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Abstract: This paper explores the concept of a metasurfaced reverberation chamber (MRC) through
empirical measurements, utilizing a 1-bit random coding metasurfaced stirrer within a standard
reverberation chamber (RC). The study rigorously compares the performance of the MRC against
traditional mechanical stirrers, both horizontal and vertical, in terms of key metrics. These metrics
include the quality factor (Q factor), number of samples, standard deviation, angle autocorrelation,
average K factor, total scattering cross section (TSCS), and the enhanced back scattering coefficient (eb).
The results demonstrate the practicality and effectiveness of the MRC in the operational frequency
range of the RC. Notably, the use of the 1-bit random coding metasurface stirrer shows potential in
significantly expanding the test volume of the RC, marking a promising advancement in reverberation
chamber technology.
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1. Introduction

The advent of metasurfaced reverberation chambers (MRCs) signifies a pivotal ad-
vancement in the field of electromagnetic testing and microwave technology. This innova-
tive approach revolutionizes the design and functionality of traditional reverberation cham-
bers (RCs), ushering in a new era of electromagnetic wave manipulation [1]. Introduced
by Sun et al. in 2018, this concept integrates metasurfaces—comprising two-dimensional
arrays of artificial structures—into RCs. These metasurfaces enable unprecedented control
over electromagnetic wave properties, including phase, amplitude, and direction, thus
significantly enhancing RC performance metrics. Understanding the evolution of rever-
beration chambers is crucial to appreciate the significance of MRCs. Historically, RCs
have played a vital role in assessing the electromagnetic compatibility and performance
of electronic devices. The integration of metasurfaces marks a technological leap, offer-
ing enhanced precision and capabilities. This paper endeavors to bridge the theoretical
advancements with practical applications in electromagnetic testing.

The incorporation of coding diffusion metasurfaces into RCs represents a major break-
through. Simulations have shown that these metasurfaces could potentially replace me-
chanical stirrers, leading to an expanded testable volume and more uniform electromag-
netic fields [2]. This development is especially critical for electromagnetic compatibility
testing, ensuring devices function reliably in varied electromagnetic environments. Our
research explores the impact of these metasurfaces on key RC performance metrics such
as mode density, field uniformity, and the lowest usable frequency (LUF). Investigating
various coding metasurface stirrers has yielded valuable insights into their efficiencies and
practical applications.
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This paper experimentally validates the MRC concept using a 1-bit random coding
metasurfaced stirrer, designed as an alternative to traditional metallic stirrers in an RC [3].
We conduct a comparative analysis of this novel MRC against conventional RCs, focusing
on several critical performance matrices. These include the Q factor, standard deviation,
angle autocorrelation, average K factor, total scattering cross section (TSCS), and the
enhanced back scattering coefficient (eb) [4,5]. These matrices are crucial for evaluating the
operational effectiveness of the chamber, as illustrated below.

The Q factor in a reverberation chamber (RC) is pivotal as it quantifies the efficiency of
energy storage versus dissipation within the chamber. A higher Q factor typically suggests
an environment with more resonance, enhancing both intensity and uniformity of the
electromagnetic field. However, maintaining a delicate balance is crucial, as excessive Q
can result in non-uniform field distribution and behavior that depends on frequency [6–8].

Field uniformity and test volume are critical for ensuring accurate and reliable mea-
surements within an RC. Uniform electromagnetic fields ensure consistent exposure across
the test volume, which is essential for valid testing of devices and materials. Expanding the
test volume without affecting field uniformity allows for accommodating larger or multiple
test subjects, thus increasing chamber versatility [9].

Angle autocorrelation of the stirrer is a measure of how effectively the stirrer can
randomize the electromagnetic field within the chamber. A lower autocorrelation suggests
better randomization, leading to more uniform field distribution. The configuration details
of the setup, which highlight the strategic positioning and functioning of each stirrer within
the chamber, are comprehensively outlined in Ref. [10]. The meticulous arrangement of this
setup played a pivotal role in maintaining stable environmental conditions throughout the
experimental proceedings. The K factor and TSCS serve as indicators of the chamber ability
to foster a rich multipath environment. The K factor evaluates the equilibrium between
direct and reflected power, whereas TSCS quantifies the scattering efficiency of energy
within the chamber [11,12].

The enhanced back scattering effect, a universal phenomenon observed in various
wave types including electromagnetic and acoustic waves, plays a pivotal role in reverber-
ation chambers [13]. This effect is not only crucial for characterizing the performance of
reverberation chambers [14] but also significantly impacts the measurement of antenna
radiation efficiency [15,16].

