
Citation: Tera, S.P.; Alantattil, R.;

Paily, R. A Flexible FPGA-Based

Stochastic Decoder for 5G LDPC

Codes. Electronics 2023, 12, 4986.

https://doi.org/10.3390/

electronics12244986

Academic Editor: Alexander

Barkalov

Received: 19 October 2023

Revised: 4 December 2023

Accepted: 7 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Flexible FPGA-Based Stochastic Decoder for 5G LDPC Codes
Sivarama Prasad Tera * , Rajesh Alantattil and Roy Paily

Department of Electronics and Electrical Engineering, Indian Institute of Technology, Guwahati 781039, India;
rajesha@iitg.ac.in (R.A.); roypaily@iitg.ac.in (R.P.)
* Correspondence: sivarama@iitg.ac.in

Abstract: Iterative stochastic decoding is an alternative to standard fixed-point decoding of low-
density parity check (LDPC) codes that can be used to minimize inter-node routing. A flexible
field-programmable gate array (FPGA)-based stochastic decoding (SD) hardware architecture is
presented in this paper. The architecture is designed to decode different code rates of LDPC codes
that comply with the fifth-generation (5G) New Radio (NR) standard. This decoder’s runtime
flexibility is desirable as it switches to a better-performing code rate automatically based on the
channel conditions without the extra time needed to reprogram the FPGA. An offline design method
is implemented to generate the hardware description language (HDL) code description of the decoder
for the required code rate set, which is further synthesized and integrated into a Xilinx Kintex-7-series
FPGA board to determine the hardware resource utilisation and processing throughput. Synopsys
design tools were employed during both the simulation and synthesis stages in combination with
TSMC 65 nm CMOS standard cell technology to facilitate comparative analysis. Compared with
state-of-the-art designs, the proposed architecture reduces hardware utilization by up to 26% and
increases energy efficiency by 52%.

Keywords: 5G NR standard; error-correcting codes; low-density parity check codes (LDPCs); stochas-
tic decoding (SD); field-programmable gate array (FPGA)

1. Introduction

Low-density parity check codes (LDPCs) [1] have become one of the essential channel
codes in many communication standards, such as DVB-S2 [2], IEEE 802.11 (WiFi) [3], IEEE
802.16e (WiMax) [4], and including fifth-generation (5G) wireless technology [5], because
of their higher error correction capabilities, which are close to Shannon’s limit [6,7]. In 5G
New Radio (NR) specifications, quasi-cyclic (QC) LDPC codes are selected as the channel
coding scheme for data channels to achieve high throughput and low latency [8]. These QC
LDPC codes have adopted two base graph matrices (BGMs): Hb1 and Hb2, and fifty-one
lifting sizes or expansion factors zc to support various code rates [8]. Hb1 has the dimension
of 46 block rows and 68 block columns, and it supports code rates ranging from 1/3 to
8/9. Hb2 has a dimension of 42 block rows and 52 block columns and supports code rates
from 1/5 to 2/3. The PCM H is represented and constructed from its BGM Hb [9]. A binary
(N, K) LDPC code in 5G is characterized by the null space of parity check matrix (PCM) H
with dimension M× N over GF(2). The PCM is also visualized graphically as a bipartite
Tanner graph [10,11]. A set of M parity or check nodes of the Tanner graph represent the
rows of H, and a set of N bit or variable nodes of the Tanner graph represent the columns
of H. The decoding of LDPC codes is done iteratively using the message-passing algorithm
on its bipartite Tanner graph [10]. For an example (6, 2) LDPC code, parity check matrix
(PCM) H and its Tanner graph are shown in Figure 1. A Tanner graph comprises two
types of nodes, one is bit or variable nodes (VNs) VN1, VN2, VN3, VN4, VN5, VN6 and the
other is parity or check nodes (CNs) CN1, CN2, CN3, CN4. These nodes are connected by
bidirectional edges based on the number of ones in the PCM of the code.

Electronics 2023, 12, 4986. https://doi.org/10.3390/electronics12244986 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244986
https://doi.org/10.3390/electronics12244986
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2396-4975
https://doi.org/10.3390/electronics12244986
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244986?type=check_update&version=1

Electronics 2023, 12, 4986 2 of 17

Figure 1. Tanner graph of (6, 2) code.

Runtime flexibility of the decoder is desirable for decoding received messages asso-
ciated with different BGMs of multiple code rates at runtime [12]. Hence, the decoder
dynamically switches between a given set of LDPC code rates with diverse BGMs. This
decoder has various commercial applications, such as switching to a better-performing
code rate automatically based on the channel conditions [13] without the extra time needed
to reprogram the FPGA. Another application is to eliminate the re-synthesis of the FPGA to
test the performance of different code rates.

The specifications of 5G NR show that the BGM Hb1 can support a vast range of code
rates from 1/3 to 8/9. In BGM, these code rates generate irregular node degrees. As a result
of the irregular node degrees of BGM, complex connections are formed between the nodes
of the Tanner graph of BGM. In BGM, these code rates generate irregular node degrees. As
a result of the irregular node degrees of BGM, complex connections are formed between the
nodes of the Tanner graph of BGM. The complex connections result in a more complicated
inter-node routing network for typical fixed-point LDPC decoders, which are based on the
sum-product algorithm (SPA) [14] and the min-sum (MS) [15] algorithm. These decoders
use multiple-bit fixed-point representations of channel logarithmic-likelihood ratio (LLR)
message values as inputs to decoder nodes that need multiple paths to exchange these
values between the nodes. This condition aggravates an already very difficult inter-node
routing network problem. This is due to the fact that the architecture of the decoder nodes
necessitates the use of a large number of FPGA resources.

One alternative solution is stochastic decoding (SD) [16]. In SD, initially, the channel
LLRs are converted into equivalent channel probability values. After this conversion,
these probability values are converted into an equivalent stochastic bit sequence by us-
ing a comparator, as shown in Figure 2. This conversion helps stochastic bit sequences,
which need a single path between the nodes for exchange rather than the multiple paths
needed for nodes in conventional fixed-point decoders. This significantly helps to reduce
the inter-node routing complexity of the decoder [17]. The single bit-wise computations
in stochastic variable node (SVN) and stochastic check node (SCN) units require simple
logic units for the implementation. These stochastic LDPC decoders provide error correc-
tion capability comparable to traditional fixed-point decoders [18]. The error correction
capability of an LDPC decoder is determined by the signal-to-noise power ratio per bit

Electronics 2023, 12, 4986 3 of 17

Eb/No at the required bit error rate (BER), which is commonly stated in decibels. For the
wireless personal area network (WPAN) [19] standard (672, 336) LDPC code, the suggested
stochastic decoder in [18] has achieved a BER of 10−6 at an Eb/No value of 3.5 dB. This is
in comparison to the normalized min–sum (NMS)-based decoder, which has achieved the
same BER at an Eb/No value of 3.4 dB.

