models was 5000× 12 . The output sizes of the three deep learning models
were 44× 512, 22× 512, and 22× 2048, respectively.
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Figure 5. The three CNN models: (a) 1D ResNet34; (b) 1D ResNet50; (c) 1D VGG16.

Table 2. Parameter settings and network structures of the three deep learning models.

VGG16 + LSTM + ATTENTION

Layer Name Kernel Parameter Output Size Connected from

1D VGG16 [34] × 3,713,648 44 × 512 INPUT
LSTM 60 137,520 22 × 60 1D VGG16

Attention × 3720 1 × 60 LSTM
Dense 64 3904 1 × 64 Attention
Dense 6 390 1 × 6 Dense

Total Parameter: 3,859,182

ResNet34 + LSTM + ATTENTION

Layer Name Kernel Parameter Output Size Connected from

1D ResNet34 [35] × 7,598,916 22 × 512 INPUT
LSTM 60 137,520 22 × 60 1D ResNet34

Attention × 3720 1 × 60 LSTM
Dense 64 3904 1 × 64 Attention
Dense 6 390 1 × 6 Dense

Total Parameter: 8,320,266

ResNet50 + LSTM + ATTENTION

Layer Name Kernel Parameter Output Size Connected from

1D ResNet50 [35] × 21,945,280 22 × 2048 INPUT
LSTM 60 137,520 22 × 60 1D ResNet34

Attention × 3720 1 × 60 LSTM
Dense 64 3904 1 × 64 Attention
Dense 6 390 1 × 6 Dense

Total Parameter: 22,090,814

In the LSTM layer, an intermediate output with a size of 1× 60 was generated at each
iteration. The activation function ‘sigmoid’ was used for the forget gate, the input gate,
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and the output gate. The activation function ‘tanh’ was used for updating the state Ct . The
initialization method used for the matrix weight was ‘glorot uniform’.

In the attention layer, the sizes of the matrix weight Ws, bias bs, and query vector us
were 60× 60, 60× 1, and 60× 1, respectively. The initialization method used was ‘glorot
uniform’. The first dense layer consisted of 64 neurons and used the activation function
‘ReLU’. The second dense layer consisted of six neurons (corresponding to the different
diseases) and used the activation function ‘Sigmoid’. The initialization method used in the
two fully connected layers was ‘glorot uniform’.

4.2.2. The Modified Cross-Entropy Loss Function

In the database created in this work, atrial flutter and atrial tachycardia have a high
negative correlation. It was found that the correlation (Poisson correlation degree) between
atrial flutter and atrial tachycardia was−0.98 according to the correlation analysis of arrhyth-
mia diseases based on the 200,000 ECG conclusions obtained from Shanghai Zhongshan
Hospital. Thus, the loss function used in this work can be expressed using Equation (18).

loss =
1
n

6

∑
k=1

[ykln(ak) + (1− yk)ln(1− ak)] + ln
(

1− sin
(π · a4 · a5

2

))
, (18)

where a4 and a5 represent the existence probabilities of atrial flutter and atrial tachycardia,
respectively, obtained from the predicted ECG label vector.

The influence of the presence of both atrial flutter and atrial tachycardia in the pre-
dicted outcomes on the regularization term is shown in Figure 6a. The regularization term
tended toward 0 when either only one or neither (i.e., atrial flutter and atrial tachycardia)
appeared in the predicted outcomes. The regularization term increased rapidly when the
probability of atrial tachycardia and atrial flutter simultaneously exceeded 0.5. Figure 6b
shows the influence of the regularization term on the model’s weight matrix concerning
the partial derivative values of the loss function. When two labels with a negative correla-
tion were present simultaneously, the corresponding ∂Loss/∂W value increased, thereby
enhancing the speed of weight updates in the backward propagation process of the model.
This enabled the model to promptly recognize negative correlations between the labels and
adjust the weights accordingly. Conversely, when the model experienced a decrease in the
speed of the weight updates, it tended to achieve stability.

