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Abstract: Humanlike driving is significant in improving the safety and comfort of automated
vehicles. This paper proposes a personalized motion planning method with driver characteristics
in longitudinal and lateral directions for highway automated driving. The motion planning is
decoupled into path optimization and speed optimization under the framework of the Baidu Apollo
EM motion planner. For modeling driver behavior in the longitudinal direction, a car-following model
is developed and integrated into the speed optimizer based on a weight ratio hypothesis model of
the objective functional, whose parameters are obtained by Bayesian optimization and leave-one-out
cross validation using the driving data. For modeling driver behavior in the lateral direction, a
Bayesian network (BN), which maps the physical states of the ego vehicle and surrounding vehicles
and the lateral intentions of the surrounding vehicles to the driver’s lateral intentions, is built in
an efficient and lightweight way using driving data. Further, a personalized reference trajectory
decider is developed based on the BN, considering traffic regulations, the driver’s preference, and
the costs of the trajectories. According to the actual traffic scenarios in the driving data, a simulation
is constructed, and the results validate the human likeness of the proposed motion planning method.

Keywords: automated vehicles; motion planning; driver behavior

1. Introduction

Humanlike driving, which refers to making driving decisions according to the driver’s
preferences, is significant for automated vehicles (AVs). This is because driving behaviors
without considering human driver characteristics are likely to not only cause physiolog-
ical and psychological discomfort to the driver but also affect the cognition, operation,
and motion state of other traffic participants, thus endangering traffic safety [1]. To give
AVs the characteristics of human drivers, researchers developed automated driving sys-
tems based on various methods using naturalistic human driving data. However, few of
them achieve highly humanlike driving that is predictable, interpretable, situation-aware,
and interaction-aware [2,3].

The core task for achieving humanlike driving is driver behavior modeling, which
can be divided into three groups: intention estimation, trait estimation, and motion pre-
diction [4]. Intention estimation mainly refers to inferring what a driver might intend to
do in the immediate future at a tactical level (e.g., change lane, follow) or an operational
level (e.g., acceleration, deceleration) [5]. Trait estimation involves extracting features or
patterns from human driving data, contributing to understanding the traits of driving
behaviors. Motion prediction is the task of predicting the future physical states of other
vehicles. Among the three groups, intention estimation, which can be further classified
into longitudinal and lateral intention estimation according to the vehicle control direction,
is directly related to building a humanlike automated driving system [2]. Note that the
intention estimation in this paper refers to modeling the intention inference mechanism of
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drivers instead of predicting drivers’ intentions according to electroencephalograph signal,
steering wheel angle, etc.

Regarding longitudinal intention estimation, most existing models were developed
based on the dynamics method, for example, the intelligent driver model (IDM) [6], Wiede-
mann car-following model [7], linear car-following (LCF) model [8], modified linear car-
following (MLCF) model [9], and three-state space car-following model [10]. These methods
model driver behavior in the longitudinal direction by designing control models to con-
trol the acceleration and deceleration according to the motion states of the preceding
vehicle. They perform car following well with clear mathematical structures. Recently,
some researchers proposed establishing accurate and generalizable driver behavior mod-
els through inverse reinforcement learning (IRL) to achieve personalized adaptive cruise
control (PACC) [11,12]. Compared with the traditional model-driven methods, IRL-based
methods may obtain more humanlike models but reduce model interpretability.

For lateral intention estimation, model-driven methods, such as fuzzy theory [13–15]
and model predictive control (MPC) [16], were utilized to mimic human reasoning. How-
ever, these methods are typically poorly humanlike and have difficulty handling the
diversity of traffic scenes. To tackle this problem, data-driven methods were employed.
In [17], the authors adopted convolutional neural networks (CNNs) and deep learning
(DL) to directly map raw pixels to steering commands. Chen developed a deep planning
model that combines a CNN with the long short-term memory (LSTM) module to make
humanlike decisions [18]. However, directly learning the mapping between states and
intentions suffers from the drawback of poor generalization [19]. Different from DL, IRL
aims to obtain the parameters of the reward function that best explains human behavior
using human demonstrations. Rosbach combined IRL and sample-based policy searching
to obtain a reward function, based on which a final humanlike driving policy was selected
from the discrete policy set [20]. One limitation of this method can be the heavy computa-
tional burden of policy searching. In [21], the authors also used IRL to model the lateral
behavior of the driver. The difference is that candidate trajectories were generated based on
polynomial curves, and the agent of IRL only decided the best trajectory, which preserved
its predictability.

In summary, most existing intention estimation methods separately modeled driver be-
havior in either the longitudinal direction (e.g., [9,12]) or the lateral direction (e.g., [13,15,16]).
Meanwhile, for high-level AVs, the driving task involves both car following and lane chang-
ing, which requires estimating both the driver’s longitudinal and lateral intentions in the
same humanlike automated driving system. Although some recent data-driven methods,
e.g., [17,18,21], can model both car-following and lane-changing behaviors, they ignore the
driver characteristics at the speed and acceleration levels in the longitudinal direction. One
solution is to build a personalized lane-changing intention inference model and combine
it with a car-following model. However, the limitations are (1) designing two control
models increases development costs, and (2) vehicle dynamics constraints may not be
satisfied for a vehicle controlled by two independent controllers. Furthermore, most driver
models, such as [15,17,20,22], did not consider the interaction behavior of obstacle vehi-
cles (e.g., lane-changing behavior of obstacle vehicles) in the inputs of the lateral intention
inference models. This could be detrimental to AVs sharing the road with other vehicles.
For instance, when a vehicle is about to change to a target lane, it may have to abort lane
changing if the AV ignores its intention and changes to the same target lane. Moreover,
the opaqueness of machine learning models prevents a user or developer from being able
to verify, interpret, and understand the reasoning of the system. Additionally, (inverse)
reinforcement learning has the disadvantages of low training efficiency and the feasibility
question of transferring the knowledge acquired from ideal observations to real-world
applications [23]. Thus, how to achieve humanlike driving with driver characteristics
in longitudinal and lateral directions within the same framework while retaining the in-
terpretability, situation awareness [24], and interaction awareness [2] of the model is the
main challenge.



Electronics 2023, 12, 5021 3 of 29

In this study, addressing the above issue, we aim to model individual driving behavior
in both longitudinal and lateral directions within a motion planning framework for high-
way automated driving. The needed naturalistic human driving data of a specific driver is
collected through real car experiments. Using the collected data, a motion planning method
with the longitudinal and lateral characteristics of the driver, namely, a personalized mo-
tion planning method, is proposed for AVs in highway scenarios. With the proposed
method, each user can obtain a personalized motion planner using his/her driving data.
The considered driver characteristics are the relations between the longitudinal and lateral
intentions and the faced situation. The motion planning method is based on the frame-
work of the Baidu Apollo EM motion planner, which has a perception–planning–control
hierarchy. The motion planning is decoupled into path optimization and speed optimiza-
tion. For modeling driver behavior in the longitudinal direction, a car-following model
is developed using the driving data. Then, the car-following model is integrated into the
speed optimizer based on a weight ratio hypothesis model of the objective functional and
Bayesian optimization. For the lateral direction, a Bayesian network (BN), which considers
the physical states and lateral intentions of the surrounding vehicles, is built using the
driving data to generate lateral behavioral decisions. A scheduling strategy is designed
to help the BN to collaborate with the original trajectory decider. Additionally, the path
optimizer is also personalized based on Bayesian optimization. The human likeness of
the proposed motion planner in longitudinal and lateral characteristics is evaluated in
the scenarios in the collected driving data and the Next Generation Simulation (NGSIM)
dataset [25]. The main contributions of this study are listed as follows.

(1) A motion planning method with driver characteristics in longitudinal and lateral
directions is proposed, while the interpretability, situation awareness, and interaction
awareness of the planner are retained.

(2) Two algorithms, which are the personalized speed decision-making algorithm and the
QP speed planner customizing algorithm, are proposed to personalize the speed opti-
mizer with the driver’s desired clearance and dynamic car-following characteristics.
The former integrates the quadratic desired clearance model into the speed optimizer.
The latter builds a dynamic model of the weights ratio of the speed optimization
objective functional based on the MLCF, Bayesian optimization, and leave-one-out
cross validation, using driving data. See Section 2.4.

(3) A BN building algorithm and a continuous variable discretizing algorithm are pro-
posed to build the BN of the personalized reference trajectory decider based on a
probability tree. For a continuous variable on the probability tree, the continuous vari-
able discretizing algorithm decides whether to partition, where to partition, and how
many intervals to partition into. See Section 2.5.

The rest of this paper is organized as follows: In Section 2, the collection of human
driving data is described briefly, and the proposed personalized motion planning method
is detailed. Section 3 presents the simulation results and the discussions on the proposed
method. Finally, the conclusion is drawn in Section 4.