Figure 2. Schematic of comparator.

The number of node-interconnects (I) of a decoder is calculated from (1) to determine
the routing complexity [20].

I = 2× N × el × wv (1)

N is codeword length, el is extrinsic message length, and wv is column weight. For
instance, 1/3-rate codeword length N = 3808 LDPC code having average column weight
wv = 4.56 is decoded using SPA and SD. The number of node-interconnects required for
SPA and SD are 138,916 and 34,729, respectively. The extrinsic message length el = 1 for SD
is responsible for the reduction of the number of node-interconnects in SD by a factor of
four. On the other hand, the minimum value of el for fixed-point LDPC decoders that use
SPA is determined to be 4.

Our contributions:

• This work’s main contribution is to propose a new partially parallel decoder ar-
chitecture for bit-wise stochastic decoding for 5G NR standard LDPC codes. This
architecture was created for the LDPC code, which has a code word length of N = 3808
and code rates of R = 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, and 8/9 for BGM1.

• Our proposed automated design flow procedure enables runtime flexibility in the
design. It creates an optimal FPGA-based stochastic LDPC decoder design for any
selected code rate set. This approach helps to reduce the time needed to design
hand-coded interconnections in hardware description language (HDL).

This paper is structured as follows. Section 2 introduces the basic concepts of stochastic
decoding and its algorithm. Section 3 focuses on constructing BGM of 5G NR standard
QC LDPC codes suitable for stochastic decoders. Section 4 provides architecture details.
Design flow is discussed in Section 5. Section 6 discusses simulation results. Finally, the
conclusion is noted in Section 7.

2. Preliminaries
2.1. Stochastic Bit-Sequence Generation

A stochastic approach to LDPC decoding was introduced in [21]. This decoding
process converts the received channel probability values into a stochastic bit-sequence
equivalent. In general, the LLR of the s-th symbol xs of a code word is found from the s-th
received channel symbol ys at SVNs, which is represented as Lch,vs . By considering the bi-
nary phase-shift keying (BPSK) modulation over an additive white Gaussian noise (AWGN)
channel with a zero mean and variance σ2, the channel LLR computed as Lch,vs = 2× ys/σ2.
The channel probability is also known as the intrinsic message and is calculated as

Pch,vs = P(xs = 1/ys) =

[
exp(Lch,vs)

exp(Lch,vs) + 1

]
(2)

Electronics 2023, 12, 4986 4 of 17

The term exp() is an exponential function. The Pch,vs value is represented with W
binary symbols and compared with W-bit pseudo-random number (PRN) U ∈ [0, 1] of the
comparator [22], which varies with every clock cycle to generate an equivalent stochastic bit
sequence of length f = 8, as shown in Figure 2. For example, Pch,vs = 0.3125 is represented
as W = 4-bit fractional binary symbols P = 0101. At each clock cycle, a PRN generator
based on a linear feedback shift register (LFSR) [23] produces a new W = 4-bit PRN U.
Suppose P > U: the comparator output at that clock cycle is 1 and otherwise is 0. As
shown in Table 1, after eight clock cycles, the comparator output is 00100101, which is the
stochastic bit sequence belonging to Pch,vs = 0.3125. This sequence has a mean value of 3/8,
which is close to Pch,vs = 0.3125 [24].

Table 1. Example of stochastic bit-sequence generation.

Clock Cycle (k) U u (Real Value) Comparator Output (P > U)

0 1101 0.8125 0

1 0111 0.4375 0

2 0011 0.1875 1

3 0110 0.375 0

4 1001 0.5625 0

5 0010 0.125 1

6 1100 0.75 0

7 0100 0.25 1

2.2. Stochastic Decoding Algorithmic Description

A binary (N, K) LDPC code in 5G is characterized by the null space of parity check
matrix (PCM) H with dimension M×N over GF(2). The PCM is also visualized graphically
as a bipartite Tanner graph [10,11]. A set of M parity or check nodes of the Tanner graph
represent the rows of H, and a set of N bit or variable nodes of the Tanner graph represent
the columns of H. In stochastic decoding of LDPC code, the stochastic bit sequence of
the channel probability values corresponds to their respective channel LLRs exchanged
iteratively bitwise between the SCNs and the SVNs until the desirable codeword is found
or the maximum iteration limit is reached [25]. To illustrate the simplification of the
decoding process, a degree-3 SCN and a degree-3 SVN are adopted. Both SCN and SVN
elements perform the bitwise modulo-2 arithmetic operations in SD. The steps are shown
in the following:

(1) Initialization: Once the channel probability values are reached at SVNs, compare
the W-bit fractional binary equivalent sequence of Pch,vnj

with W-bit PRN U and initialize
generated stochastic bit sequence to its corresponding SVNs vnj.

(2) SCN update: As shown in Figure 3, SCN2 is connected to three SVNs: SVN2,
SVN3, and SVN4. The arriving SCN-to-SVN single-bit extrinsic message for node SVN4 is
computed as

Fc2→v4 = a.(1− b) + b.(1− a) (3)

Here, a is the single-bit of stochastic bit sequence {a[k]}, k = 0, . . ., f − 1, belonging to
its Pch,v2 , which has been received as a message from SVN2 to SCN2 in the previous clock
cycle, and b is the single-bit of stochastic sequence {b[k]} belonging to its Pch,v3 , which has
been received as a message from SVN3 to SCN2 in a previous clock cycle.

Electronics 2023, 12, 4986 5 of 17

Figure 3. SCN and its implementation unit.

(3) SVN update: In Figure 4, SVN4 is connected to three SCNs: SCN1, SCN2,
and SCN4. The arriving SVN-to-SCN single-bit extrinsic message for node SCN2 is
computed as

Fv4→c2 =
e.d

e.d + (1− e).(1− d)
(4)

Here, e is the single-bit of stochastic bit sequence {e[k]} belonging to the received
message from SCN1 to SVN4 in the previous clock cycle, and d is the single-bit of stochastic
bit sequence {d[k]} belonging to the received message from SCN4 to SVN4 in a previous
clock cycle.

Figure 4. SVN and its implementation unit.

(4) Termination: This iterative process will stop if it reaches the maximum decoding
cycle (DC) limit or all parity check equations are satisfied.

