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Abstract: In solving the portfolio optimization problem, the mean-semivariance (MSV) model is
more complicated and time-consuming, and their relations are unbalanced because they conflict with
each other due to return and risk. Therefore, in order to solve these existing problems, multi-strategy
adaptive particle swarm optimization, namely APSO/DU, has been developed to solve the portfolio
optimization problem. In the present study, a constraint factor is introduced to control velocity weight
to reduce blindness in the search process. A dual-update (DU) strategy is based on new speed, and
position update strategies are designed. In order to test and prove the effectiveness of the APSO/DU
algorithm, test functions and a realistic MSV portfolio optimization problem are selected here. The
results demonstrate that the APSO/DU algorithm has better convergence accuracy and speed and
finds the least risky stock portfolio for the same level of return. Additionally, the results are closer to
the global Pareto front (PF). The algorithm can provide valuable advice to investors and has good
practical applications.

Keywords: PSO; multi-strategy; dual-update strategy; mean-semivariance model; portfolio optimization

1. Introduction

The portfolio optimization problem (POP) aims to improve portfolio returns and
reduce portfolio risk in the complex financial market. The mean-variance (MV) model
was first proposed by economist Markowitz in 1952 to calculate the POP [1,2] and is a
cornerstone of financial theory, providing a theoretical basis for investors to choose the
optimal portfolio. However, there are significant limitations in its practical application.
The use of variance to assess risk usually requires the calculation of a covariance matrix
for all stocks, which is difficult to use in practice due to its computational complexity.
Additionally, this risk measurement only considers the extent to which actual returns
deviate from expected returns, whereas true losses refer to fluctuations below the mean of
returns [3–8]. In order to be more in line with social reality, mean-semivariance portfolio
models have been proposed and are widely used [9–12].

Traditional optimization algorithms for solving POPs require the application of many
complex statistical methods and reference variables provided by experts, so solving large-
scale POPs suffers from slow computational speed and poor solution accuracy, while
heuristic algorithms can solve these problems well. In recent years, many scholars have
used evolutionary computation algorithms to solve POPs, including the genetic algo-
rithm (GA) [13], particle swarm optimization (PSO) [14,15], artificial bee colony algorithm
(ABC) [16], and squirrel search algorithm (SSA) [17]. The particle swarm optimization
algorithm (Eberhart & Kennedy, 1995) belongs to a class of swarm intelligence algorithms,
which are designed by simulating the predatory behavior of a flock of birds [18–23]. Due
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to its simple structure, fast convergence, and good robustness, it has been widely used in
complex nonlinear portfolio optimization [24–29]. In addition, some new methods have
also been proposed in some fields in recent years [30–39].

The improvement directions of the PSO algorithm are mainly divided into param-
eter improvement, update formula improvement, and integration with other intelligent
algorithms. Setting the algorithm’s parameters is the key to ensuring the reliability and
robustness of the algorithm. With the determined population size and iteration time, the
search capability of the algorithm is mainly decided by three core control parameters,
namely the inertia weight (w), the self-learning factor (C1), and the social-learning factor
(C2). To improve the performance of the algorithm, PSO algorithms based on the dual
dynamic adaptation mechanism of inertia weights and learning factors have been proposed
successively in recent years [40–42], considering that adjusting the core parameters alone
weakens the uniformity of the algorithm evolution process and make it difficult to adapt
to complex nonlinear optimization problems. Clerc et al. [43] proposed the concept of the
shrinkage factor, and this method adds a multiplicative factor to the velocity formulation in
order to allow the three core parameters to be tuned simultaneously, ultimately resulting in
better algorithm convergence performance. Since then, numerous scholars have explored
the full-parameter-tuning strategy to mix the three core parameters for tuning experiments.
Zhang et al. [44] used control theory to optimize the core parameters of the standard
PSO. Harrison et al. [45] empirically investigated the convergence behavior of 18 adaptive
optimization algorithms.

The parameter improvement of PSO only involves improving the velocity update and
does not consider the position update. Different position-updating strategies have different
exploration and exploitation capabilities. In position updating, because the algorithm’s
convergence is highly dependent on the position weighting factor, a constraint factor needs
to be introduced to control the velocity weight and reduce blindness in the search process.
Liu et al. [46] proposed that the position weighting factor facilitates global algorithm
exploration. The paper synthesizes the advantages of the two improvement methods and
proposes a dual-update (DU) strategy. The method not only adjusts the core parameters of
velocity update to make the algorithm more adaptable to nonlinear complex optimization
problems, it also considers the position update formula and introduces a constraint factor
to control the weight of velocity to reduce blindness in the search process and improve the
convergence accuracy and convergence speed of the algorithm.