2. Methods
2.1. Framework

Motion planning for AVs is a typical nonconvex three-dimensional (3D, station, lat-
eral, and time) optimization with complex constraints. There are two types of methods
for solving the optimization problem: direct 3D optimization methods (e.g., SQP algo-
rithm [26], CFS algorithm [27], constrained iterative LQR algorithm [28]) and path-speed
decoupled methods (e.g., [29]). Direct methods perform optimization in spatiotemporal
state space, while decoupled methods transform the original 3D optimization problem into
two 2D optimization problems (path optimization and speed optimization) and solve them
successively. The main disadvantage of direct methods is the computational complexity.
On the other hand, path-speed decoupled methods significantly reduce the computational
complexity of trajectory optimization.
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Therefore, this study adopts the EM framework of the Baidu Apollo EM motion
planner (EM planner for short) [30], a path-speed decoupled method, with personalized
customizations on path optimization, speed optimization, and reference trajectory decision
making, as shown in Figure 1. The data center module provides all needed information,
including localization, perception, prediction, high-definition (HD) map, and route infor-
mation for the motion planner. In the motion planner, the candidate reference lines along
lanes are generated within traffic regulations based on the HD map and navigation infor-
mation. Then, lane-level motion planning is carried out in parallel for every candidate lane
to produce the lane-level best trajectory. During the lane-level motion planning, a Frenet
frame is first constructed based on that lane’s reference line. Then, path optimization
and speed optimization, which both consist of an E-step and an M-step, are performed
in the Frenet frame and the station-time coordinate system, respectively. During the path
optimization, information about the ego vehicle and traffic participants is projected on
the station-lateral plane (SL Projection), and a smooth path is generated through a path
optimizer consisting of dynamic programming (DP) path decision and quadratic program-
ming (QP) path planning. During the speed optimization, information about obstacles is
projected on the station-time plane (ST projection), following which a personalized speed
optimizer consisting of speed decision and QP path planning generates a smooth speed
profile. By combining the path and speed profiles, the best trajectory for every candidate
lane is obtained. Finally, the personalized reference trajectory decider selects a reference
trajectory among the trajectories of candidate lanes according to the driver’s preference,
the cost of trajectories, and traffic regulations, and transfers it to the vehicle controller.

Motion Planner

Data Center

Vehicle Controller

Reference Line Generator

Lane 2Lane 1

Personalized Reference Trajectory DeciderLast Cycle Trajectory

Last Cycle Trajectory

Reference Line Frenet Frame

E-step

M-step

E-step

M-step

Reference Line Frenet Frame

E-step

M-step

E-step

M-step

Path Profile Path ProfileTrajectory Trajectory

SL Projection

Personalized
DP Path Decision

QP Path Planning

ST Projection

Personalized
Speed Decision

Personalized
QP Speed Planning

SL Projection

Personalized
DP Path Decision

QP Path Planning

ST Projection

Personalized
Speed Decision

Personalized
QP Speed Planning

Figure 1. Framework of the motion planning method.

2.2. Human Driving Data Collection

Naturalistic human driving data are the basis for achieving humanlike driving. The routes
covered in the experiment are highways in Chongqing, China. The data collecting system, em-
bedded in the third-generation HAVAL H6, consists of a target detection and fusion computer,
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a scenario acquisition system, and advanced multisource heterogeneous sensors, including
an 80-channel lidar on the top, four solid lidars at the corners, front and rear radars, 360◦

recording cameras, etc., as shown in Figure 2. When the targets enter into the blind spot of the
rotating lidar, the four corner solid lidars will provide the lidar sensor fusion module with
the targets’ point cloud, enhancing the reliability and stability of target detection and track-
ing. The image information from cameras contributes to reconstructing the traffic scenarios
and estimating the lateral distance to the lane. Additionally, the inertial navigation module
measures the physical states of the ego vehicle. During the data collection process, each
sensor worked at a frequency of 50 Hz and transmitted data to the scenario acquisition system,
where the data was saved after Kalman filtering. With this equipment, the data collection
system is capable of obtaining the dimensions, category, position, velocity, and acceleration of
surrounding obstacles, as well as the lateral distance to the lane, velocity, and acceleration of
the ego vehicle.

l 360º Recoding   
cameras

l Four Corner Solid 
Lidars

l Front and Rear 
radars

l Illumination sensor

l Front and Rear 
cameras

l Rotating Lidar
l Scenario acquisition system 

l Inertial 
Navigation

l Rain sensor

Figure 2. Human driving data collection system.

2.3. Path Optimizer

The path optimizer in this study has the same structure as the EM planner, so it is
only briefly described here. For more detail, please refer to [30]. The personalization of
the path optimizer will be introduced in Section 2.6. In general, the path optimization
aims to obtain a smooth path represented as l = f (s) for every candidate lane. In the
E-step, the “Last Cycle Trajectory” (labeled in Figure 1) of the ego vehicle and the predicted
trajectories of obstacles are projected on the SL plane, and the relation between the ego
vehicle and the obstacles will be evaluated at each time point, as depicted in Figure 3.
For motion prediction of the obstacles, the advanced methods are mainly based on machine
learning, such as CNN-LSTM-based [31] and Transformer-based [32] methods, which take
a sequence of historical states as the input of the deep neural networks.

t=0 t=0.5 t=1 t=1.5 t=2 t=2.5 t=3 t=3.5 t=4 t=4.5 t=5 t=5.5 t=6

t=0 t=0.5 t=1 t=1.5 t=2 t=2.5 t=3 t=3.5 t=4 t=4.5 t=5 t=5.5 t=6

l

s

Figure 3. An example of SL projection. The red square marks the overlap region where the ego
vehicle should not enter.

Once the station coordinates of the ego vehicle’s bounding box intersect those of the
obstacles’ bounding box given a specific time, the overlap regions will be marked on the
station-lateral plane, e.g., the red region in Figure 3.

In the M-step, the DP path search provides a rough path solution with a feasible
tunnel, with which the spline-based QP path planning generates a smooth path. Specifically,
during the DP path search, candidate paths for a specific lane are generated piecewise
based on quintic polynomials. Figure 4 depicts the candidate paths generated in parallel
for each lane.
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l

s

Figure 4. The candidate paths for the three lanes. The curves in olive represent the generated
candidate paths for the three lanes. The white dashed lines are the boundaries between lanes. The
solid black lines with arrows represent the axes of the coordinate system. The red square marks the
overlap region.

Then, the candidate paths are evaluated by a cost functional, which is a linear
combination of smoothness, obstacle avoidance, guidance line, and road boundary cost
functionals [30]:

Ctotal( f ) = Csmooth( f ) + Cobs( f )

+ Cguidance( f ) + Cboundary( f ).
(1)

Here, the smoothness functional of a given path is defined as

Csmooth( f ) = w1

∫ (
f ′(s)

)2ds + w2

∫ (
f ′′(s)

)2ds

+ w3

∫ (
f ′′′(s)

)2ds.
(2)

where f ′(s), f ′′(s), and f ′′′(s) correspond to the heading difference between the lane and
the ego vehicle, a term related to the curvature of the path, and a term associated with the
derivative of the curvature, respectively. The obstacle cost functional is defined as

Cobs( f ) =


0, di > dnr

∑N
0 Cnudge(di − dc) dc ≤ di ≤ dnr

∑N
0 Ccollision di < dc

(3)

where di denotes the bounding box distance between the obstacle and ego vehicle at
station si in a sequence of fixed station coordinates {s0, s1, ..., sN}. Cnudge is a monotonically
decreasing function. dc is the safety distance, while dnr is the nudge range. Ccollision denotes
a high collision cost. The guidance line cost is measured as

Cguidance( f ) =
∫
( f (s)− g(s))2ds (4)

to lead the vehicle to follow the centerline of the lane g(s). The road boundary cost is
set to a high value if the bounding box of the ego vehicle intersects the road boundary.
By applying the DP algorithm, a candidate path with the lowest cost can be obtained,
named the DP path.

With the DP path, a feasible tunnel for QP path planning is generated. The spline-
based QP path planning aims to further smooth the DP path within the feasible tunnel.
To reserve the smoothness and flexibility of the path, the EM planner adopts the smoothing
spline function:

f (s) =


f0(s− s0) s ∈ [s0, s1)
f1(s− s1) s ∈ [s1, s2)

. . .
fn−1(s− sn−1) s ∈ [sn−1, sn]

(5)

where fk(s) = pk0 + pk1s+ . . . pkmsm, k = 0, 1, ..., n− 1, is an m-th degree polynomial function
with the coefficient pk = (pk0, pk1, . . . , pkm)

T, and {s0, s1, ..., sn} are the spline knots. The pa-

rameter vector of the smoothing spline function is denoted as p =
(

pT
0 , pT

1 , . . . , pT
n−1

)T .
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The QP path planning attempts to find a smoothing spline function f ∗(s) that optimizes
the quadratic objective functional:

arg min
f∈Ω

J( f ) =
3

∑
i=0

wi Ji( f ) (6)

subject to linear constraints L( f (s)) ≤ 0, where Ω = { f : [s0, sn]→ R | f , f (1), f (2), ..., f (m)

is absolutely continuous and
∫ sn

s0

(
f (i)

)2
ds < ∞, i = 0, 1, ..., m}, and wi are weights.

In detail,
J0( f ) =

∫ sn
s0
( f (s)− h(s))2ds,

J1( f ) =
∫ sn

s0
( f ′(s))2ds,

J2( f ) =
∫ sn

s0
( f ′′(s))2ds,

J3( f ) =
∫ sn

s0
( f ′′′(s))2ds,

(7)

where h(s) is the DP path; J0 describes the distance to the DP path; and J1, J2, and J3 are
related to the smoothness of f . The objective functional describes the balance between
obstacle avoidance and smoothness. Additionally, the linear constraints include tunnel
boundary constraints and smoothness constraints. The tunnel boundary constraints require
that the bounding box of the ego vehicle is constrained within the feasible tunnel, which
reduces the search space and ensures the convexity of QP. The smoothness constraints
require that the polynomials of the smoothing spline are joined at spline knots with up to
m-th order derivative matching.