3. Construction of BGM in 5G NR Standard

The PCM H is represented and constructed from its BGM Hb [9]. The Hb has dimension
mb × nb, where M = mb × zc and N = nb × zc. The entries of Hb are expanded with a
zc × zc square sub-matrix in H, where zc is known as the lifting size or expansion factor.
The entry value ‘−1’ of Hb is replaced by a zero matrix of dimension zc × zc in H, and the
value ‘0’ is replaced by the identity matrix of dimension zc × zc, and another non-‘−1’ entry
value 1 ≤ Si,j ≤ zc, also known as the shift value, is replaced by circulant permutation
matrix I(Si,j). The subscripts i, j represent the row index and column index of the entry,
respectively. The sub-matrix I(Si,j) is obtained by each row of the identity matrix having a
right-shift value of Si,j positions. The value of Si,j is calculated from the function (5). The
value of Vi,j is obtained from Tables 5.3.2-2 and 5.3.2-3 of 5G NR standard specification
3GPP TS 38.212 [8] according to the selected BGM and the set index iLS.

Electronics 2023, 12, 4986 6 of 17

In this paper, we constructed BGM Hb1 of (N, K) LDPC code having a message or
information block length K = 1232 and code rate R = K/N = 1/3. The five steps are listed
below for constructing the Hb1 with kb as the length of the message block columns. The
terms kb of Hb1 and K of H are related, as K = kb × zc.

1. Select from the two BGMs: As per the specification of 3GPP TS 38.212 [8], since the
code rate R ≥ 1/4, BGM1 is selected.

2. Calculate the value kb after selecting BGM: From the specification of 3GPP TS 38.212 [8],
BGM1 has kb = 22.

3. Find the expansion factor zc : Select the minimum zc from Table 5.3.2-1 [8] such that
kb × zc ≥ K. For given K = 1232, kb = 22, and zc is calculated as 1232/22 = 56.

4. Select the set index iLS: After zc is determined, the suitable shift coefficient matrix
set from Table 5.3.2-1 [8] must be selected. Since zc = 56, the set index iLS = 3
is considered.

5. Compute the BGM entry values: Utilize the function (5) to determine the entry values
Si,j by means of the modular zc operation.

Si,j = f (Vi,j, zc) =

{
−1, if Vi,j = −1;
mod(Vi,j, zc), else

(5)

6. Construct the PCM H: Substitute each entry of the BGM by the corresponding circulant
permutation matrix or zero matrix of size zc × zc in H.

From Step 5, the first entry h0,0 of Hb1 is calculated using mod(V0,0, zc) = mod (223,
56) = 55, where the selected V0,0 = 223 value is obtained from Table 5.3.2-2 [8] and cor-
responds to row index i = 0, column index j = 0, and set index iLS = 3. Similarly, the
remaining entry values are calculated by using a function (5) and Vi,j values obtained from
Table 5.3.2-2 [8] based on the entry’s row and column indexes. Table 2 shows calculations
of the corresponding values of a few entries of Hb1. The constructed Hb1 has dimensions of
46× 68.

Table 2. Calculation of the entry values of Hb1.

Entry of Hb1 Vi,j mod (Vi,j, zc) Corresponding Values

h0,0 V0,0 = 223 mod (223, 56) 55

h0,1 V0,1 = 16 mod (16, 56) 16

h0,2 V0,2 = 94 mod (94, 56) 38

h0,3 V0,3 = 91 mod (91, 56) 35

h0,4 V0,4 = −1 mod (−1, 56) −1

h0,5 V0,5 = 74 mod (74, 56) 18

h0,6 V0,6 = 10 mod (10, 56) 10

h0,7 V0,7 = −1 mod (−1, 56) −1

h0,8 V0,8 = −1 mod (−1, 56) −1

h0,9 V0,9 = 0 mod (0, 56) 0

In order to achieve the desired information lengths and rate adaptation in 5G NR
QC-LDPC codes, a process of shortening and puncturing is carried out. The characteristics
of BGM1 are described in the Table 3. The BGM Hb1 is shown in Table 4.

Electronics 2023, 12, 4986 7 of 17

Table 3. Parameters of BGM1.

Characteristics BGM1 (Hb1)

Number of block columns (nb) 68

Number of block rows (mb) 46

Number of edges 316

Column weights (wv) 1 to 30

Row weights (wc) 3 to 19

Base code rate 1/3

Table 4. Base graph matrix.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 67
0 55 16 38 35 −1 18 10 −1 −1 0 37 48 21 47 −1 14 14 −1 29 30 48 25 1 0 −1 −1 −1 −1
1 29 −1 45 39 46 7 −1 45 21 31 −1 38 37 −1 23 9 6 26 −1 31 −1 19 0 0 0 −1 −1 −1
2 39 35 31 −1 8 12 18 39 41 9 14 −1 −1 21 46 21 −1 30 5 55 34 −1 −1 −1 0 0 −1 −1
3 33 18 −1 53 5 −1 45 30 16 −1 34 43 45 35 13 −1 40 18 43 −1 30 46 1 −1 −1 0 −1 −1
4 2 10 −1 0 −1
5 52 3 −1 30 −1 −1 −1 −1 −1 −1 −1 −1 24 −1 −1 −1 14 −1 −1 −1 −1 18 41 −1 −1 −1 −1 −1
6 46 −1 −1 −1 −1 −1 7 −1 −1 −1 −1 21 −1 7 −1 −1 −1 51 24 −1 4 −1 −1 −1 −1 −1 −1 −1
7 17 20 −1 −1 48 −1 −1 44 38 −1 −1 −1 −1 −1 46 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
8 33 39 −1 4 −1 −1 −1 −1 −1 −1 −1 −1 49 −1 −1 −1 36 −1 −1 39 −1 2 44 −1 33 −1 −1 −1
9 9 37 −1 −1 −1 −1 −1 −1 −1 −1 45 49 −1 33 −1 −1 −1 17 53 −1 50 −1 −1 −1 −1 −1 −1 −1