The main contributions of this paper are described as follows.
(1) This paper makes improvements based on fundamental particle swarm and pro-

poses a multi-strategy adaptive particle swarm optimization algorithm, namely APSO/DU,
to solve the portfolio optimization problem. Modern portfolio models are typically complex
nonlinear functions, which are more challenging to solve.

(2) A dual-update strategy is designed based on new speed and position update
strategies. The approach uses inertia weights to modify the learning factor, which can
balance the capacity for learning individual particles and the capacity for learning the
population and enhance the algorithm’s optimization accuracy.

(3) A position update approach is also considered to lessen search blindness and
increase the algorithm’s convergence rate.

(4) Experimental findings show that the two strategies work better together than they
do separately.

2. Multi-Strategy Adaptive PSO
2.1. Basic PSO Algorithm

The PSO algorithm is a population-based stochastic search algorithm in which the
position of each particle represents a feasible solution to the problem to be optimized, and
the position of the particle is evaluated in terms of its merit by the fitness value derived
from the optimization function. The particle population is initialized randomly as a set
of random candidate solutions in the PSO algorithm, and then each particle moves in the
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search space with a certain speed, which is dynamically adjusted according to its own and
its companion’s flight experience. The optimal solution is obtained after cyclic iterations
until the convergence condition is satisfied.

Suppose a population X = {x1, . . . , xi, . . . , xn} of n particles without weight and vol-
ume in a D-dimensional search space, at the tth iteration, xi(t) = [xi1(t), xi2(t), . . . , xiD(t)]
denotes the position of ith particle, Vi(t) = [vi1(t), vi2(t), . . . , viD(t)] denotes the velocity
of ith particle. Up to generation t, pi(t) = [pbesti1(t), pbesti2(t), . . . , pbestiD(t)] denotes the
personal best position particle i has visited since the first-time step. gbest denote the best
position discovered by all particles so far. In every generation, the evolution process of the
ith particle is formulated as

vi(t + 1) = wvi(t) + c1 × rand()× (pi(t)− xi(t) + c2 × rand()× (gbest(t)− xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where i = 1, 2, . . . , D. w is the inertia weight. c1 and c2 are constants of the PSO algorithm
with a value range of [0, 2], while rand () represents the random numbers in [0, 1].

An iteration of PSO-based particle movement is demonstrated in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 16 
 

 

2. Multi-Strategy Adaptive PSO 

2.1. Basic PSO Algorithm 

The PSO algorithm is a population-based stochastic search algorithm in which the 

position of each particle represents a feasible solution to the problem to be optimized, and 

the position of the particle is evaluated in terms of its merit by the fitness value derived 

from the optimization function. The particle population is initialized randomly as a set of 

random candidate solutions in the PSO algorithm, and then each particle moves in the 

search space with a certain speed, which is dynamically adjusted according to its own and 

its companion’s flight experience. The optimal solution is obtained after cyclic iterations 

until the convergence condition is satisfied. 

Suppose a population  𝑋 = {𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛} of n particles without weight and vol-

ume in a 𝐷-dimensional search space, at the tth iteration, 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), … , 𝑥𝑖𝐷(𝑡)]  
denotes the position of ith particle,  𝑉𝑖(𝑡) = [𝑣𝑖1(𝑡), 𝑣𝑖2(𝑡), … , 𝑣𝑖𝐷(𝑡)]  denotes the velocity 

of ith particle. Up to generation t, 𝑝𝑖(𝑡) = [𝑝𝑏𝑒𝑠𝑡𝑖1(𝑡), 𝑝𝑏𝑒𝑠𝑡𝑖2(𝑡), … , 𝑝𝑏𝑒𝑠𝑡𝑖𝐷(𝑡)] denotes 

the personal best position particle  𝑖 has visited since the first-time step. 𝑔𝑏𝑒𝑠𝑡 denote 

the best position discovered by all particles so far. In every generation, the evolution pro-

cess of the ith particle is formulated as 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑖(𝑡) − 𝑥𝑖(𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) (1) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2) 

where 𝑖 = 1,2, … , 𝐷. 𝑤 is the inertia weight. 𝑐1 and 𝑐2 are constants of the PSO algorithm 

with a value range of [0, 2], while rand () represents the random numbers in [0, 1]. 