Building on these insights, our paper presents a comprehensive validation of the MRC
concept. We detail the design and implementation of a 1-bit random coding metasurfaced
stirrer in Section 2 and outline the system configurations in Section 3. Section 4, the heart of
our research, meticulously evaluates key performance indicators, illuminating the impact of
the metasurfaced stirrer on RC applications. Finally, Section 5 offers an extensive summary
of our findings, emphasizing the transformative potential of the metasurfaced stirrer in
enhancing reverberation chamber performance and its broader implications for future
developments in electromagnetic testing and microwave technology.

2. Design of the 1-Bit Random Coding Metasurface Stirrer

This section elucidates the design intricacies of the 1-bit random coding metasurfaced
stirrer, a critical element in our research. The unit cell of the stirrer, as illustrated in Figure 1,
features a sophisticated structural design. The intermediate dielectric layer, highlighted in
pink, is composed of a lossy F4B-2 substrate with a relative permittivity (εr) of 2.65 and a
loss tangent (tan δ) of 0.001. The top layer of the unit cell, depicted in yellow, is metallized,
while its bottom layer consists of a metallic film, optimizing the electromagnetic response.

The geometric parameters of the unit cell are meticulously chosen to ensure desired
performance. These parameters include a breadth (b) of 7.5 mm, a length (c) of 5.1 mm, a
gap (g) of 7.5 mm, and a strip length (l) of 10.5 mm. The width of the metallic strips is set at
2.4 mm (w), with a periodicity (a) of 30 mm. The thickness of the substrate (d) is 10 mm,
providing both structural stability and consistent electromagnetic properties.
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In its 1-bit configuration, the unit cell adopts two distinct states, “0” and “1”, differen-
tiated by the presence or absence of a gap. A gap (h) of 0.8 mm indicates the “0” state, while
a gapless structure (h = 0 mm) signifies the “1” state. Figure 2 presents the 1-bit random
coding sequence, derived from a specialized optimization algorithm for the metasurface,
along with the phase distribution of the unit cells, shedding light on their electromagnetic
characteristics.
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“1” element.
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Figure 2. The 1−bit random coding metasurface schematic: (a) coding sequence from optimization
algorithm; (b) simulation model overview.

The physical embodiment of the 1-bit random coding metasurface stirrer is displayed
in Figure 3. Designed with a circular shape and a radius (Rm) of 255 mm, this stirrer not only
enhances stirring efficiency within the reverberation chamber but also meets the structural
demands for effective electromagnetic field manipulation.

To analyze the scattering characteristics of the stirrers, we initially conducted simula-
tions of their far-field patterns using CST Microwave Studio® (CST China Ltd., Nanjing,
China). These simulations were pivotal in understanding the stirrers’ electromagnetic
interactions within the reverberation chamber, providing a foundation for the subsequent
experimental investigations.
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Figure 3. Fabricated 1-bit random coding metasurface: photographic representation.

3. Advanced Measurement Setup in the Metasurfaced Reverberation Chamber

In the theoretical framework of our study on the metasurfaced reverberation chamber
(MRC), we incorporate a pivotal mathematical model, the general coupled cavities model,
as detailed on page 331 of Ref. [17]. This model conceptualizes the MRC as a series of
interconnected cavities, each contributing uniquely to the electromagnetic environment
of the chamber. By applying this model, we can predict the statistical distribution of
electromagnetic fields within the MRC, enhancing our understanding of its performance
compared to traditional reverberation chambers.

Furthermore, to analyze the impact of the metasurface stirrer on the electromagnetic
field distribution, we refer to the modal cell definition and stirrer impact model (page
149 of Ref. [17]). This model provides a quantitative framework to evaluate how design
of the stirrer influences field uniformity within the MRC. It allows us to calculate the
mean-square value of the electric field, offering a metric to assess spatial uniformity. This
integration of mathematical modeling into our analysis not only strengthens the theoretical
underpinnings of our research but also guides future design optimizations for enhanced
performance of the MRC.

The experimental setup, as illustrated in Figure 4, plays a crucial role in validating the
efficacy of the metasurfaced reverberation chamber (MRC). The reverberation chamber (RC)
utilized in our experiments operates with a lowest usable frequency (LUF) of approximately
1 GHz, aligning with standard frequencies used in electromagnetic compatibility testing.
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and receiving antennas.
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(a) Antenna Configuration and Network Analysis: The system employs wideband dipole
antennas, identical to those validated in previous studies [17], ensuring consistency
and comparability in our measurements. These antennas are connected to a high-
precision vector network analyzer (VNA, model AV3620), facilitating the accurate
capture of S-parameters across a broad frequency range. The choice of a VNA model
AV3620 is particularly significant due to its enhanced sensitivity and accuracy in
measuring complex transmission and reflection parameters, crucial for assessing the
electromagnetic environment within the RC.