10 −1 26 53 −1 6 −1 −1 19 26 −1 −1 −1 −1 −1 47 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
11 52 11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 35 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
12 30 7 −1 −1 −1 −1 −1 −1 −1 −1 24 3 −1 28 −1 −1 −1 −1 14 −1 −1 −1 −1 −1 −1 −1 −1 −1
13 25 −1 −1 0 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 49 −1 −1 22 −1 −1 −1 −1
14 14 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 7 −1 −1 43 23 51 −1 −1 −1 43 −1 −1 −1 −1 −1 −1
15 34 8 −1 −1 −1 −1 −1 −1 −1 −1 19 −1 −1 41 −1 −1 −1 −1 41 −1 −1 −1 −1 −1 −1 25 −1 −1
16 −1 42 −1 52 −1 −1 −1 −1 −1 −1 −1 43 −1 −1 −1 −1 −1 −1 −1 −1 21 −1 45 −1 −1 −1 −1 −1
17 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 54 −1 32 7 −1 −1 −1 4 −1 −1 −1 −1 −1 −1
18 −1 31 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 54 32 −1 −1 −1 −1 31 18 −1 −1 −1 −1 −1 −1 −1
19 8 6 −1 −1 −1 −1 −1 47 30 −1 8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
20 49 −1 −1 42 −1 −1 −1 −1 −1 9 −1 46 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 15 −1 −1 −1 −1 −1
21 −1 24 −1 −1 −1 19 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 52 −1 −1 −1 50 50 −1 −1 −1 −1 −1 −1
22 53 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 3 −1 −1 −1 36 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
23 −1 32 35 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1
24 49 −1 −1 45 8 −1 −1 −1 −1 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1
25 −1 1 −1 −1 −1 −1 54 9 −1 −1 −1 −1 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
26 51 −1 8 −1 44 −1 −1 −1 −1 15 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
27 −1 40 −1 −1 −1 −1 29 −1 6 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
28 34 −1 −1 −1 41 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 49 −1 2 −1 −1 −1 −1 −1 −1
29 −1 38 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 11 −1 −1 −1 53 −1 −1 2 −1 −1 −1 12 −1 −1
30 34 −1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 42 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
31 −1 7 −1 −1 −1 −1 −1 49 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 9 −1 −1 16 −1 −1
32 24 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 41 −1 2 −1 −1 −1 −1 −1 −1 −1 −1 −1 30 −1 −1 −1
33 −1 2 49 −1 −1 −1 −1 −1 −1 −1 −1 49 −1 −1 −1 −1 −1 −1 −1 −1 −1 25 −1 −1 −1 −1 −1 −1
34 26 −1 −1 −1 −1 −1 −1 18 −1 −1 −1 −1 −1 −1 −1 12 −1 38 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
35 −1 24 −1 −1 −1 −1 5 −1 −1 −1 −1 −1 26 −1 −1 −1 −1 −1 −1 −1 −1 −1 19 −1 −1 −1 −1 −1
36 54 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 45 0 −1 −1 6 −1 −1 −1 −1 −1 −1 −1 −1 −1
37 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 27 −1 −1 −1 −1 −1 −1 −1 −1 −1 26 −1 −1 −1 −1
38 11 −1 −1 −1 −1 −1 −1 −1 −1 34 17 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
39 −1 12 −1 21 −1 −1 −1 49 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 −1 −1 −1 −1 −1
40 11 −1 −1 −1 −1 −1 −1 −1 45 −1 −1 −1 −1 −1 −1 −1 −1 40 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
41 −1 23 −1 47 −1 −1 −1 −1 −1 4 −1 −1 −1 −1 −1 −1 −1 −1 55 −1 −1 −1 −1 −1 −1 −1 −1 −1
42 2 −1 −1 −1 35 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 −1 −1 −1
43 −1 38 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 22 −1 −1 −1 −1 −1 −1 49 −1 −1
44 28 −1 −1 −1 −1 −1 −1 4 −1 9 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1
45 −1 16 −1 −1 −1 −1 9 −1 −1 −1 29 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Electronics 2023, 12, 4986 8 of 17

4. Proposed Architecture

The suggested FPGA-based partially parallel stochastic decoder’s top-level design is
presented in this section. It has runtime flexibility and the capability of decoding received
messages corresponding to the set of seven code rates R = 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, and
8/9 and codeword length N = 3808 for QC LDPC code compliant to the 5G NR standard.
Initially, the architecture determines the maximum matrix dimensions, such as the number
of block columns NB = 68, the number of block rows MB = 46, lifting size Zc = 56,
column-weight Wv = 30, and row-weight Wc = 19, for this decoder from the supported
code rate set. The architecture comprises various basic modules such as a stochastic variable
node decoder (SVND), a stochastic check node decoder (SCND), BGM read-only memory
(ROM), a controller unit, an intrinsic message memory unit (IMMU), and a routing network
between modules SVND and SCND. These modules of the design are explained in the
following subsections.

4.1. Layered Decoding Schedule

In partially parallel architectures, only a few SVNs and SCNs are instantiated simulta-
neously. Figure 5 shows the proposed architecture that connects the SCND to the SVND.
The SCND consists of M D flip-flops, used as memory to store updated SCN messages
received from SVND. Here, M is the total number of SCNs of the Tanner graph of the
decoded LDPC code. The architecture adopted shuffled iterative decoding [26], in which
the total number of block columns of the BGM is subdivided into vertical layers: each
layer consists of one block column of BGM or ηv columns of the PCM, where ηv is the SVN
parallelism factor; these columns are mapped as SVNs of the Tanner graph of the decoded
LDPC code. Before the next vertical layer is processed, the SVNs of each layer are processed
in parallel, and the results are used to update the connected SCNs. Using this scheduling,
the 3808 columns of the 1/3-rate codeword length N = 3808 LDPC code PCM are divided
into NB = 68 vertical layers: each layer consists of ηv = 56 columns. Accordingly, the pro-
posed decoder has an SVND, which comprises ηv = 56 stochastic variable node processing
units (SVNPUs), which function based on the SVN update. These units process a layer of
ηv = 56 columns of the PCM during each clock cycle, with these updated values being
written back to SCND immediately. Hence, each decoding cycle (DC) requires
τD = NB = 68 clock cycles. Each DC creates one new bit in each stochastic bit sequence.

Figure 5. Block diagram of the proposed stochastic decoder.

4.2. BGM ROMs

It is possible to regulate the routing and shifting of intrinsic and extrinsic messages
between the routing network, SVNPUs, and SCNPUs by employing a set of ROM blocks

Electronics 2023, 12, 4986 9 of 17

that hold the location and shift values of non-‘−1’ entries of each BGM in a hardware-
optimized form: the three ROMs, namely ROM1-location, ROM2-shift, and ROM3-weight.
Firstly, the row indices of all non-‘−1’ entries within each block column of BGM are
represented by the values in the ROM1-location. Second, ROM2-shift saves the shift value
difference between each non-‘−1’ entry in each block column and the previous non-‘−1’
entry in the same block row. This value can be determined at design time and saved as
described. Lastly, each block column of the BGM’s weight is stored in ROM3-weight. For
the proposed architecture, all three ROMs contain Nb = 68 locations, each with Wv = 30
values: i.e., Nb ×Wv = 2040 locations.

4.3. Routing Network

The routing network carries the single-bit SCN-to-SVN messages from the SCND
registers to the ηv = 56 SVNPUs in the SVND; these messages are updated and sent back
to the SCND. This routing network combines separate modules called the ’multiplexer’
(MULX), ’interleaver’, ’distributor’, ’re-distributor’, and ’updater’. The functions of these
blocks are explained later in this section. The maximum number of SCN-to-SVN message
inputs needed for any SVNPU at any time is Wv = 30, which is the maximum number of
non-‘−1’ entries in any block column within the allowed code rate set.