By solving the QP problem, a smooth path is obtained, as shown in Figure 5. The solid
blue line is the QP path, while the DP path is represented by the dashed blue line. The or-
ange region depicts the feasible tunnel.

l

s

Figure 5. A QP path example of nudging. The red square marks the overlap region. The orange
region depicts the feasible tunnel.

2.4. Personalized Speed Optimizer

Car following, which is one of the most common driving modes, reflects driver
characteristics in the longitudinal direction. It refers to following the same preceding
vehicle without changing lanes. The personalization of a speed optimizer requires the
resulting longitudinal motion during car following to match the desired clearance, speed,
and acceleration of a specific human driver. Therefore, the proposed personalized speed
optimizer, consisting of a speed decider and a QP speed planner, is developed using the
car-following segments of the collected human driving data. Since we aim to achieve
humanlike driving with characteristics in both longitudinal and lateral directions in the
EM framework, the goal of speed optimization is to generate a speed profile s(t) (the
s-coordinate of the center of the rear axle as a function of time) to be combined with the QP
path f (s).

There are typically three types of driver characteristics in the longitudinal direction:
(1) desired clearance: a driver tries to keep a desired distance between his car and the
preceding car; (2) tolerance for acceleration and deceleration: different drivers have dif-
ferent tolerances; and (3) dynamic car-following characteristics: the relation between the
acceleration adopted by the driver and the intervehicle states (e.g., clearance, speed of
the ego vehicle). In this study, the desired clearance characteristics are modeled by the
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personalized speed decider, while the other two are modeled by the personalized QP
speed planner.

Specifically, the desired clearance characteristics are described by the quadratic desired
clearance (QDC) model [33]:

ddes(v) = av2 + bv + c, (8)

where ddes denotes the desired clearance; v is the speed of the ego vehicle; and the constant
coefficients a, b, and c are identified by the least square method. Based on the QDC model,
the personalized speed decision-making algorithm, as summarized in Algorithm 1, is
proposed to provide a reference speed profile for personalized QP speed planning. First,
with all the needed information about the ego vehicle and obstacles transferred from the
data center, we calculate the predicted relative lateral distance between the ego vehicle
and each obstacle. Second, the speed profiles of the preceding obstacles are extracted to
mark the obstacle regions and the preliminary feasible region in the station-time plane
as the red regions and the orange region shown in Figure 6, respectively. Next, given the
dimensions of the ego vehicle and the minimum safety clearance (2 m in this study, less
than which is considered a collision), the upper and lower bounds for a speed profile in
each following segment can be calculated. The final bounds are obtained by connecting the
bounds of the adjacent segments, as represented by the solid green lines in Figure 6. Finally,
the personalized speed decision sdes(t) is calculated by subtracting the desired clearance
from the upper bound sub(t) while satisfying slb(t) ≤ sdes(t) ≤ sub(t), s′des(t) ≤ vdes,
as represented by the dashed green line in Figure 6.

Algorithm 1: Personalized speed decision making
Input: T: planning horizon; {Li

obs, W i
obs, si

obs(t), li
obs(s) | i = 1, 2, ..., Nobs}: the dimensions and

predicted trajectories of the Nobs detected obstacles; {Lego, Wego}: the dimensions of the ego
vehicle; l(s): the QP path generated in Section 2.3; slast(t): last cycle speed profile; vdes: the
desired speed set by the driver; the QDC model for the driver.

Output: slb(ti), sub(ti): lower and upper bounds for a speed profile; sdes(t): personalized speed
decision.

1 Calculate the predicted relative lateral distance between the ego vehicle and each obstacle:
{∆li(t) | ∆li(t) = |li

obs(s
i
obs(t))− l(slast(t))|, i = 1, 2, ...Nobs, t ∈ [0, T]};

2 Extract the speed profiles of the preceding obstacles
{si

obs(t) | ∆li(t) < (Wego + Wi
obs)/2, i = 1, 2, ...Nobs, t ∈ [0, T]}, according to which the obstacle

regions and the preliminary feasible region are marked in the station-time plane as the red regions
and the orange region shown in Figure 6, respectively;

3 Calculate the upper and lower bounds, sub(t), slb(t), for a speed profile in each following segment
considering the dimensions of the ego vehicle and the minimum safety clearance:

sub(t) = sre(t)− ∆s− L f − Lb,
slb(t) = sfe(t) + ∆s + Lr,

where sre(t), sfe(t), ∆s denote the station of the rear edge of the preceding vehicle at time point t,
the station of the front edge of the vehicle behind at time point t, and the minimum safety clearance,
respectively. L f , Lb, and Lr are the front overhang, wheelbase, and rear overhang of the ego vehicle,
respectively;

4 Connect the bounds of the adjacent segments, as shown in Figure 6 by the solid green lines;
5 Calculate the desired stations sdes(t) based on the QDC model:

sdes(t) = sub(t)− ddes(v(t + ∆t)),
s.t. slb(t) ≤ sdes(t) ≤ sub(t), s′des(t) ≤ vdes,

where v(t) is the planned speed profile of the ego vehicle from the last planning cycle, and ∆t is the
period of motion planning, as shown in Figure 6 by the dashed green line.
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following segment 1

following se
gment 2

connection

arctan vdes
{Δs+Lf+Lb

Δs+Lr{

Figure 6. Personalized speed decision.

After the personalized speed decision making, a speed profile with the desired clear-
ance characteristics of the driver is obtained. As for the tolerance for acceleration and
deceleration, although constraining the s′′(t) and s′′′(t) is a direct and effective way [34],
it is not considered in this study because the needed acceleration and deceleration under
extreme conditions may not meet the driver’s preference. However, modeling the dynamic
car-following characteristics is more difficult. Personalized speed profiles should possess
the driver’s characteristics in the longitudinal direction and smoothness. Considering that
the MLCF model not only mimics drivers’ longitudinal behaviors well but also has low
computational cost [9,35], a personalized QP speed planning method based on the MLCF
model is proposed to generate personalized smooth speed profiles. Mathematically, the QP
speed planning aims to find a smoothing spline s(t) defined as Equation (5) that minimizes
the quadratic objective functional that has the same form as Equation (6) as well as the
domain Ω of parameter vector p, subject to linear constraints L(s(t)) ≤ 0. Here,

J0(s) =
∫ tn

t0
(s(t)− sdes(t))2dt,

J1(s) = 0,
J2(s) =

∫ tn
t0
(s′′(t))2dt,

J3(s) =
∫ tn

t0
(s′′′(t))2dt,

(9)

where sdes(t) is the personalized speed decision, J0 describes the distance to the desired
station, and J2, and J3 are related to the smoothness of s(t). Note that s′(t) is related to
speed, which should not be minimized, so J1(s) = 0. The linear constraints consist of
boundary constraints and smoothness constraints. The boundary constraints include

s(ti) ≤ s(ti+1), i = 0, 1, 2, ..., n− 1,
slb(ti) ≤ s(ti) ≤ sub(ti),

s′(ti) ≤ vmax,
amin ≤ s′′(ti) ≤ amax,
jmin ≤ s′′′(ti) ≤ jmax,

(10)
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where the first constraint forbids the vehicle from reversing, and slb(ti) and sub(ti) are
the lower and upper bounds for a speed profile obtained through the personalized speed
decision making. The last three constraints are related to traffic regulations and vehi-
cle dynamics constraints, where vmax, amin, amax, jmin, and jmax are the corresponding
bounds for speed, acceleration, and jerk. The determination of the above bounds involves
analysis of vehicle dynamics under various scenarios. For simplicity, empirical values,
vmax = 33.33 m/s, amin = −5 m/s2, amax = 5 m/s2, jmin = −6 m/s3, and jmax = 6 m/s3,
were employed in this study since we focus on the topic of achieving humanlike driv-
ing. Note that driver characteristics are not considered in the last three constraints in
Equation (10) because, for safety reasons, the speed, acceleration, or jerk under extreme
conditions may not meet the driver’s preference. An example of the optimal solution
s∗(t), which balances the driver’s preference for clearance and the smoothness of the speed
profile, is depicted in Figure 7.

Figure 7. QP speed planning result.

Given the personalized speed decision sdes(t) and the objective functionals in Equation (9),
it is intuitive that the first objective functional J0(s) penalizes the difference between the
planned station s(t) and the desired station sdes(t), while the last two terms, J2(s) and J3(s),
penalize the acceleration and jerk, respectively. Meanwhile, the closer the planned station is
to the desired station, the greater the acceleration is [30]. The balance between them, which
is adjusted by the corresponding weights w0 and w2, is actually related to the dynamic car-
following characteristics. Therefore, we further explored the relation between the two weights
and the resulting clearance, speed, and acceleration in car-following scenarios. Simulation
results suggest that the clearance, speed, and acceleration of the resulting longitudinal motion
are strongly affected by the ratio between the weights of distance to the desired station and
acceleration, i.e., w0/w2, as shown in Figure 8. Additionally, since J3(s) concerns the jerk,
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which is not involved in the considered driver characteristics, w3 is set to the same value
as w0. In addition, w1 can be set to an arbitrary value since J1(s) = 0. Thus, the behavior
modeling becomes finding a dynamic ratio r = w0/w2 that best describes the driver’s dynamic
car-following characteristics. Then w2 = w0/r can be easily obtained. To solve the problem,
a QP speed planner customizing algorithm based on Bayesian optimization and leave-one-out
cross validation (LOOCV) is proposed.