(b) Computer-Controlled Stirring and Data Acquisition: A dedicated computer system
orchestrates the movement of the metasurface stirrer and the triggering of the VNA.
This automated setup ensures precise control over the experimental conditions, a
critical factor in achieving reproducible and reliable results. Following the sampling
protocol outlined in Reference [17], we determined that a single revolution of the
metasurface stirrer suffices for the entire experimental process. This approach aligns
with the latest methodologies in field stirring and sampling efficiency in RCs.

(c) Stirrer Rotation and Sampling Strategy: The metasurface stirrer rotates in increments
of R(θ) = 6◦, with each step yielding N = 60 samples at the position of the receiving
antenna. This sampling density is meticulously chosen based on the extensive liter-
ature [18], balancing the need for comprehensive data collection with experimental
efficiency. The possibility of reducing the rotation step to increase sample density is
explored, offering potential enhancements in data resolution and accuracy.

(d) Spatial Analysis and Test Volume Comparison: Figure 5 presents a spatial analysis of
sample positions at the receiving antenna (red points) and delineates test volumes
of both the MRC and the conventional RC with a vertical stirrer. This comparative
analysis, underscored by the 61.47% increase in test volume for the MRC, not only
demonstrates the superiority of the metasurface stirrer in spatial coverage but also sug-
gests potential implications for improved field uniformity and mode stirring efficiency.
Such enhancements are pivotal in advancing the capabilities of RCs, particularly in
applications requiring stringent electromagnetic compatibility testing.
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4. Measurement Results Analysis

In our study, the introduction of the metasurface stirrer to the RC notably increased
the Q factor in the 500 MHz to 2 GHz frequency range, as evidenced in Figure 6. This
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suggests that resonant properties of the metasurface effectively augment energy storage
capability within the chamber in this range. However, beyond 2 GHz, increasing dielectric
losses adversely affects the Q factor, reducing it to 60% of that in a traditional RC. This drop
highlights the frequency-dependent impact of the metasurface and underscores the need
for a balanced approach in its design to maintain high Q factor across a broader frequency
spectrum.
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Figure 6. Q factor measurement results: (a) traditional RC; (b) MRC with metasurface stirrer.

Our experiments, reflected in Figures 7–9, demonstrate that varying the number of
samples (N1 = 60, N2 = 90, N3 = 360) of the metasurface stirrer significantly impacts field
uniformity across different heights within the chamber. Notably, the LUF was reduced to
around 700 MHz, indicating that the MRC can maintain uniform fields at lower frequencies
than traditional RCs. This reduction in LUF, coupled with the expanded test volume, posi-
tions the MRC as a more versatile and efficient tool for electromagnetic testing, especially
for larger or more complex test subjects.
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z-direction; and (d) the total electric field in three directions of xyz.



Electronics 2023, 12, 4985 7 of 12
Electronics 2023, 12, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 8. Standard deviation in MRC with N2 = 90 samples: (a) the electric field component in the x-

direction; (b) the electric field component in the y-direction; (c) the electric field component in the z-

direction; and (d) the total electric field in three directions of xyz. 
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z-direction; and (d) the total electric field in three directions of xyz.
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Figure 9. Standard deviation in MRC with N3 = 360 samples: (a) the electric field component in the
x-direction; (b) the electric field component in the y-direction; (c) the electric field component in the
z-direction; and (d) the total electric field in three directions of xyz.

In our experiment, we focused on the impact of different stirrers on the performance
of the reverberation chamber (RC). While all stirrers were loaded into the RC, only one was
operated at a time to isolate their individual effects (Figure 10). This approach allowed
us to directly compare the influence of each stirrer design on the electromagnetic field
distribution within the RC.
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Figure 10. Angle autocorrelation experiment: (a) experimental setup sketch; (b) system photograph.