4.3.1. Multiplexer

Using the row-index values kept in the ROM1-location, the MULX unit chooses
Wv = 30 blocks of Zc = 56 bits from the SCND. However, instead of connecting each
input to each output, this module requires fewer hardware resources by adopting the
method of storing ROM1-location row-index values in ascending order [27]. For instance,
the block column of any BGM has weight wv, such that wv ≤Wv. All of the Wv values of
ROM1-location are arranged so that the top wv block row-indices of the non-‘−1’ entries in
that block column are in ascending order, while the remaining Wv − wv values are empty
data. The multiplexer designed to support the seven LDPC BGMs of the allowed code
rate set with maximum column weight Wv = 30 requires 210 connections. By using this
method [27], the number of connections decreased to 39% of those previously required.

4.3.2. Interleaver

The Wv = 30 MULX output blocks from the SCND are cyclically shifted by Wv = 30
parallel barrel shifters in the interleaver module based on shift values stored in ROM2-
shift. Before being read by the SVND, a group of ηv = 56 messages of the sub-matrix
must be converted from a row-centric to a column-centric representation based on the
corresponding shift value in BGM Hb1 by a barrel shifter. Each barrel shifter has Zc = 56
inputs and outputs because the shift value can be any integer between 0 and Zc = 56.
The hardware description language (HDL) used for the BSs integrated with the proposed
flexible decoder architecture is customised for the supported BGMs during the design
phase. The choice of multiplexer input for every BGM is influenced by the expansion factor
Zc = 56 value linked to the corresponding BGM based on the cyclic shift decomposition
algorithm mentioned in [28].

4.3.3. Distributor and Re-Distributor

The distributor takes Wv = 30 blocks of ηv = 56 bits from SCND and performs a
rearrangement process to form ηv = 56 blocks of Wv = 30 bits. The pipeline registers may
optionally latch these blocks before the SVND processes them. After undergoing SVND
processing, the resulting ηv = 56 blocks of Wv = 30 bits are again subjected to a similar
rearrangement process by the re-distributor to form Wv = 30 blocks of ηv = 56 bits.

4.3.4. Pipeline Registers

Stochastic layered decoding involves binary operations, causing each layer’s message
updates to either alter or leave prior layer updates unchanged. The decoding schedule

Electronics 2023, 12, 4986 10 of 17

needs to store updates from each previous layer before moving on to the next. Adding a sin-
gle pipeline stage to the suggested architecture can sometimes improve BER performance
without negatively impacting the decoding process. In some BGMs, a column-wise permu-
tation occurs, allowing for column-orthogonality in block columns. Adding a pipeline stage
during the data path does not negatively impact decoding performance when processed in
this order [27]. If a permutation is not found, introducing a few τ vacant stall layers among
non-orthogonal columns can be developed. Finding the necessary minimum values of τ for
each BGM and adding this supplementary pipeline stage is advantageous. Decreasing the
number of block rows while keeping the number of block columns constant can enhance
the coding rate. Simulations show that high-rate codes require more τ vacant stall layers
among non-orthogonal columns compared to low-rate codes.

4.3.5. Updater

Using the values from the ROM1-location, this component transfers these
Wv = 30 blocks of ηv = 56 bits back into the SCND at the proper location. Moreover,
the ROM3-weight is utilized in this case to guarantee that only the most recent Wv val-
ues are written, removing any potential interference from non-‘−1’ entries or “don’t care”
data. As D-flip-flops are being used to implement the SCND, each layer can be written
right away.

4.4. Stochastic Variable Node Decoder (SVND)

The SVND module contains ηv = 56 parallel stochastic variable node processing
units (SVNPUs). These SVNPUs can process one block column of the BGM Hb1. Hence,
each SVNPU processes one column of the PCM. Each SVNPU has multiple inputs and
outputs equal to Wv + 1, where Wv is the highest column weight in the supported BGM
code rate set. The extra input and output are utilized, respectively, for channel-intrinsic
messages and the estimation of the decoded bit. It is essential to consider that the largest
number of inputs and outputs must be taken into account to guarantee that each SVNPU
can decode any arbitrary column-weight column in the code rate set. The SVND accepts
the maximum SVN weight Wv = 30 input bits from the connected SCNs and an intrinsic
bit from the intrinsic message memory unit (IMMU). By considering such values, SVND
implements the SVN update operation, and the updated extrinsic values are sent to the
corresponding SCNPUs.

Stochastic Variable Node Processing Unit (SVNPU)

In this stochastic architecture, the chance of SVNPU output being in the hold state
increases as inputs to SVNPU increase [24]. The SVNPU forces the current output to
continuously repeat the previous output over a certain period when the two input bits of
the SVNPU are not equal, known as the hold state of the SVNPU [25]. Due to this state,
the decoder is unable to make correct decisions. It interrupts the decoder convergence,
and its bit error rate (BER) performance degrades. Hence, the architecture of high-column-
weight SVNPU is built using low-weight sub-nodes with memory blocks; typically, wv ≤ 4
sub-nodes are employed.

As shown in Figure 6 [24], the column-weight wv = 6 SVNPU is constructed using
two column-weight wv = 3 and one wv = 2 sub-nodes. The memory blocks are internal
memory (IM), which has a length of I = 2 bits for each sub-node, and edge memory
(EM), which has a length of E = 64 bits at the output edge. The critical role of EM and
IM is to minimize the correlation produced by the hold state in a stochastic sequence
and disrupt the correlation of the stochastic sequence by randomizing stochastic bits [29].
We used a dual-tree design [27] to build a high-column-weight SVNPU that would be
flexible enough to handle any active inputs and outputs up to the maximum λ = Wv + 1,
which is a power of two. For instance, column weight Wv = 30 of SVNPU has λ = 32
inputs and outputs. As a result, the adopted SVNPU dual-tree design requires a total of

Electronics 2023, 12, 4986 11 of 17

S = 3× λ− 6 = 90 sub-nodes. Two significant components, summing and combining,
each with t = log2(λ)− 1 = 4 stages, make up the dual-tree structure.

Figure 6. Block diagram of SVNPU with high wv = 6.

4.5. Control Unit

The control unit of the decoder manages internal and external control signals, includ-
ing commands to stop or proceed with the iterative decoding. A new group of ηv × w-bit
intrinsic probabilities may need to be loaded into the IMMU, and this can be indicated by
the LOAD signal. The decoder must decode a new frame, and all modules must be reset to
their default conditions using the RESET signal. The ability of the proposed architecture
to swap the current BGM to decode the message contained in the IMMU during a single
clock cycle is one of its essential characteristics. The supporting BGMs are parameterised in
ROMs at compile-time to enable this flexibility level. The process of decoding is started and
maintained by the START signal. As long as this signal is active, the decoder keeps doing
iterative decoding; the decoding operation is stopped once if the START signal is absent.