(a) (b)

Figure 6. Changes in the regularization term: (a) The impact of negatively correlated labels on the
regularization term. (b) The impact of the regularization term on the partial derivative values of the
loss function with respect to the model’s weight matrix.

4.3. Evaluation Indicators

In this section, six evaluation indicators are examined to assess the performance of the
presented models. The six evaluation indicators are (1) Error Num, (2) Hamming Loss, (3)
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Subset Accuracy, (4) Jaccard Index, (5) Precision, (6) Recall, and (7) F1 score, and they are
expressed as follows.

Error Num = ∑
x∈X

hm(x) = 1 and hn(x) = 1, (19)

Hamming Loss (h) =
1
|X| ∑x∈X

1
l ∑

j=1
[(Lj ∈ h(x))⊗

(
Lj ∈ y

)
], (20)

Subset Accuracy (h) =
1
|X|∑x∈x

[h(x) = y], (21)

Jaccard Index (h) =
1
|X| ∑

x∈X

h(x) (y)
h(x) ∪ y

, (22)

Precison =
∑

j=l
j=1 TPj

Σj=l
j=1TPj + FPj

, (23)

Recall =
∑

j=l
j=1 TPj

∑
j=l
j=1 TPj + FNj

, (24)

F1 score =
2∗precision∗recall
precsion + recall

, (25)

where m and n refer to the positions (i.e., arrhythmia diseases) in the predicted label
vector. The two arrhythmia diseases (m and n) cannot be present simultaneously in the
ECG diagnostic results.

⊗
represents the logical symbol AND, y represents the label

corresponding to instance x, represents the classification results of the multi-label model
for x, Lj represents the j-th label in the label vector for instance x, and X represents the set
of all instances x. TPi (true positive) represents the number of positive samples correctly
predicted by the multi-label model for the j-th label, FPj (false positive) represents the
number of positive samples incorrectly predicted by the multi-label model for the j-th label,
and FNj (false negative) represents the number of negative samples incorrectly predicted
by the multi-label model for the j-th label.

‘Error Num’ is defined as the number of label pairs output by the model that cannot
exist simultaneously, and it is used to study the effects of the modified loss function. The
smaller the ‘Error Num’, the better the predictive performance of the model.

‘Hamming Loss’ is used to measure the fitting ability of the multi-label model. ‘Subset
Accuracy’ is defined as the ratio between the number of correctly predicted samples and the
total number of samples, and it is used to evaluate the predictive ability of the multi-label
model. The ‘Jaccard Index’ is used to calculate the similarity between the label and the
prediction score.

‘Precision’ is defined as the ratio between the number of correctly predicted positive
samples and the total number of positive samples, and it is used to evaluate the accuracy
of the multi-label model. ‘Recall’ is defined as the ratio between the number of correctly
predicted positive samples and the number of samples predicted as positive, and it is used
to measure the recall rate of the multi-label model. The ‘F1 score’ is defined as the weighted
average of ‘Recall’ and ‘Precision’. In general, a larger ‘F1 score’ indicates that the model
has better predictive performance.

4.4. Performance After Adding LSTM + ATTENTION

To compare the effectiveness of LSTM + ATTENTION, this study selected the classic
CNN models VGG16 [34], ResNet34 [35], and ResNet50 [35]. In terms of the Error Num
metric shown in Table 3, all three models exhibited a decrease after applying the LSTM +
ATTENTION structure. The F1 scores of VGG16, ResNet34, and ResNet50 reached up to
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94.74%, 93.64%, and 93.52%, respectively. It is proved that a CNN with a suitable structure
is effective in multi-label ECG classification. After adding LSTM + ATTENTION, the F1
scores of the three methods were 95.21%, 93.98%, and 94.16%, respectively. This shows
that the prediction performance of a CNN can be improved or ensured by adding LSTM +
ATTENTION.

Table 3. Comparison of the performance of the three CNN models after adding LSTM + ATTENTION.