Figure 8. Comparison of clearance, speed, and acceleration between different ratios.

Considering the outstanding performance of the MLCF model, the task is transformed
into establishing the relation between ratio r and acceleration a, where a is calculated by
the MLCF model:

aMLCF = SVE · kv ·
(
vp − v

)
+ SDE · kd · (d− ddes),

SVE−1 = kSVE · v + bSVE,

SDE−1 = kSDE · v + bSDE.

(11)

Here, SVE and SDE are sensitivity to velocity error and sensitivity to distance error,
respectively, whose reciprocal are linear functions of ego vehicle speed v. vp is the speed
of the preceding vehicle. d denotes the clearance. Constants kSVE, bSVE, kSDE, and bSDE
are estimated using the driving data. Constants kv and kd are identified by optimizing
the error between the output of the following system and the measured a, v, and d. More
details of the MLCF model are introduced in [9]. Additionally, one can use other car-
following models as substitutes for the MLCF model, leading to different performances of
the personalized speed optimizer.

In addition, the acceleration of the planned longitudinal motion monotonously in-
creases as r increases due to the nature of the smoothing spline [30]. Therefore, r is assumed
to be linear, quadratic, and logarithmic functions of |aMLCF| successively, whose parameters
can be obtained by Bayesian optimization [36]. Since the amount of collected data is small,
LOOCV is employed to evaluate the hypothesis models. The proposed algorithm for
obtaining r is summarized in Algorithm 2, where ND denotes the number of episodes
of driving data, and N f = ND denotes the number of folds of LOOCV. Each episode
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ζi contains the trajectories of the ego vehicle and obstacles, and the car-following episode
refers to the episode in which the driver of the ego vehicle performs no other behavior
except car following.

First, the car-following episodes in the human driving data are divided into training

set
{
Di

tr
}N f

i=1, validation set
{
Di

va
}N f

i=1, and testing set {Dte}. Then, the parameters, k and
b, of each hypothesis model in H is identified by Bayesian optimization (from step 2
to step 19) with the training and validation sets. Specifically, SVE, SDE, kv, and kd for
every fold of LOOCV are obtained through the method in [9]. For fitting SVE and SDE,
the effective values of the velocity error and the distance error for each speed interval are
calculated using the training data, respectively. With the effective values, the constants kSVE,
bSVE, kSDE, and bSDE in Equation (11) can be identified through the least square method.
Additionally, kv and kd can be obtained by optimizing the error between the simulated
trajectories of the MLCF model and the trajectories in Di

tr.
Next, the parameters of the hypothesis model is selected either randomly or according

to the expected improvement (EI) acquisition function aEI [37]:

aEI(x; {xn, yn}No
n=1) = σ(x;{xn, yn}No

n=1)
(γ(x)Φ(γ(x)) +N (γ(x); 0, 1)),

(12)

where {xn, yn}No
n=1 denotes the observations consisting of parameters and the corresponding

losses, No is the number of observations, σ2(x;{xn, yn}No
n=1) denotes the predictive variance

function of the Gaussian process prior, and Φ denotes the cumulative distribution function
of the standard normal distribution N . γ is defined as

γ(x) =
min({yn}No

n=1)− µ
(

x; {xn, yn}No
n=1

)
σ
(

x; {xn, yn}No
n=1

) , (13)

where µ is the predictive mean function of the Gaussian process prior. During each iteration
of Bayesian optimization, SVE, SDE, kv, kd, k, and b are determined, with which the QP
speed planner is employed to perform car following in every episode in D j

va. After that,
the error Ei

r is calculated, which is the evaluation of the human likeness in the longitudinal
direction of the parameters in the iteration. The three terms of ei,j

r describe the difference
between the simulated trajectories and the trajectories in D j

va in acceleration, speed, and
clearance. The weights ω1, ω2, and ω3 are set to 0.9, 0.09, and 0.01 by trial. With the error
Ei

r, the observation set is updated by adding the current parameter vector and the error.
After the Bayesian optimization, the parameters of the hypothesis models are obtained.
Finally, Er is used to evaluate the hypothesis models on the testing set, and the best one
is selected to be integrated with the QP speed planner. In this way, a QP speed optimizer
with the driver characteristics in the longitudinal direction is developed.

2.5. Personalized Reference Trajectory Decider

After the path optimization and the speed optimization, a trajectory with a personal-
ized speed profile for each candidate lane is obtained, among which a reference trajectory
should be selected to be transferred to the vehicle controller. In fact, different drivers facing
the same situation may make completely different decisions. For example, a driver may
prefer to follow the preceding vehicle, while some drivers would overtake it. Our goal is to
develop a reference trajectory decider that can make the same decisions as a specific driver,
namely, a personalized reference trajectory decider. The main challenge of modeling such
lateral behavioral preferences is the complexity and diversity of traffic scenes.
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Algorithm 2: QP speed planner customizing based on Bayesian optimization
and LOOCV using human driving data

Input: D = {ζi}ND
i=1: human driving data;H = {r | r(|aMLCF|) = k · |aMLCF|+ b,

r(|aMLCF|) = k · |aMLCF|2 + b, r(|aMLCF|) = k · ln(|aMLCF|+ 1)+b} :
hypothesis models; Nopt: the maximum number of Bayesian optimization
iterations; the personalized speed decider; the QP speed planner.

Output: r∗, x∗: The best hypothesis model and its parameters.

1 Divide the car-following episodes in D into
{
Di

tr
}N f

i=1,
{
Di

va
}N f

i=1, and {Dte};
2 foreach r inH do

3 Fit
{

SVEi, SDEi
}N f

i=1
and identify {kv, kd}

N f
i=1 with

{
Di

tr
}N f

i=1 through the

method in [9];
4 while i ≤ Nopt do
5 if i ≤ 5 then
6 Randomly select a parameter vector x = [ki, bi]

T ;
7 else
8 Select a parameter vector x = [ki, bi]

T according to: xnext = arg max
x

aEI

9 end
10 while j ≤ N f do
11 Simulate each car-following episode in D j

va setting w0/w2 = r(|aMLCF|)
where k = ki and b = bi;

12 Calculate the error between the simulated trajectories and the

trajectories in D j
va:

13

Ei,j
r = ωT · ei,j

r ,
ω = [ω1, ω2, ω3]

T ,

ei,j
r =

[
ei,j

r (a), ei,j
r (v), ei,j

r (d)
]T

,

ei,j
r (x) :=

√
1
φj ∑

φj

l=1

[
xi

r(l)− x(l)
]2, x ∈ {’a’, ’v’, ’d’};

14 end

15 Ei
r =

1
N f

∑
N f
j=1 Ei,j

r ;

16 Add x and y = Ei
r to {xn, yn}No

n=1;
17 end
18 i∗ = arg min

i
Ei

r;

19 x∗r = [ki∗ , bi∗ ];
20 end
21 Fit SVE, SDE and identify kv, kd with D1

tr ∪D1
va;

22 foreach r inH do
23 Simulate each episode in {Dte} with x∗r ;
24 Calculate the error Er;
25 end
26 r∗ = arg min

r
Er;

27 x∗ = x∗r∗ .

We propose to develop the personalized reference trajectory decider based on a
Bayesian network to model driver behavior in the lateral direction. There are two steps to
building such a Bayesian network, including designing the structure G and identifying the
parameters θ of the network. In general, determining the structures of BNs is intractable.
Fortunately, the BN structure of the proposed model can be determined by analyzing the
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reasoning patterns of human drivers. When driving on a highway, a driver needs to ob-
serve the physical states and lane-changing intentions of the surrounding vehicles, as well
as the physical states of the ego vehicle, to make lateral behavioral decisions. Given the
information about vehicles from sensors and V2X modules, the variables can be assumed to
be context-specifically independent [38]. Thus, the structure of the BN (represented by G∗)
is designed as depicted in Figure 9, where X1 (ΩX1 = {’yes’, ’no’}) denotes whether the
ego vehicle is traveling slower than expected; X2 (ΩX2 = {1, 2, ..., Nlane}) denotes the lane
the ego vehicle belongs to; X3 (ΩX3 = {’yes’, ’no’}) denotes whether the adjacent lane on
the right side exists; (X4, X5, X6, X7), ..., (Xn−4, Xn−3, Xn−2, Xn−1) are the physical states
(including the position, speed, and acceleration in s direction relative to the ego vehicle for
each surrounding vehicle) and the lateral intentions ({’left’, ’keep’, ’right’}, representing
changing to the left lane, lane-keeping, and changing to the right lane) of the surrounding
vehicles; and Xn (ΩXn = {’left’, ’keep’, ’right’}) is the lateral behavioral decisions of the ego
vehicle. Here, ΩXi denotes the set of possible values of a random variable Xi. Lowercase
letter xi refers to a value of a random variable Xi.