An iteration of PSO-based particle movement is demonstrated in Figure 1. 

 

Figure 1. An iterative particle movement in PSO. 

2.2. APSO/DU 

PSO is an intelligent algorithm with global convergence, which requires fewer pa-

rameters to be adjusted. However, basic PSO has the problem of easily falling into local 

optimum and slow convergence. The APSO/DU algorithm can reduce the blindness of the 

search process and improve the convergence accuracy and speed of the algorithm, making 

it more adaptable to complex optimization problems. The APSO/DU algorithm can reduce 

the blindness of the search process and make the algorithm more adaptable to complex 

optimization problems. 

Figure 1. An iterative particle movement in PSO.

2.2. APSO/DU

PSO is an intelligent algorithm with global convergence, which requires fewer pa-
rameters to be adjusted. However, basic PSO has the problem of easily falling into local
optimum and slow convergence. The APSO/DU algorithm can reduce the blindness of the
search process and improve the convergence accuracy and speed of the algorithm, making
it more adaptable to complex optimization problems. The APSO/DU algorithm can reduce
the blindness of the search process and make the algorithm more adaptable to complex
optimization problems.

2.2.1. Speed Update Strategy

The improvement strategies for inertia weights (w) and learning factors (c1, c2) can
be classified as constant or stochastic, linear or nonlinear, and adaptive. The existing
research on the dual dynamic adaptation mechanism has experimentally shown that using
nonlinear decreasing weights is better than using linear decreasing weights. The functional
relationship with nonlinear learning factors can be more adapted to complex optimization
objectives. The strategy uses inertia weights to adjust the learning factors, which can
balance the learning ability of individual particles and the group’s learning ability and
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improve the algorithm’s optimization accuracy. This paper uses a combination of the two
with better results.

• Nonlinear Decreasing w

w is the core parameter that affects the performance and efficiency of the PSO algo-
rithm. Smaller weights can strengthen the local search ability and improve convergence
accuracy, while larger weights are beneficial to the global search and prevent the particles
from falling into the optimal local position, but the convergence speed is slow. Most of
the current improvements are related to the adjustment of w. In this paper, we use the
nonlinear w exponential function decreasing way, and the formula is as follows.

w = wmin + (wmax + wmin)× exp
[
− 20× (

t
T
)6] (3)

where T is the maximum number of time steps, usually wmax = 0.9, wmin = 0.4.

• The learning factor (c1, c2) varies according to w

c1 and c2 in the velocity update formula determine the size of the amount of learning
of the particle in the optimal position. c1 is used to adjust the amount of self-learning of
the particle and c2 is used to adjust the amount of social learning of the particle, and the
change of the learning factor coefficient is used to change the trajectory of the particle. In
this paper, referring to the previous summary, the adjustment strategy is better when the
learning factor and inertia weights are a nonlinear function. The coefficient combination is
A = 0.5, B = 1, C = 0.5, and the formula is described as follows.

C1 = Aw2 + Bw + C
C2 = 2.5− C1

(4)

2.2.2. Position Update Policy

The convergence and convergence speed of the algorithm are greatly related to the
position weighting factor, and the core parameter-tuning strategy only considers improving
the velocity update without considering the position update. In order to control the
influence of velocity on position, the constraint factor (α) is added to the position update
formula, and α is introduced in order to achieve the weight of the control velocity to reduce
blindness in the search process and improve the convergence rate.

• The Constraint Factors

In basic PSO, the new position of a particle is equal to its current position plus the
current velocity, but the position vector and velocity vector cannot be added directly, so
there must be a constraint factor between the two in the position update formula, and the
constraint factor in the traditional PSO algorithm is equal to 1. α guides the particle to
hover around the best position, and the improvement of α controls the influence of velocity
on position so that the convergence of the algorithm is better improved. α based on w
change is used in this paper which, in the early stage, is influenced by particle velocity and
has strong exploration ability. In the later stage, it is less influenced by particle velocity and
has strong local search ability.

xij(t + 1) = xij(t) + αvij(t + 1)
α = 0.1 + w

(5)

2.2.3. Model of APSO/DU

The flow of the APSO/DU is shown in Figure 2.
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2.3. Numerical Experiments and Analyses

In order to test the performance of the APSO/DU algorithm, three commonly used
test functions were selected for the experiment. The test functions are shown in Table 1.

Table 1. Three test functions.