To assess the performance of these stirrers, we specifically chose to plot S-parameters
at three distinct frequencies: 707 MHz, 1 GHz, and 3 GHz. The selection of these frequencies
was strategic and informed by their relevance to our analysis. The frequency of 707 MHz
represents the lowest usable frequency (LUF) of the RC, serving as a critical benchmark
for evaluating baseline performance of the chamber. The 1 GHz frequency falls within the
operational band of the metasurface, providing insights into the optimized performance
of the metasurfaced chamber (MRC). Lastly, the 3 GHz frequency marks the upper limit
of the operational range for the chamber, offering a comprehensive view of performance
across its entire spectrum. This careful selection of frequencies ensures a robust and
comprehensive evaluation of capabilities and effectiveness of the MRC under various
operational scenarios. Figure 11 illustrates the relationship between the S-parameter of
the receiving antenna and the rotation angle of the metasurface stirrer at these different
frequencies. The results demonstrate how rotation of the stirrer impacts electromagnetic
field distribution in the chamber.
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Further insights into the effectiveness of the stirrer designs are provided by the normal-
ized angle autocorrelations R(θ), as shown in Figure 12. These correlations reveal that the
metasurface stirrer yields smaller correlations compared to the horizontal stirrer, indicating
a more uniform field distribution. However, it is the vertical stirrer, with its irregular blades
and larger stirring surface, that shows superior performance. This finding underscores the
significance of stirrer design in influencing the electromagnetic field distribution within
the RC, highlighting the importance of considering both the physical and operational
characteristics of stirrers in the design of efficient RCs.
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Figure 12. Normalized angle autocorrelation comparison: three stirrers at (a) 707 MHz, (b) 1 GHz,
(c) 3 GHz.

The K factor results, presented in Figure 13, reveal that the metasurface stirrer performs
better than the horizontal stirrer but is less effective than the vertical stirrer. This suggests
that while the metasurface stirrer contributes to a more complex multipath environment,
its design could be further optimized. The TSCS data, shown in Figure 14, corroborate this,
placing the metasurface stirrer at a mid−level performance in terms of scattering efficiency.
This implies that while the metasurface stirrer introduces improvements in certain aspects,
there is potential for further enhancement, particularly in creating a more complex and
richer multipath environment within the chamber.
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In our study, the analysis of the enhanced back scattering coefficient (eb) of the
metasurface stirrer, as depicted in Figure 15, provides insightful observations. The data
from 1 GHz to 3 GHz reveal that the eb value consistently hovers around 2, a strong
indicator of effective stirring capability in the MRC. This near-constant eb value across a
broad frequency range underscores the proficiency of the metasurface stirrer in maintaining
a well-stirred environment within the chamber.
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Such a well-stirred characteristic is essential for ensuring the accuracy and reliability
of measurements conducted in the MRC. The consistency of the eb value, especially in
the higher frequency range, illustrates the ability of the metasurface stirrer to distribute
electromagnetic waves uniformly, thus reducing the potential for measurement anomalies
or biases. This finding is particularly relevant for applications requiring precise and reliable
antenna performance evaluations, where the uniformity of the electromagnetic field within
the testing environment is paramount.

5. Conclusions

This study has successfully demonstrated the implementation and efficacy of a planar
rotatable 1-bit random coding metasurface in creating a metasurfaced reverberation cham-
ber (MRC). The designed and fabricated metasurface has been rigorously evaluated for its
stirring efficiency using various parameters, including the quality factor (Q factor), number
of samples, standard deviation, angle autocorrelation, average K factor, total scattering
cross section (TSCS), and the enhanced back scattering coefficient (eb).

Our findings reveal that the metasurface stirrer effectively reduces the lower usable
frequency (LUF) while simultaneously expanding the maximum test volume. However, it
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is important to note that at higher frequencies, the Q factor experiences a decrease due to
the medium loss of the metasurface. This aspect highlights a potential area for optimization
in future designs. Additionally, the stirring volume of the metasurface stirrer, calculated
as π × (255 mm × 255 mm × 10 mm), is considerably smaller compared to the volumes
achieved by traditional metallic stirrers. This difference in stirring volume is a critical factor
in the overall performance of the MRC.

Comparative analysis with traditional stirrers indicates that the metasurface stirrer
outperforms the horizontal stirrer in terms of stirring efficiency but falls short of the
efficiency achieved by the vertical stirrer. This gap in performance could potentially be
addressed by increasing the size of the metasurface in future designs. Despite these
variations, the enhanced back scattering coefficient results unequivocally demonstrate
that the MRC maintains a well-stirred environment, a crucial factor for its application in
electromagnetic compatibility testing and antenna measurements.

In summary, the research presented in this paper not only underscores the potential
of the metasurfaced reverberation chamber in enhancing electromagnetic field testing but
also lays the groundwork for future advancements in this domain. The metasurface stirrer,
with its unique design and operational characteristics, offers a promising alternative to
traditional stirrers, balancing performance and efficiency.
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data curation, Q.X. and C.S.; writing—original draft preparation, H.S.; writing—review and editing,
X.L.; visualization, A.C. and C.S.; supervision, Q.X., Z.L. and C.G.; project administration, H.S. All
authors have read and agreed to the published version of the manuscript.
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