XnXn

X1X1 X2X2 X3X3 X4X4 X6X6X5X5 ··· Xn−1Xn−1

Figure 9. The BN of the personalized reference trajectory decider.

The lane-changing intentions of the surrounding vehicles and the ego vehicle can be
obtained through unsupervised techniques, e.g., HDP-HSMM [39]. Note that a variable
denoting the existence of the adjacent lane on the left side is not necessary. The lanes are
numbered from left to right as 1, 2, ..., Nlane, and whether the adjacent lane on the left side
exists is naturally known. For example, the lane on the left side does not exist if the ego
vehicle drives in lane 1, while it exists if the ego vehicle drives in lane 2. Given the values of
the parent variables of Xn, the BN returns the distribution of the lateral behavioral decisions
of the ego vehicle.

After determining the structure, the next step is to identify the parameters θ with
human driving data, i.e., the probabilities of the distribution p(Xn | pa(Xn)), where pa(Xn)
denotes the parent variable set of Xn. Since the physical states of the surrounding vehicles
are continuous and other variables are discrete, the BN is a hybrid Bayesian network (HBN).
Building an HBN is generally much more complex than building a BN [40]. However,
considering that the output variable Xn is discrete, the HBN in this study can be transformed
into a BN with only discrete variables by discretizing the continuous variables. There
are many techniques for discretization, which can be divided into unsupervised (e.g.,
equal width and equal frequency [41]) and supervised (e.g., CAIM [42] and CACC [43])
groups. Among them, unsupervised techniques should be considered in this study because
X4, X5, ..., Xn−1 are unlabeled. Meanwhile, the existing unsupervised discretizing methods
make the variable space extremely large when applied to build the BN, which increases the
complexity of the model because they do not utilize the underlying relationships (context-
specific independence) between variables. For example, when the blue vehicle makes
the lane-changing decision, it does not need to consider the vehicles in lane 1, as shown
in Figure 10.
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Lane 1

Lane 2

Lane 3

Lane 4

1f

3f

4f
4r

3r

2r

1r

2f

Figure 10. An example of traffic scenario.

To identify the parameters θ of the BN with the structure G∗ in an efficient and
lightweight way, we propose an algorithm based on the probability tree [44], which dis-
cretizes all the continuous variables in the BN, as summarized in Algorithm 3. A probability
tree is a directed labeled tree whose inner and leaf nodes represent random variables and
probability values, respectively. The branches of an inner node represent the possible values
or intervals of the variable. The path of a particular node Xi consists of the branches from
the root node to it, denoted as path(Xi). A sample in D′ is described as on the path(Xi)
when the values of the variables in the sample match the branches of the path(Xi). In ad-
dition, during the generation of a probability tree, all variables are expanded successively,
and each variable is expanded on all branches generated by the last expanded variable,
as shown in Figure 11.

X1X1

X2X2 X2X2

X3X3X3X3X3X3X3X3
………………

…

…

…

…
…

X4X4
…

XnXn

0.8 0.1 0.1

… …

yes no

1 2 3 4

X3X3X3X3X3X3X3X3

1 2 3 4

yes no

left

keep

right

[0,5)
[5,10)

[55,60)

left
keep

right

…

…

…

…
…

X4X4
…

XnXn

0.15 0.8 0.05

… …

yes no

left

keep

right

[0,10)
[10,20)

[50,60)

left
keep

right

X7X7 X7X7 X7X7 X7X7

Figure 11. An example of the probability tree.

For building a probability tree, three core tasks need to be completed: (1) determining
the discrete and continuous variables to be expanded, (2) determining the expanding
order of the variables, and (3) determining where to partition and how many intervals to
partition into for continuous variables. The proposed algorithm expands discrete variables
preferentially in general. X1 is first expanded because whether the ego vehicle reaches the
driver’s desired speed may influence the driver’s lateral decision in any traffic situation,
as depicted in Figure 11.
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Algorithm 3: Building the BN of the personalized reference trajectory decider
Input: D = {ζi}

ND
i=1 : human driving data; N (G∗ , θ): the BN with the determined structure G∗ and an undetermined

parameter vector θ.
Output: A BN N (G∗ , θ∗) built with D.

1 Transform D into D′ =
{

xj
i | i = 1, 2, ..., n, j = 1, 2, ..., ND′

}
;

2 Expand X1, X2, and X3 successively;
3 Identify the interested surrounding vehicles (ISVs) for each branch of the probability tree according to the ego lane;
4 Expand the lateral intention variables of the ISVs successively;
5 Let B be the set of all branches generated by last expansion;
6 Let CB be the set of the physical state variables of the ISVs for each branch B in B:

{
SB

i | i = 1, 2, ..., 2NISVs
}

;
7 foreach B in B do
8 Obtain BB by executing Algorithm 4;
9 end

10 T = (B, {BB | B ∈ B});
11 Calculate the probability at each leaf of the probability tree T with D′ based on the maximum likelihood

estimation [45]: θ∗ = p(xn | path(Xn)) =
frequency of Xn = xn and pa(Xn) = path(Xn) in D′

frequency of pa(Xn) = path(Xn) in D′ .

Algorithm 4: Continuous variable discretizing
Input: D′ ; CB ; nmax

INR : the maximum number of intervals for a continuous variable to be partitioned.
Output: BB : branches that originate from B.

1 Let Bk be the set of new branches that grow out of the branches in Bk−1;
2 Initialize k← 1;
3 Initialize B0 ← {B};
4 foreach SB

i in CB do
5 foreach b in Bk−1 do
6 Find the minimum and maximum values of SB

i : sb,min
i and sb,max

i ;
7 nINR = 1;
8 while nINR ≤ nmax

INR do
9 Equally partition [sb,min

i , sb,max
i ] in to nINR intervals;

10 Calculate the probabilities of the lateral intentions of the ego vehicle for each interval w in the

partitioned intervals: pw(x)← nx
b

nb
, x ∈ Xn ;

11 Calculate the maximum KL divergence: dmax
KL,nINR

← max dKL(p∥q), dKL(p∥q) = ∑x∈Xn p(x) log p(x)
q(x) − ϵ;

12 nINR ← nINR + 1;
13 end

14 n
∗,SB

i
INR ← arg max

nINR

dmax
KL,nINR

;

15 Equally partition SB
i into n

∗,SB
i

INR intervals within [sb,min
i , sb,max

i ];
16 Expand SB

i based on the partition, and let Bk
b be the new branches that grow out;

17 end
18 Bk ←

{
i | i ∈ Bk

b , b ∈ Bk−1
}

;
19 k← k + 1;
20 end
21 BB ←

{
i | i ∈ Bk , k = 1, 2, ..., 2NISVs

}
.

Next, X2 and X3 are expanded for similar reasons. Then, the lateral intentions of
the interested surrounding vehicles (ISVs) are expanded successively. Here, the ISVs are
determined by analyzing the traffic scenario. For simplicity, a scenario of a highway with
four lanes is used for explanation, as shown in Figure 10. First, only the two closest
vehicles ahead and behind in each lane (the vehicles labeled as “·f” and “·r”) need to be
considered. One reason for ignoring the vehicles farther away in front is that they generally
do not directly interact with the ego vehicle. Another important reason is that considering
those vehicles will make the structure of the BN much more complex, which hinders its
application. In addition, there is no additional threshold to exclude vehicles that are very
far because it may vary from one driver to another. Algorithm 4, presented later in this
paper, can automatically partition the distance variable of an obstacle vehicle according
to its effect on the ego lateral intentions. In this way, the algorithm equivalently finds the
distance threshold beyond which the vehicles will not affect the ego lateral intentions.

Second, the vehicle behind the ego vehicle (labeled as “1r”) does not affect the lateral
intentions of the ego vehicle. Third, vehicles beyond the width of two lanes on the left
or right (labeled as “4f” and “4r”) are not considered. Furthermore, the vehicle in the
rear of the lane next to the adjacent lane (labeled as “3r”) does not hinder the ego vehicle.
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Moreover, if some of the ISVs are absent, their lateral intentions are considered ’keep’,
and their physical states are set to particular values, e.g., 1 × 108. Finally, the lateral
intentions of the surrounding vehicles also contribute to the determination of the ISVs;
e.g., in Figure 10, vehicle “2f" is not an ISV if it is changing to the right lane. In summary,
the ISVs for the ego vehicle driving in each lane are listed in Table 1, where “2r: keep”
means that vehicle “2r” is regarded as an ISV only if it keeps the lane. Note that the ISVs are
defined concerning time, and the selection of ISVs will be updated over time. In addition,
the ISV selection rules presented in Table 1 are general rules for scenarios with four traffic
lanes, and rules for scenarios with more lanes can be established by similar analysis.

Table 1. ISVs for the ego vehicle driving on a highway with four lanes.

Ego Lane ISVs

1 “1f: keep, right”, “2f: left, keep”, “2r: keep”,
“3f: left”;

2
“1f: keep, right”, “1r: keep”, “2f: left,

keep, right’’,
“3f: left, keep”, “3r: keep”, “4f: left”;

3 “1f: right”, “2f: keep, right”, “2r: keep”,
“3f: left, keep, right”, “4f: left, keep”, “4r:

keep”;

4 “2f: right”, “3f: keep, right”, “3r: keep”, “4f:
left, keep”.