Selection Function Search Range Global Optimum

Sphere f1 =
D
∑

i=1
x2

i
[−100, 100] min f1 = 0

Schwefel′sp2.22 f2 =
D
∑

i=1
|xi|+

D
∏
i=1
|xi| [−10, 10] min f2 = 0

Griewank f3 = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i
+ 1

)
[−600, 600] min f3 = 0

• Contrast algorithms

The parameters of each PSO algorithm are shown in Table 2. To facilitate the compari-
son of the effectiveness of the APSO/DU algorithm, this paper chose to compare it with
three classical adaptive improved PSO algorithms: PSO-TVIW; PSO-TVAC; and PSOCF.
The parameter settings summarized in the literature of Kyle Robert Harrison (2018) [45]
were also used, where the time-varying inertia weight values of the PSO-TVIW algorithm
are set according to the study in Harrison’s paper. The PSO-TVIW algorithm is also known
as the standard particle swarm algorithm. The PSO-TVAC algorithm with time-varying
acceleration coefficient adjusts the values of the w, c1, and c2 parameters and introduces
six additional control parameters. Clerc’s proposed PSO algorithm with shrinkage factor
(PSOCF) has good convergence, but its computational accuracy is not high and its stability
is not as good as that of standard PSO, so Eberhart proposed to limit the speed param-
eter Vmax = Xmax of the algorithm so as to improve the convergence speed and search
performance of the algorithm, and the PSOCF algorithm used this improved method for
comparison experiments.

The new algorithm is based on a combination of two strategies. In order to verify
whether the combination of two strategies is superior to one strategy, namely PSO/D
(which updates only the core parameters), the formula and parameters are detailed in
Section 2.2.1. Additionally, PSO/U, which only updates the velocity update formula, is
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improved is by adding a constraint factor to the position formula, which needs to be
combined with inertia weights. The basic particle swarm does not contain inertia weights,
so the standard particle swarm algorithm (PSO-TVIW), by adding a constraint factor, can
verify that the combination of update strategies proposed in this paper is superior.

Table 2. Parameter setting of each PSO algorithm.

Algorithm w c1 c2

PSO-TVAC [0.4, 0.9] [0.5, 2.5] [0.5, 2.5]
PSO-TVIW [0.4, 0.9] 1.49618 1.49618

PSOCF 0.729 2.8 1.3
PSO/D [0.4, 0.9] [0.695, 1.805] [0.695, 1.805]
PSO/U [0.4, 0.9] 1.49618 1.49618

APSO/DU [0.4, 0.9] [0.695, 1.805] [0.695, 1.805]

In the experiments, to ensure fairness in the testing of each algorithm, different
PSO algorithms were set with the same population size (N = 30), maximum number of
iterations (Tmax = 500), and variable dimension (D = 15). Each algorithm was run 30 times,
and the test results are shown in Table 3. The bold part of the text indicates the best
optimization results.

• Test Results:

Table 3. Optimization results of six algorithms.