5. Design Flow

For instance, a QC LDPC code with a codeword length of N = 3808 and a code rate
of R = 1/3 that complies with the 5G NR standard has a BGM Hb with the dimensions
46× 68. This BGM has 308 non-‘−1’ entry values, which is equal to 68 × 4.52, and an
average variable node degree of 4.52. The BGM Hb forms the basis for the representation
and construction of the PCM H. Therefore, the calculation for non-zero entries in the
PCM is determined by multiplying 308 by 56, which equals 17,248, where Zc = 56 is the
lifting size or expansion factor. Consequently, this results in twice the 17,248 intercon-
nections that exist between the variable and check nodes of the decoder, which makes
the structure extremely complicated. Modelling these thousands of interconnections in
hardware description language (HDL) takes at least thirty minutes. This modelling is
extremely time-consuming when dealing with a partially parallel architecture. The process
of simulating and debugging the hand-coded HDL model is both extremely challenging
and time-consuming, respectively. The process of modelling the decoder with a different
code length turns out to be an activity that is both unproductive and repetitive. Because
of this, automating the design flow to remove repetitive and redundant tasks requires an
efficient design methodology. The above-mentioned problems were solved by creating an
automation tool in MATLAB using the C++ programming language; the tool takes less
than a minute to generate connections between the nodes of the proposed decoder.

Electronics 2023, 12, 4986 12 of 17

This section outlines the suggested design flow, which enables the automated flexibility
in design and creates an optimal FPGA-based stochastic LDPC decoder for a selected set of
5G QC LDPC codes. The flowchart in Figure 7 depicts the design flow. In the first step, the
construction of the required code rate BGM set is based on the user inputs like message
length, code rate, and lifting sizes of the 5G LDPC code. The second step has two tasks: The
first task entails determining the decoder’s parameters, such as the maximum of the matrix
dimensions and weights, namely Nb, Mb, Zc, Wv, and Wc, which describe the chosen set of
supported BGMs. Based on lifting size Zc, it is possible to determine the parallelism factor
ηv from these. For the N = 3808 LDPC code rate set, the maximum values are Nb = 68,
Mb = 46, Zc = 56, Wv = 30, and Wc = 19. Another task is to extract the positions and
shift values of the non-‘−1’ entries in each BGM and arrange them consistent with the
ROMs. Considering the parameters derived in the earlier step, the design flow utilizes a
high-level synthesis (HLS) tool [30] to produce the hardware description language (HDL)
SystemVerilog code for the suggested architecture written in the high-level language C++.
After register transfer level (RTL) modelling of the decoder, it is synthesized using the
Xilinx synthesis tool to measure the hardware requirements of the decoder. The bit error
rate (BER) simulations have been implemented on the FPGA test setup.

Figure 7. Flowchart for offline design and implementation of the proposed decoder.

6. Implementation Results and Discussion
6.1. Approach

After the offline design method is completed, the HDL code description of the decoder
for the required code rate set is generated, which is further synthesized and integrated as
the HDL code on the Xilinx Kintex-7 XC7K160T-series FPGA board [31] to determine the

Electronics 2023, 12, 4986 13 of 17

hardware resource utilisation and processing throughput. An additional parameter that
is measured is the transmission energy efficiency of the synthesized decoder in terms of
the channel’s signal-to-noise power ratio per bit Eb/No at a required BER of 10−6 for each
target BGM. Simulations are carried out to evaluate the transmission energy efficiency of
the synthesized decoder. The simulations entail a minimum of 100 frame errors per BER
measurement and a maximum of 600 DCs per frame.

The intrinsic channel LLRs serve as input to the decoder module of the FPGA board,
which is received via the RS232 port of the computer. In order to facilitate communica-
tion with the computer, an RS232 transceiver module has been designed. The MATLAB
environment in the computer is utilised to send and receive the same set of decoded LLRs
after completing the decoding process on the FPGA. Subsequently, MATLAB compares the
input and output LLRs of the FPGA and estimates the BER performance.

6.2. Results

In order to analyse the performance of the proposed decoder, we consider three
parameters: BER performance, hardware utilisation, and processing throughput.

6.2.1. BER Performance

Figure 8 shows BER performance of the proposed decoder, which delivers BER = 10−6

at 2.65 dB of Eb/No for a block length of 3808 with a base code rate of 1/3. It has been
observed that SD provides better error correction performance compared with the conven-
tional sum–product (SPA) and min–sum (MS) algorithms. Notably, decoding iterations of
SD require more clock cycles than conventional designs. Additionally, it has been observed
that applying noise-dependent scaling of 0.86 [29] to the received channel probabilities im-
proves performance for lower code rates such as 1/3 and 2/5. Conversely, this performance
declines for higher code rates such as 5/6 and 8/9.

Figure 8. BER plot of various algorithms and code rates for N = 3808.

6.2.2. Hardware Utilisation

The proposed design’s advantage lies in the significant reduction in decoder complex-
ity. Table 5 compares the suggested design and the min–sum-based decoder architectures,
indicating that the former requires less hardware by approximately 37%. A crucial parame-
ter that affects the decoder’s area and routing complexity is the number of interconnecting
wires between its nodes. In this regard, the suggested design outperforms the min–sum-
based decoder by requiring 34,729 fewer interconnect wires. Other parameters of the
suggested design are comparable to those of the min-sum-based decoder. The results in
Table 6 indicate that the increase in coding rate significantly impacts the SD decoder’s

Electronics 2023, 12, 4986 14 of 17

decoded processing throughput. However, at the same time, it negatively affects the error
correction performance.

Table 5. FPGA implementation results.

Standard 5G 5G

Code length 3808 3808

Base code rate 1/3 1/3

Sub-matrix size 56 56

Implementation Kintex-7 FPGA Kintex-7 FPGA

Decoding algorithm Stochastic decoding Min–Sum

Scheduling Column-layered Row-layered

No. of interconnects 34,729 138,916

Intrinsic message width 8-bit 4-bit

Extrinsic message width 1-bit serial 4-bit

LUTs 8278 12,962

Slice registers 1767 2041

DCs or Itrs ≈620 DCs 15

Avg. throughput ≈953 Mbps 1.5 Gbps

Eb/No at BER = 10−6 2.65 dB 2.57 dB

Table 6. SD results of various code rates for N = 3808.