Actually, the determination of ISVs takes advantage of the context independence
between variables. With the lateral intention variables of the ISVs expanded, continuous
variables (physical states of the ISVs) are partitioned and expanded successively by exe-
cuting Algorithm 4. In Figure 11, for example, the lateral intention variable X7 of the first
ISV is expanded, following which the lateral intention variables X11, X15, and X19 of other
ISVs (represented by “...”) are expanded successively. Then the position variable X4 of the
first ISV is partitioned and expanded, and the speed and acceleration variables X5 and X6
of the first ISV, as well as the physical state variables of other ISVs, are partitioned and
expanded successively. Since the ISVs for each branch B in B vary from those in other
branches, Algorithm 4 is executed sequentially.

In Algorithm 4, the first step for discretizing a variable SB
i at a branch b is to find its local

minimum and maximum values in the subset of D′ whose samples are on the path(SB
i ),

instead of global minimum and maximum values in D′. This can contribute to retaining
more information when variables are partitioned into intervals. For example, assuming
that the ranges of a variable in D′ and the subset are [0, 100] and [40, 100], respectively,
discretization with partition 2 contains more information about the local distribution than
with partition 1, as shown in Figure 12.

Figure 12. An example of different partitions of a variable.

Then, the number of intervals nINR that the variable is partitioned into is determined ac-
cording to the maximum KL divergence dmax

KL,nINR
. Obviously, the larger the nINR is, the more

information about the distribution is retained. However, the growth of nINR increases the
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size of the probability tree, i.e., the number of the BN’s parameters, exponentially, which
significantly increases the time complexity and space complexity of the algorithm. Thus,
dmax

KL,nINR
is employed to assess the gain of partitioning. The core idea is that more intervals

are needed only if the increase in nINR benefits maximizing the difference between the
distributions of the ego lateral intentions in the partitioned intervals. Specific to a driving
scenario, if the obstacle vehicle in the adjacent lane is close to the ego vehicle in the longitu-
dinal direction, a driver would not change to that lane even though the obstacle vehicle
will move away soon. In this case, there is no need to partition the speed variable of the
obstacle vehicle since whether it is partitioned does not affect the lateral intentions of the
driver; i.e., the distributions of the lateral intentions in the partitioned intervals are the same.
To calculate dmax

KL,nINR
, the probabilities of ego lateral intentions for each partitioned interval

w are first calculated by pw(x) =
nx

b
nb

, x ∈ Xn, where nb denotes the number of samples
that match the path(SB

i ) and the interval b, and nx
b is the number of samples in which the

ego lateral intention equals x ∈ {’left’, ’keep’, ’right’} in the samples just mentioned. Next,
given two intervals, the KL divergences of them are dKL(p∥q) = ∑x∈Xn p(x) log p(x)

q(x) − ϵ.
Here, p(x) and q(x) represent the distributions of the two intervals. The KL divergences
are calculated for all combinations of the intervals. The maximum KL divergence for a
particular number of intervals is defined as the maximum value of all the KL divergences.
Note that a small negative constant −ϵ is added to the KL divergence formula because
smaller nINR is preferred when the dmax

KL,nINR
remains the same.

By executing Algorithm 4 for each B in B, all branches B and {BB | B ∈ B} are ob-
tained, according to which the probability at each leaf is estimated based on the maximum
likelihood estimation (MLE) as

θ∗ =
frequency of Xn = xn and pa(Xn) = path(Xn) in D′

frequency of pa(Xn) = path(Xn) in D′ , (14)

where xn ∈ {’left’, ’keep’, ’right’}. At this point, a BN with the driver characteristics in the
lateral direction is built. Once the information about the ego vehicle and the ISVs is given,
the BN outputs a lateral decision with the highest probability based on the experience
extracted from D′.

However, the decisions of the BN cannot be adopted directly since the BN considers
simplified information about the surrounding vehicles. On the contrary, the path optimizer
and the speed optimizer plan path and speed profiles with complete information from the
data center. Additionally, the lateral decisions made by the BN may be unstable during lane
changing as long as a state has not been experienced in the collected human driving dataset.
Therefore, a scheduling strategy must be designed to deal with the flaws. For AVs, safety is
always the priority. Hence, the decision of the BN is adopted only when the corresponding
trajectory is safe. The safety of a trajectory can be assessed from the kinematic aspect
using the same method in the path optimizer and from the vehicle dynamics aspect via
adhesion evaluation [46]. Moreover, traffic regulations should take precedence over driver’s
preference. As for the instability problem, theoretically, it could be solved if enough data
were collected. However, it is hard to ensure the adequacy of data volume. Therefore,
once a lane-changing decision is made by the BN, the ego vehicle will complete the lane-
changing process unless the safety or traffic regulation requirements are not satisfied. For a
situation not covered by the BN, the lateral decision will be made according to the safety
assessment and traffic regulations. In addition, lateral decisions must be made after the
motion planning for each candidate lane. Although making a lateral decision first and only
planning motion for that decision saves computational resources, it can be dangerous in
some unusual scenarios. For example, suppose a slow vehicle ahead suddenly changes
lanes into the lane of the ego vehicle, while the BN decides to keep the lane. In that case,
the ego vehicle may be unable to avoid the collision even with maximum deceleration.
In contrast, a lane-changing decision after motion planning can be substituted for the
decision of the BN and prevent the collision. With the scheduling strategy described above
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and the BN, the personalized reference trajectory decider is developed, which selects a
trajectory among the trajectories of candidate lanes to be transferred to the vehicle controller.

2.6. Personalizing the Path Optimizer

The personalized reference trajectory decider enables personalized lateral behavioral
decision making. To further consider the lateral characteristics at the trajectory level,
the path optimizer introduced in Section 2.3 needs personalization.

Remind that in the path optimizer, the DP path search provides a rough path solution,
which is smoothed by the QP path planning afterward. Therefore, the DP path search
should have a great impact on the generation of the final path. According to Equation (1),
when the ego vehicle overlaps with obstacles or the road boundaries, Cobs and Cboundary
dominate the total cost Ctotal. Conversely, when the ego vehicle does not overlap with
obstacles or road boundaries, Csmooth and Cguidance dominate the total cost. Since safety is
the priority, we can only adjust Csmooth and Cguidance to improve the human likeness of the
final path. The weights, w1, w2, and w3, in Equation (2) determine the relative magnitude
of Csmooth and Cguidance and thus need to be adjusted. In general, the greater the weights
are, the smoother the lane-changing paths are. On the contrary, the smaller the weights are,
the closer the paths are to the centerline of the lanes.

Figure 13 compares the simulated trajectories, speed, acceleration, and curvature of
the ego vehicle generated by three motion planners with three sets of randomly selected
weights. The motion planners had the same personalized speed optimizer and person-
alized reference trajectory decider. Parameter 1, Parameter 2, and Parameter 3 denote
{w1 = 9.30× 102 , w2 = 7.98× 104 , w3 = 9.53× 106 }, {w1 = 2.59× 102 , w2 = 6.44×
104 , w3 = 9.66× 106 }, and {w1 = 8.65× 102 , w2 = 7.12× 104 , w3 = 5.24× 106 }, respec-
tively. The triangles marked on the trajectories are spaced at 0.1 s intervals, representing
the locations of the vehicles and indicating the traveling direction of the vehicle. The blue
rectangle represents the ego vehicle, whose trajectories, speed, acceleration, and curvature
in the driving data are represented by the blue curves. Those of the three motion planners
compared are represented by the orange, green, and red curves. The transparent gray
rectangles are the surrounding vehicles. It is shown that the weights affect not only the
path but also the speed and acceleration.

Figure 13. Comparison of trajectories, speed, acceleration, and curvature between different weights
of the path optimizer.

Similar to Algorithm 2, we can also use Bayesian optimization and LOOCV to adjust
the weights. The difference is that the parameter vector becomes x = [w1, w2, w3]

T and the
optimization objective is replaced by

E = −

√√√√ 1
tn + 1

tn

∑
t=0
∥ξsim(t)− ξ(t)∥2

2, (15)
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where ξsim (t) stands for the simulated trajectory, and ξ(t) is the trajectory in the driving
data. tn is the number of time steps. Additionally, the personalized speed optimizer and the
personalized reference trajectory decider are employed during the optimization. After the
optimization, a personalized path optimizer is obtained.