Model VGG16 [34] ResNet34 [35] ResNet50 [35]

Add LSTM + ATTENTION No Yes No Yes No Yes

Error Num (Num) 18 12 41 30 5 4
Hamming Loss 0.0200 0.0187 0.0250 0.0240 0.0252 0.0230

Subset Accuracy 0.9265 0.9392 0.9188 0.9245 0.9213 0.9269
Jaccard Index 0.9441 0.9521 0.9343 0.9397 0.9383 0.9417

Precision 0.9564 0.9561 0.9424 0.9435 0.9452 0.9495
Recall 0.9409 0.9491 0.9327 0.9380 0.9338 0.9363

F1 score 0.9474 0.9521 0.9364 0.9398 0.9352 0.9416

4.5. Performance of the Traditional Cross-Entropy Loss Function

In this section, the traditional cross-entropy loss function (see Equation (16)) is used to
train the presented deep learning methods, as shown in Table 2.

VGG16 [34], ResNet34 [35], and ResNet50 [35] are the most commonly used CNN
models for ECG classification. In this work, VGG16, ResNet34, ResNet50, and their combi-
nations with LSTM + ATTENTION were used to verify the performance of the improved
loss function. ‘Adam’ was chosen as the optimizer, the initial learning rate was set to
0.001, and the number of training epochs was set to 100. Regarding the hyperparameter
settings for each CNN model, we established them based on parameters published in
the literature [36,37] and determined the optimal model training configuration using the
GridsearchCV algorithm[38]. To evaluate the performance of the multi-label model on the
validation dataset, an early stop mechanism was introduced into the training process to
prevent overfitting. The training of the model was stopped if the loss of the multi-label
model on the validation dataset did not decrease in 10 consecutive training sessions.

The training dataset (23,322) and the validation dataset (2591), as described in Section 3,
were both used to train the three deep learning models. The test dataset (13,156) was used
to test the effectiveness of the trained models.

The training process using the traditional cross-entropy loss function is shown in
Figure 7a. The corresponding experimental results are shown in Table 4.
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Figure 7. Comparison of the traditional and modified loss functions: (a) training process using the
traditional loss function; (b) training process using the modified loss function.
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Table 4. Comparison between the modified and traditional loss functions.

Model VGG16 + LSTM + ATTENTION ResNet34 + LSTM + ATTENTION ResNet50 + LSTM + ATTENTION

Loss function Traditional Modified Traditional Modified Traditional Modified

Error Num (Num) 12 0 30 0 4 0
Hamming Loss 0.0187 0.0197 0.0240 0.0234 0.0230 0.0208

Subset Accuracy 0.9392 0.9287 0.9245 0.9179 0.9269 0.9242
Jaccard Index 0.9521 0.9419 0.9397 0.9313 0.9417 0.9392

Precision 0.9561 0.9595 0.9435 0.9499 0.9495 0.9549
Recall 0.9491 0.9360 0.9380 0.9283 0.9363 0.9340

F1 score 0.9521 0.9474 0.9398 0.9382 0.9416 0.9440

4.6. Effectiveness of the Modified Cross-Entropy Loss Function

In this section, the modified cross-entropy loss function (see Equation (18)) is used for
training the presented deep learning methods, as shown in Table 2. The other parameter
settings are the same as those used in Section 4.2.

The training process using the modified cross-entropy loss function is shown in
Figure 7b. The corresponding experimental results are given in Table 4.

The early stop mechanism stopped the training of the model when it entered a stable
phase. In Figure 7, it can be seen that (1) the model loss did not decrease after 68 training
epochs when using the traditional loss function, and (2) the model loss did not decrease
after 52 training epochs when using the modified loss function. It can be concluded that
the training epochs were shorter when using the modified loss function.

In addition, it can be seen in Table 4 that (1) for both loss functions, VGG16 outper-
formed the ResNet34 and ResNet50 models across all evaluation metrics; (2) ‘Error Num’
was significantly reduced when using the modified loss function; (3) ‘Precision’ slightly
increased when using the modified loss function; and (4) ‘Subset Accuracy’, ‘Jaccard Index’,
‘Recall’, and ‘F1 score’ decreased slightly when using the modified loss function. It can be
concluded that the modified loss function can significantly reduce the number of coexisting
strongly negatively correlated labels while guaranteeing model performance. Therefore, it
can be concluded that the modified loss function can effectively prevent the occurrence of
strongly negatively correlated arrhythmias in the multi-label diagnosis of arrhythmias.