A
ct

iv
e

C
od

e-
R

at
e

N
o.

of
C

lo
ck

C
yc

le
s

pe
r

D
C

LU
Ts

(k
)

Sl
ic

e
R

eg
is

te
rs

(k
)

T
hr

ou
gh

pu
t(

M
bp

s)

E
b
/N

o
at

B
ER

=
10

−
6

N
o.

of
D

C
pe

r
Fr

am
e

1/3 68 8.2 1.7 953.4 2.65 dB 620

2/5 68 8.2 1.7 964.3 2.69 dB 530

1/2 68 8.2 1.9 1100.9 2.79 dB 450

2/3 68 8.2 1.9 1189.3 3.28 dB 430

3/4 68 8.2 1.9 1240.5 3.87 dB 400

5/6 68 8.2 1.9 1267.6 4.02 dB 360

8/9 68 8.2 1.9 1298.2 4.29 dB 330

6.2.3. Processing Throughput

The proposed architecture requires a reduction in hardware resources, although it
performs with a considerably lower processing throughput expense. This lower throughput
of stochastic decoders is due to the high number of decoding cycles (DCs) needed to reach
a correct code word. Due to the high number of DCs and the partially parallel decoder
architecture, the problem is made worse by the fact that each DC requires many clock cycles,
which reduces decoding throughput. The SD architecture requires a maximum of 620 DCs
per frame, and each decoding cycle necessitates 68 clock cycles for code length N = 3808.
Table 5 compares both designs and concludes that the processing throughput of the SD
design is about 38% lower than that of the min-sum design. Table 6 demonstrates that an
increase in the code rate results in a concurrent increase in the processing throughput.

Electronics 2023, 12, 4986 15 of 17

6.3. Comparative Analysis

To facilitate a comparative analysis, the Verilog hardware description language (HDL)
was employed to model the architecture. It was subsequently subjected to simulation
to verify its functionality using a test pattern generated by a C++ simulator. The design
functions were verified successfully, following which, the architecture was synthesized
while adhering to suitable time and area constraints. Synopsys design tools were employed
during both the simulation and synthesis stages in combination with TSMC 65 nm CMOS
standard cell technology. The results obtained post-synthesis are presented in Table 7.
Specifically, the proposed SD architecture occupies an area of 1.10 mm2 and achieves a
throughput of 1.12 Gbps, while the power consumption is 410 mW.

Table 7. Comparative results.

Design Proposed [32] [33] [34] [35]

Standard 5G-NR 5G-NR 802.16e 802.15.3c 802.11n

Code length 3808 3808 2304 672 1944

Base code rate 1/3 1/3 1/2 1/2 1/2

Decoding algorithm SD CMS NMS NMS MS

Scheduling Column-layered Row-layered Row- layered Row-layered Row-layered

Extrinsic message
width 1-bit 4-bit 6-bit 4-bit 4-bit

Sub-matrix size 56 56 96 21 81

DCs or Itrs 620 10 10 5 10

Area (mm2) 1.10 1.49 2.9 2.25 4.88

Throughput (Gbps) 1.12 3.04 2.20 5.28 4.5

Power (mW) 410 259 870 182 523

The comparison of the proposed SD with other LDPC decoders is provided in
Table 7 considering implementation and performance. The proposed design has been
shown to reduce the decoder architecture’s complexity significantly. These designs exhibit
varying implementation parameters and include code length and decoding algorithms such
as combined min–sum (CMS) and normalised min-sum (NMS). Compared to the reported
decoders, the proposed architecture exhibits area efficiency increases of 26% compared
to [32], 62% compared to [33], 51.11% compared to [34], and 77.46% compared to [35], while
delivering energy efficiency improvements of 52% compared to [33] and 21.6% compared
to [35].

7. Conclusions

In this paper, we constructed a BGM of QC LDPC code meeting the 5G NR standard.
We presented stochastic decoding to LDPC codes as a hardware-efficient alternative to SPA-
and MS-based LDPC decoders. From simulations, we observed that with the inclusion of
features like scaling and edge memory, stochastic decoding performs almost at the level
of SPA-based LDPC decoder in terms of BER performance. Compared to the reported de-
coders, the proposed architecture exhibits area efficiency improvements of 26% compared
to the CMS-based decoder, 62% compared to the NMS-based decoder, and 77.46% com-
pared to the MS-based decoder, while delivering energy efficiency improvements of 52%
compared to the NMS-based decoder and by 21.6% compared to the MS-based decoder.

Author Contributions: S.P.T. conceptualized the idea of this research, conducted experiments, col-
lected data, and prepared the original version. R.A. reviewed, analyzed data, and updated the
manuscript. R.P. supervised, validated, reviewed. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Electronics 2023, 12, 4986 16 of 17

Data Availability Statement: The data used for the experiments reported in this paper are available
upon request from the authors via email.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gallager, R.G. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [CrossRef]
2. ETSI. ETSI EN 302 307 v1.3.1 Digital Video Broadcasting (DVB); Second Generation; ETSI: Sophia Antipolis, France, 2013.
3. IEEE 802.11n-2009; Standard for Information technology-Local and Metropolitan Area Networks-Specific Requirements—Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: New York, NY, USA, 2009.
4. IEEE 802.16-2004; Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless

Access Systems. IEEE: New York, NY, USA, 2004.
5. 3GPP. R1-1611081 Final Report. In Proceedings of the 3GPP TSG RAN WG1 Meeting 86bis, Lisbon, Portugal, 10–14 October 2016;

pp. 83–89.
6. MacKay, D.J.C.; Neal, R.M. Near Shannon limit performance of low-density parity-check codes. Electron. Lett. 1996, 32, 1645–1646.

[CrossRef]
7. Chung, S.Y.; Forney, G.D.; Richardson, T.J.; Urbanke, R. On the design of low-density parity-check codes within 0.0045 dB of the

Shannon limit. IEEE Commun. Lett. 2001, 5, 58–60. [CrossRef]
8. Ad-Hoc Chair (Nokia). Chairman’s Notes of Agenda Item 7.1.4. Channel Coding. 3GPP TSG RAN WG1 Meeting AH 2,

R1-1711982. 2017. Available online: https://portal.3gpp.org (accessed on 9 December 2022).
9. Fossorier, M.P. Quasi cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 2004, 50,

1788–1793. [CrossRef]
10. Tanner, R. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 1981, 27, 533–547. [CrossRef]
11. Wiberg, N. Codes and Decoding on General Graphs; Citeseer: Princeton, NJ, USA, 1996.
12. Hailes, P.; Xu, L.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. A Flexible FPGA-Based Quasi-Cyclic LDPC Decoder. IEEE Access

2017, 5, 20965–20984. [CrossRef]
13. Zhang, C.; Wang, Z.; Sha, J.; Li, L.; Lin, J. Flexible LDPC Decoder Design for Multigigabit-per-Second Applications. IEEE Trans.