3. Results and Discussion
3.1. Implementation Details

To test the proposed personalized motion planning method, we built motion planners
with different models of r and with or without the BN to conduct simulations successively
using the collected human driving data and the NGSIM dataset [25]. The simulations
were implemented on a PC with an Intel Core i7-13700F processor (up to 5.20 GHz) and
32 GB of RAM. All the models were programmed in Python 3.9. All the simulation figures
were created using the Matplotlib library 3.5.2 in Python 3.9, while the diagrams in the
previous sections were created using Microsoft PowerPoint 16.68 for Mac in addition to
Matplotlib. The motion planners provided a trajectory of 6 s in time length for every simu-
lation step (every 0.1 s). The DP path consisted of two or three quintic polynomials for lane
keeping or lane changing, respectively. The QP path contained five cubic polynomials with
20 parameters. During the path and speed optimization, the path or speed at 60 locations
or time points was evaluated. When customizing the QP speed planner and personalizing
the path optimizer, the maximum number of Bayesian optimization iterations Nopt was set
to 100 and 1000, respectively. When building the BN, the maximum number of intervals
nmax

INR for a continuous variable was set to five.
The collected dataset is 1304 s long and contains both car-following and lane-changing

episodes of a specific driver. For the NGSIM dataset, a segment of data from 7:50 a.m. to
8:05 a.m. on the US Highway 101 was employed. The recorded area was approximately
640 m long and consisted of five mainline lanes. The trajectory of each vehicle in the dataset
is about 50 to 70 s in time length. A total of 100 vehicles that only performed car following,
namely, car-following vehicles, were further selected along with their trajectories, as well
as another 100 vehicles that performed lane changing, namely, lane-changing vehicles.
For both datasets, 80% of the car-following episodes serve as the training and validation
sets, while the rest are a testing set when customizing the QP speed planners based on
Algorithm 2. Additionally, when personalizing the path optimizer, 80% of the lane-changing
episodes serve as the training and validation sets, while the rest are a testing set. When
building the BN, all trajectories of the lane-changing vehicles were decomposed into states
at the corresponding time points. For our dataset, 80% (2863) of the states constituted the
training set, while the rest (723) formed the testing set. For the NGSIM dataset, the training
set and the testing set contained 96% (28631) and 4% (1192) of the states, respectively. When
testing the characteristics in the lateral direction, scenarios of 10 s in time length starting
from each state in the testing set were employed. The scenarios included both lane-keeping
and lane-changing scenarios. By the way, the lateral behavior of the ego vehicle at each
time point was used to label the lateral intention. Specifically, lane-changing time points,
lane-changing start time points, and lane-changing end time points were defined as when
the ego vehicle crossed the lane line, when the lateral speeds at the following five time
points were all greater than 0.2 m/s, and when the lateral speeds at the following five time
points were all smaller than 0.2 m/s, respectively [47]. The states between lane-changing
start time and end time points were labeled with the corresponding lateral intention.

Both our dataset and the NGSIM dataset provide the positions and motion states of the
ego vehicle as well as those of the surrounding vehicles, which are necessary for studying
driver behavior. Note that it was assumed that the 200 drivers selected from the NGSIM
dataset shared global characteristics in longitudinal and lateral directions; i.e., they had
the same driving style. Additionally, we built a single personalized motion planner for
the 200 drivers. This is because the proposed method is based on statistical characteristics,
and the data from one vehicle are not sufficient.
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In addition, during the simulation, the surrounding vehicles were assumed to follow
the trajectories in the driving data, in which way all surrounding vehicles maintain hu-
manlike behaviors. The trajectories of the surrounding vehicles were transferred to the
ego vehicle as their predicted trajectories. The ego vehicle was controlled in a closed loop,
planning trajectories iteratively and being assumed to track the first 0.1 s of the planned
trajectory exactly in each simulation step. The kinematic state of the ego vehicle was
updated according to the bicycle model in each simulation step.

3.2. Testing for the Characteristics in the Longitudinal Direction

The original EM planner and the motion planners with the constant model (r = 0.005),
the MLCF model, and the hypothesis models of r were tested for the characteristics in the
longitudinal direction in each car-following scenario in the testing set. The parameters of
the hypothesis models were obtained by executing Algorithm 2, as shown in Figure 14.
The colors of the heat map represent the values of error Ei

r. The blue points are sampled
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Figure 14. Bayesian optimization of the parameters of the quadratic ratio model.

The testing results on our dataset and the NGSIM dataset are given in Tables 2 and 3,
respectively.

Table 2. Comparison of the EM planner, constant model, MLCF model, and hypothesis models for
the human likeness in the longitudinal direction using our dataset.

Method ē(d) ē(v) ē(a) E
[m] [m/s] [m/s2]

EM Planner 16.27 2.02 0.53 14.83
0.005 9.94 1.46 0.46 9.08
MLCF 9.24 1.24 0.45 8.43
0.00667|aMLCF|+ 0.00005 9.03 1.36 0.45 8.26
0.00226|aMLCF|2 + 0.00986 8.48 1.30 0.46 7.75
0.00751ln(|aMLCF|+ 1) + 0.00779 8.49 1.30 0.46 7.76

For each metric, the best result is in bold.

The ē(d), ē(v), and ē(a), averaged by different episodes, denote the average errors in
clearance, speed, and acceleration between the simulated trajectories and the trajectories in the
driving data, respectively. The total error E is calculated as E = 0.01ē(d) + 0.09ē(v) + 0.9ē(a).
The smaller the total error is, the more humanlike the motion planner is. For our dataset,
the results indicated that, in general, the motion planner with the quadratic ratio r out-
performed other models. In contrast, the original EM planner had the worst perfor-
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mance. For the NGSIM dataset, the motion planner with the quadratic ratio outper-
formed all other models except for the MLCF model. However, as mentioned before,
the MLCF model can only perform car following, which does not meet the require-
ments for high-level AVs. In this sense, the quadratic ratio is still the most promis-
ing model. Figure 15 shows the details of the trajectory of a typical car-following sce-
nario. The solid blue lines refer to the clearance, speed, and acceleration of the trajec-
tory in the datasets, while those of the EM planner, the constant model, and the hy-
pothesis models are represented by different lines explained in the legend. The solid
pink line represents the speed of the preceding vehicle. The trajectory, whose total er-
ror E is 2.21, generated by the motion planner with the quadratic ratio is the closest
to the driver’s trajectory, while the total errors of the EM planner, the constant model,
the MLCF model, the linear ratio model, and the logarithmic ratio model are 6.28, 3.38, 4.12,
4.02, and 2.22, respectively.

Table 3. Comparison of the EM planner, constant model, MLCF model, and hypothesis models for
the human likeness in the longitudinal direction using the NGSIM dataset.

Method ē(d) ē(v) ē(a) E
[m] [m/s] [m/s2]

EM Planner 10.22 1.24 1.47 9.32
0.005 7.21 1.21 1.46 6.61
MLCF 5.61 1.12 1.53 5.17
0.01872|aMLCF|+ 0.01035 6.35 1.04 1.44 5.82
0.01762|aMLCF|2 + 0.01159 6.35 1.04 1.44 5.82
0.01973ln(|aMLCF|+ 1) + 0.01047 6.35 1.04 1.44 5.82

For each metric, the best result is in bold.

Figure 15. Comparison of the EM planner, constant model, MLCF model, and hypothesis models in a
typical car-following scenario.

3.3. Testing for the Characteristics in the Lateral Direction

To test the characteristics in the lateral direction, the decisions of the BN were first
evaluated. Then, the EM planner and the proposed motion planners with “PS”, “PS+PT”,
and “PS+PT+PP” were employed in the testing scenarios. Here, “PS” denotes the personal-
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ized speed optimizer, “PT” denotes the personalized reference trajectory decider, and “PP”
denotes the personalized path optimizer.

First, the decision of the BN was compared with the lateral behavior of the ego vehicle
at each time point. According to the results, for 99.86% and 95.85% of the training and the
testing situations in our dataset, respectively, the BN model made the same lateral decisions
as the human driver. For the NGSIM dataset, the accuracy becomes 97.30% and 92.11%
for the training and the testing situations, respectively. Moreover, building a BN through
the traditional method, i.e., equally partitioning the continuous variables into a particular
number of intervals and estimating the probabilities based on MLE, is nearly impossible
due to the vast number of parameters. For the scenarios with four lanes, as shown in
Figure 10, supposing each continuous variable is partitioned into five intervals, the total
number of parameters of the BN is 2× 4× 2× 38 × 516 × 3 ≈ 4.80× 1016. In contrast,
after the determination of the ISVs, the number becomes about 3.53× 1010, which can be
further decreased by applying Algorithm 4. The proposed algorithms for building the BN
will not be compared with the traditional method since the latter is too hard to implement.

Second, the human likeness of the personalized motion planner was evaluated in the
testing scenarios of our dataset and the NGSIM dataset. The human likeness is defined as
the same as Equation (15)

HL = −

√√√√ 1
tn + 1

tn

∑
t=0
∥ξsim(t)− ξ(t)∥2

2, (16)

which is similar to references [21,48]. The HL is the negative root-mean-square trajectory error
concerning time t = 0, 0.1, ..., tn. It reflects the characteristics in longitudinal and lateral directions
since it considers both longitudinal and lateral position errors at each time point. The larger the
HL is, the more humanlike the motion planner is. The results on our dataset and the NGSIM
dataset are summarized in Tables 4 and 5. All motion planners except “PS+PT+PP” used the
same path optimizer with a set of hand-tuned weights {w1 = 1.00× 102 ,w2 = 1.00× 104 ,
w3 = 1.00×106 }. For our dataset, the weights of the personalized path optimizer in Equation (2)
were {w1 = 1.07× 102 ,w2 = 1.14× 104 ,w3 = 0.24× 106 }, while for the NGSIM dataset,
the weights were {w1 = 5.13× 102 ,w2 = 8.87× 104 ,w3 = 9.85× 106 }. “HL (all)” refers to
the average human likeness of all testing scenarios, while “HL (lane-changing)” is the average
human likeness of lane-changing scenarios in the testing set. The success rate was calculated by
dividing the number of scenarios in which a motion planner generates safe trajectories by the
number of scenarios in the testing set.

Table 4. Comparison of the EM planner and the proposed motion planners for the human likeness
using our dataset.