Table 5 compares the accuracy of classifying different arrhythmias using the two
different loss functions. In the table, it can be seen that there was a slight improvement
in accuracy when diagnosing normal ECG, sinus tachycardia, atrial flutter, and atrial
tachycardia with the improved loss function. However, it should be noted that the model’s
accuracy in classifying PVCs decreased by more than 1%. Furthermore, with regard to the
overall improvement in precision evident in Table 4 and Figure 8, we conclude that using
the modified two-category cross-entropy loss function significantly reduces the number of
misdiagnoses of atrial tachycardia.

Table 5. Comparison of the accuracy of 6 types of cardiac arrhythmias between the modified and the
traditional loss functions.

Model VGG16 + LSTM + ATTENTION ResNet34 + LSTM + ATTENTION ResNet50 + LSTM + ATTENTION

Loss function Traditional Modified Traditional Modified Traditional Modified

Normal 0.9670 0.9707 0.9652 0.9676 0.9615 0.9678
Sinus tachycardia 0.9823 0.9826 0.9854 0.9879 0.9822 0.9825
Sinus bradycardia 0.9856 0.9853 0.9870 0.9649 0.9861 0.9752

Atrial flutter 0.9744 0.9786 0.9569 0.9769 0.9742 0.9770
Atrial tachycardia 0.9776 0.9870 0.9749 0.9806 0.9764 0.9869

PVC 0.9806 0.9785 0.9830 0.9405 0.9786 0.9481
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Figure 8. Comparison of the precision of 6 types of cardiac arrhythmias between the modified and
traditional loss functions.

5. Discussion

This article proposes a multi-label diagnosis method for cardiac arrhythmias based on
a modified two-category cross-entropy loss function. In order to validate the performance
of LSTM + ATTENTION, the classic neural networks VGG16, ResNet34, and ResNet50 are
used for evaluation. The results show that the prediction performance of the CNN can be
improved or ensured by adding LSTM + ATTENTION.

Many types of diseases can be identified from ECG signals, and some of these diseases
cannot exist simultaneously. We compare the traditional loss function to our improved
loss function across different CNN models. The results indicate that using the traditional
loss function still produces non-coexisting labels. However, when using the proposed
modified loss function in this paper with the addition of a regularization term, the model’s
weight update rate between negatively correlated labels is strengthened, forcing the CNN
model to learn the connections between non-coexisting labels and preventing the appear-
ance of non-coexisting label pairs in the diagnostic results. In addition, the improved loss
function shortens the required training period of the model, demonstrating the effective-
ness of our approach in reducing model training costs and enhancing the feasibility of
clinical applications.

To validate the classification performance of the modified loss function in diagnosing
cardiac arrhythmias using neural network models, we compare the accuracy of the two
different loss functions in six types of ECG arrhythmias. The results indicate that our
method can improve the precision of the model for negatively correlated atrial tachycardia
and atrial flutter labels. This means that it can reduce the risk of false positives in medical
diagnosis, demonstrating the potential value of the improved loss function in clinical
applications. However, our method shows decreased accuracy in the identification of PVCs
and sinus bradycardia. Currently, our research focuses on six common types of cardiac
arrhythmias. In the future, we will expand our scope to include a broader range of cardiac
arrhythmia datasets.

6. Conclusions

This work applies a CNN + LSTM + ATTENTION model to multi-label ECG clas-
sification. To prevent the occurrence of label pairs that cannot exist simultaneously, in
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the presented method, a modified cross-entropy loss function is proposed. The modified
loss function introduces a regularization term to increase the penalty for the coexistence
of arrhythmias exhibiting a strong negative correlation. Experimental results show that
the modified loss function helps prevent the occurrence of strongly negatively correlated
arrhythmias, sacrificing prediction accuracy by only a small margin. This work provides
theoretical evidence for multi-label ECG classification in clinical diagnosis.
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