Circuits Syst. Regul. Pap. 2010, 57, 116–124. [CrossRef]
14. Kschischang, F.R.; Frey, B.J.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 2001, 47,

498–519. [CrossRef]
15. Angarita, F.; Valls, J.; Almenar, V.; Torres, V. Reduced-complexity min-sum algorithm for decoding LDPC codes with low

error-floor. IEEE Trans. Circuits Syst. Regul. Pap. 2014, 61, 2150–2158. [CrossRef]
16. Gaudet, V.C.; Rapley, A.C. Iterative decoding using stochastic computation. Electron. Lett. 2003, 39, 299–301. [CrossRef]
17. Hayes, J.P. Introduction to Stochastic Computing and its Challenges. In Proceedings of the 52nd Annual Design Automation

Conference, San Francisco, CA, USA, 7–11 June 2015; pp. 2–4.
18. Lee, X.R.; Chen, C.L.; Chang, H.C.; Lee, C.Y. A 7.92 Gb/s 437.2 mW Stochastic LDPC Decoder Chip for IEEE 802.15.3c Applications.

IEEE Trans. Circuits Syst. Regul. Pap. 2015, 62, 507–516. [CrossRef]
19. The IEEE 802.15.3c Working Group Std. (WPAN). [Online]. Available online: https://www.ieee802.org (accessed on 1 November

2009).
20. Chandrasetty, V.A.; Aziz, S.M. Resource Efficient LDPC Decoders: From Algorithms to Hardware Architectures; Academic Press:

Cambridge, MA, USA, 2017.
21. Gross, W.J.; Gaudet, V.C.; Milner, A. Stochastic implementation of LDPC decoders. In Proceedings of the Conference Record of the

Thirty-Ninth Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 30 October–2 November 2005;
pp. 713–717.

22. Zhang, D.; Li, H. A Stochastic-Based FPGA Controller for an Induction Motor Drive with Integrated Neural Network Algorithms.
IEEE Trans. Ind. Electron. 2008, 55, 551–561. [CrossRef]

23. Dinu, A.; Cirstea, M.N.; McCormick, M. Stochastic implementation of motor controllers. In Proceedings of the 2002 IEEE
International Symposium on Industrial Electronics, L’Aquila, Italy, 8–11 July 2002; Volume 2, pp. 639–644.

24. Tehrani, S.S.; Mannor, S.; Gross, W.J. Fully Parallel Stochastic LDPC decoders. IEEE Trans. Signal Process. 2008, 56, 5692–5703.
[CrossRef]

25. Winstead, C.; Gaudet, V.C.; Rapley, A.; Schlegel, C. Stochastic iterative decoders. In Proceedings of the International Symposium
on Information Theory, ISIT 2005, Adelaide, SA, Australia, 4–9 September 2005; pp. 1116–1120.

26. Zhang, J.; Fossorier, M.P.C. Shuffled iterative decoding. IEEE Trans. Commun. 2005, 53, 209–213. [CrossRef]
27. Hailes, P. Design and Implementation of Flexible FPGA-Based LDPC Decoders. Ph.D. Thesis, University of Southampton,

Southampton, Malaysia, 2018.
28. Jung, Y.; Jung, Y.; Lee, S.; Kim, J. Low-complexity multi-way and re-configurable cyclic shift network of QC-LDPC decoder for

Wi-Fi/WIMAX applications. IEEE Trans. Consum. Electron. 2013, 59, 467–475. [CrossRef]
29. Tehrani, S.S.; Gross, W.J.; Mannor, S. Stochastic decoding of LDPC codes. IEEE Commun. Lett. 2006, 10, 716–718. [CrossRef]

http://doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1049/el:19961141
http://dx.doi.org/10.1109/4234.905935
https://portal.3gpp.org
http://dx.doi.org/10.1109/TIT.2004.831841
http://dx.doi.org/10.1109/TIT.1981.1056404
http://dx.doi.org/10.1109/ACCESS.2017.2678103
http://dx.doi.org/10.1109/TCSI.2009.2018915
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/TCSI.2014.2304660
http://dx.doi.org/10.1049/el:20030217
http://dx.doi.org/10.1109/TCSI.2014.2360331
https://www.ieee802.org
http://dx.doi.org/10.1109/TIE.2007.911946
http://dx.doi.org/10.1109/TSP.2008.929671
http://dx.doi.org/10.1109/TCOMM.2004.841982
http://dx.doi.org/10.1109/TCE.2013.6626226
http://dx.doi.org/10.1109/LCOMM.2006.060570

Electronics 2023, 12, 4986 17 of 17

30. Nane, R.; Sima, V.M.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey and
Evaluation of FPGA High-Level Synthesis Tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 1591–1604.
[CrossRef]

31. Xilinx. 7 Series FPGA Configurable Logic Block User Guide—UG474; Xilinx: San Jose, CA, USA, 2014.
32. Thi Bao Nguyen, T.; Nguyen Tan, T.; Lee, H. Low-complexity high-throughput QC-LDPC decoder for 5G new radio wireless

communication. Electronics 2021, 10, 516. [CrossRef]
33. Zhang, K.; Huang, X.; Wang, Z. High-throughput layered decoder implementation for quasi-cyclic LDPC codes. IEEE J. Sel. Areas

Commun. 2009, 27, 985–994. [CrossRef]
34. Li, M.-R.; Yang, C.-H.; Ueng, Y.-L. A 5.28-Gb/s LDPC decoder with time-domain signal processing for IEEE 802.15. 3c applications.

IEEE J. Solid State Circuits 2016, 52, 592–604. [CrossRef]
35. Tsatsaragkos, I.; Paliouras, V. A reconfigurable LDPC decoder optimized for 802.11 n/ac applications. IEEE Trans. Very Large Scale

Integr. (VLSI) Syst. 2017, 26, 182–195. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.3390/electronics10040516
http://dx.doi.org/10.1109/JSAC.2009.090816
http://dx.doi.org/10.1109/JSSC.2016.2624983
http://dx.doi.org/10.1109/TVLSI.2017.2752086

	Introduction
	Preliminaries
	Stochastic Bit-Sequence Generation
	Stochastic Decoding Algorithmic Description

	Construction of BGM in 5G NR Standard
	Proposed Architecture
	Layered Decoding Schedule
	BGM ROMs
	Routing Network
	Multiplexer
	Interleaver
	Distributor and Re-Distributor
	Pipeline Registers
	Updater

	Stochastic Variable Node Decoder (SVND)
	Control Unit

	Design Flow
	Implementation Results and Discussion
	Approach
	Results
	BER Performance
	Hardware Utilisation
	Processing Throughput

	Comparative Analysis

	Conclusions
	References