Method HL (all) HL (Lane Changing) Success Rate
(m) (m)

EM planner −7.50 −11.89 61.47%
Proposed (PS) −4.13 −8.90 94.37%

Proposed (PS+PT) −3.82 −5.42 96.24%
Proposed

(PS+PT+PP) −3.81 −5.32 96.71%

According to the results in Tables 4 and 5, the human likeness and success rate of the
proposed motion planners were much greater than the original EM planner. Moreover,
each of the proposed PS, PT, and PP is beneficial to improving the performance of the
motion planner. Overall, the motion planner (PS+PT+PP) outperformed the others.
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Table 5. Comparison of the EM planner and the proposed motion planners for the human likeness
using the NGSIM dataset.

Method HL (all) HL (Lan Changing) Success Rate
(m) (m)

EM planner −7.18 −10.84 64.32%
Proposed (PS) −4.48 −6.46 97.00%

Proposed (PS+PT) −4.49 −6.44 97.09%
Proposed (PS+PT+PP) −4.44 −6.04 97.09%

The average computation time of a planning cycle of the proposed motion planner
(PS+PT+PP) was 140 ms, while the maximum was 338 ms. As a comparison, the original
EM planner took 141 ms per planning cycle on average, and the maximum was 337 ms,
which suggested that our method adds almost no computational effort. Since the original
EM planner has been tested in real cars, the proposed planner should also be practical in
terms of computational complexity. Additionally, the acceleration and curvature of the
simulated trajectories were compared with those of the trajectories in the datasets. Specif-
ically, the average, minimum, and maximum accelerations of the trajectories generated
by the proposed method were −0.067 m/s2, −2.413 m/s2, and 2.597 m/s2, while those
in the datasets were −0.097 m/s2, −3.536 m/s2, and 3.780 m/s2. The average curvature
and the maximum curvature of the trajectories generated by the proposed method were
4.141× 10−5 m−1 and 0.011 m−1, while those in the datasets were 9.092× 10−5 m−1 and
0.139 m−1. The absolute value of the acceleration and the curvature corresponding to the
proposed method were smaller than those in the datasets. Therefore, the vehicle controller
should be able to follow the planned trajectories in practice.

Figure 16 depicts the simulated trajectories, speed, acceleration, and curvature of the
ego vehicle generated by the proposed motion planners in lane-changing and lane-keeping
scenarios. The triangles marked on the trajectories are spaced at 0.1 s intervals, representing
the locations of the vehicles and indicating the direction in which the vehicle is traveling.
The blue rectangle represents the ego vehicle, whose trajectories, speed, acceleration,
and curvature in the driving data are represented by the blue curves. Those of the three
methods compared are represented by the orange, green, and red curves, respectively.
The transparent gray rectangles are the surrounding vehicles, and the transparent gray
curves depict their trajectories. In the lane-changing scenario, the human driver preferred
to change to lane 2. During the lane-changing process, the vehicle in the front of lane
1 was slow and close to lane 2. Therefore, the human driver changed to lane 2 slowly.
According to the simulation result, the motion planner with “PS+PT+PP” had a more
similar trajectory to the human driver’s trajectory than the motion planner with “PS+PT”.
Furthermore, without the personalized reference trajectory decider, the EM planner and the
motion planner with only “PS” did not make the same behavioral decision as the human
driver. In the lane-keeping scenario, the preceding vehicle was about to change to lane 3,
and all motion planners generated lane-keeping trajectories. However, compared with the
EM planner, the proposed three planners generated trajectories more similar to the human
driver’s trajectory regarding the longitudinal speed.

3.4. Discussion

According to the above results, it is validated that the proposed personalized motion
planning method can capture the driver characteristics in longitudinal and lateral directions
using naturalistic human driving data and produce humanlike behavior within the frame-
work of the Apollo EM motion planner. The proposed method can improve driving comfort
because the resulting behavior of the AV meets the driver’s preferences. Meanwhile, the per-
sonalized motion planner is highly interpretable, situation-aware, and interaction-aware.
First, interpretability is retained because the modules of the motion planner have clear
mathematical structures and parameters with physical meanings. For example, the terms
in the optimization objective functionals and constraints correspond to actual physical
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quantities, the structure of the BN describes the causal relationship between the traffic
situation and the lateral intentions, and the parameters of the BN are the probabilities
of lateral intentions under different situations. Second, the personalized motion planner
is situation-aware since it takes as input the locations, motion states, lateral intentions,
and predicted trajectories of the surrounding vehicles. The situation awareness is modeled
by the hypothesis model and the BN. Third, the mutual dependence of the ego vehicle’s
lateral behavioral decision and the surrounding vehicles’ intentions is modeled by the BN,
achieving interaction awareness of the personalized motion planner. The interpretabil-
ity enables one to modify, verify, interpret, and understand the model, while situation
awareness and interaction awareness can help AVs better share the road with human
drivers. These properties should facilitate the practical applications of the proposed motion
planning method.

(a)

(b)

Figure 16. The simulated trajectories, speed, acceleration, and curvature of the ego vehicle in
representative lane-changing and lane-keeping scenarios: (a) the lane-changing scenario; (b) the
lane-keeping scenario.

Moreover, learning driver behavior also has the potential to improve driving safety.
Traditional model-driven methods, such as motion planning based purely on numerical op-
timization, face substantial challenges in practical applications. One of the major challenges
is that the driving policies of these methods are inflexible and can hardly adapt to various
driving scenarios. In contrast, the proposed method enables the AVs to make humanlike
decisions and thus helps the AVs with handling scenarios similar to the training scenarios.

However, the limitation of this study is that the driving behaviors in the human
driving data used to build the personalized motion planner were assumed to be appropriate.
Meanwhile, the behavior of drivers, especially novice drivers, may occasionally cause safety
concerns or disrupt traffic flow. Although our approach imposes safety constraints on the
motion planner and considers the lateral intentions of the surrounding vehicles, the human
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driving data with inappropriate driving behaviors should be filtered out in advance,
which is related to the field of driving behavior analysis [49]. In addition, for situations
where a novice driver lacks driving data, the personalized reference trajectory decider
cannot make a personalized decision. However, thanks to the interpretability of the BN,
such situations can be identified when they happen because there is no corresponding
probability at the leaves of the probability tree. Additionally, the decisions made by
another BN built with all available driving data (including data of other drivers) should
be adopted, or the decisions can be made based on trajectory safety assessment and traffic
regulations. Finally, the driver’s behavior can be influenced by the external conditions, e.g.,
icy road and fog. Benefitting from the interpretability of the proposed method, adaptive
strategies can be developed to handle different external conditions. For example, the desired
clearance calculated by Equation (8) can be multiplied by a factor to increase the clearance
to the preceding vehicle when the road is icy. Alternatively, different personalized motion
planners can be developed for different external conditions if corresponding human driving
data are sufficient.

4. Conclusions

This study achieves humanlike driving with driver characteristics in longitudinal and
lateral directions within the same motion planning framework. The motion planning of
the ego vehicle is decoupled into path optimization and speed optimization. To introduce
the driver characteristics in the longitudinal direction into the motion planner, two algo-
rithms are proposed to personalize the speed optimizer. Specifically, the desired clearance
characteristics are modeled by the QDC, which is further integrated into the speed decision-
making process. Then, the weight ratio of the objective functional is assumed to be linear,
quadratic, and logarithmic functions of the acceleration calculated by the MLCF, whose
parameters can be obtained by Bayesian optimization and LOOCV using the driving data.
To personalize the motion planner with the driver characteristics in the lateral direction,
a BN is employed to model the lateral behavioral decision-making preference. Two algo-
rithms, which partition continuous variables according to the maximum KL divergence
based on a probability tree, are proposed to build the BN in an efficient and lightweight
way. Moreover, a scheduling strategy is designed to weigh the BN decisions against traffic
regulations and trajectory costs. Finally, a personalized motion planner within the Apollo
EM motion planning framework is developed by applying the proposed algorithms using
the driving data. The results of the simulation constructed based on real driving data vali-
dated the effectiveness of the proposed method and the feasibility of achieving humanlike
driving with driver characteristics in longitudinal and lateral directions under the same
motion planning framework. It is also indicated that the proposed Algorithm 2 is able
to find the best model of ratio r among the hypothesis models. Furthermore, with the
proposed Algorithms 3 and 4, the number of the parameters of the BN is significantly
reduced, while the precision of the BN is preserved as much as possible, considering the
limited time complexity and space complexity.
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Abbreviations
The following abbreviations are used in this manuscript:

BN Bayesian network
AVs automated vehicles
IDM intelligent driver model
LCF model linear car-following model
MLCF model modified linear car-following model
IRL inverse reinforcement learning
PACC personalized adaptive cruise control
MPC model predictive control
CNN convolutional neural network
DL deep learning
LSTM long short-term memory
NGSIM Next Generation Simulation
HD map high-definition map
SL station-lateral
ST station-time
DP dynamic programming
QP quadratic programming
QDC model quadratic desired clearance model
LOOCV leave-one-out cross validation
SVE sensitivity to velocity error
SDE sensitivity to distance error
HBN hybrid Bayesian network
ISVs interested surrounding vehicles
MLE maximum likelihood estimation
PS personalized speed optimizer
PT personalized reference trajectory decider
PP personalized path optimizer
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