Function Contrast Algorithms fmin fmean fmax fsd

F1

PSO− TVAC 2.26 × 10−3 6.84 × 10−3 1.37 × 10−2 2.86 × 10−3

PSO− TVIW 1.22 × 10−3 5.47 × 10−3 1.16 × 10−2 2.65 × 10−3

PSOCF 1.65 × 10−1 1.90 6.08 1.69
PSO/D 9.58 × 10−5 4.92 × 10−3 3.83 × 10−2 8.08 × 10−3

PSO/U 3.36 × 10−3 8.90 × 10−3 2.10 × 10−2 3.68 × 10−3

APSO/DU 4.57 × 10−5 2.43 × 10−3 1.37 × 10−2 2.54 × 10−3

F2

PSO− TVAC 2.0110 3.8211 7.2185 0.9937
PSO− TVIW 1.7082 3.3503 5.0343 0.7761

PSOCF 0.8047 2.5967 4.6286 0.9490
PSO/D 0.4045 1.3387 3.0566 3.0566
PSO/U 2.1516 3.6639 5.1408 5.1408

APSO/DU 0.4246 1.3033 2.5632 0.5253

F3

PSO− TVAC 1.2174 1.8248 2.9463 4.03 × 10−1

PSO− TVIW 1.2724 1.9454 2.8534 4.06 × 10−1

PSOCF 1.0061 1.1614 1.5375 1.49 × 10−1

PSO/D 1.0018 1.0229 1.0959 2.57 × 10−2

PSO/U 1.5057 2.1557 3.3043 4.79 × 10−1

APSO/DU 0.8140 1.0119 1.0913 4.18 × 10−2

It can be seen from Table 3 that APSO/DU outperforms the other algorithms overall.
(i) The APSO/DU algorithm is compared with the classical adaptive algorithms (PSO-
TVAC, PSO-TVIW, and PSOCF). APSO/DU takes the smallest optimal value in the three
test functions and is closest to the optimal solution. The standard deviation is also the best
among the three algorithms, which indicates that APSO/DU has a stable performance.
(ii) To verify whether the combination of two strategies is better than one, the APSO/DU
algorithm is compared with a single-strategy algorithm (PSO/D and PSO/U), and the
results of PSO/U and APSO/DU are closer to each other. In the Griewank function,
APSO/DU takes the smallest optimal value and is closest to the optimal solution with a
standard deviation not much different from PSO/D. On balance, the APSO/DU algorithm
outperforms the comparison algorithm.
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In order to reflect more intuitively on the solution accuracy and convergence speed of
each algorithm, the variation curves of the fitness values when each algorithm solves the
three test functions are given in Figure 3. The horizontal coordinate indicates the number
of iterations, and the vertical coordinate indicates the fitness value.
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The average convergence curves of each algorithm for the three tested functions are
given in Figure 3. The single-peak test function shows whether the algorithm achieves
the target value of the search accuracy. On single-peak functions F1 (sphere) and F2
(Schwefel’sp2.22), the relatively high convergence accuracy is achieved by the APSO/DU
algorithm and the PSO/D algorithm, with PSOCF easily falling into local optimality.

A multi-peaked test function can test the global searchability of an algorithm. In
multi-peak function F3 (Griewank) optimization, the APSO/DU algorithm performs best,
followed by the PSO/D algorithm and the PSOCF algorithm, in that order. Among the dif-
ferent functions, APSO/DU has the fastest convergence speed and the highest convergence
accuracy and, collectively, the APSO/DU algorithm is the best in terms of finding the best
results and showing better stability.

3. Portfolio Optimization Problem
3.1. Related Definitions

The essential parameters in the POP are expected return and risk, and investors usually
prefer to maximize return and minimize risk. Assuming a fixed amount of money to buy
n stocks, the POP can be described as how to choose the proportion of investments that
minimizes ρ the investor’s risk (variance or standard deviation) given a minimum rate
of return, or how to choose the proportion of investments that maximizes the investor’s
return given a level of risk.

The investor holds fixed assets invested in n stocks Ai(i = 1, 2, .., m), let Ri be the
return rate of Ai, which is a random variable. µi is the expected return on stock Ai. Let
E(Ri) denote the mathematical expectation of a random variable R. Define

µi = E(Ri) (6)

In a certain period, the stock return is the relative number of the difference between
the opening and closing prices of that stock, where Vij is the return of stock i in period t, as
in Equation (7).

Vij =
pi,t − pi,t−1

pi,t−1
, i = 1, 2, . . . , T (7)

where pi,t and pi,t−1 are the closing prices of stock i in periods t and t− 1, respectively. The
expected return on the ith stock is given by Equation (8)

µi =
1
T ∑ T

j=1Vij (8)
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3.2. Mean-Semivariance Model

A large number of empirical analysis results show that asset returns are characterized
by spikes and thick tails, which contradicts the assumption that asset returns are normally
distributed in the standard mean-variance model. Additionally, the variance reflects the
degree of deviation between actual returns and expected returns, while actual losses (loss
risk) are fluctuations below the mean of returns. Thus, the portfolio optimization model
based on the lower half-variance risk function is more realistic. Equations (9)–(12) present
the mean-semivariance model. Assume that the short selling of assets is not allowed.

min f =
1
T ∑ T

t=1[(∑ m
i=1xirit − ρ)

−
]
2

(9)

Subject to
E(µP) = ∑ m

i=1µixi ≥ ρ (10)

∑ m
i=10 ≤ xi ≤ 1, i = 1, 2, . . . , m (11)

∑ m
i=1xi = 1 (12)

where:
m is the number of stocks in the portfolio;
ρ is the rate of return required by the investor;
xi is the proportion (0 ≤ xi ≤ 1) of the portfolio held in assets i(i = 1, 2, . . . , m);
µi is the mean return of asset i in the targeted period;
µp is the mean return of the portfolio in the targeted period.
Equation (9) is the objective function of the model and represents minimizing the risk

of the portfolio (the lower half of the variance); Equation (10) ensures that the return of
the portfolio is greater than the investor’s expected return ρ; and Equations (11) and (12)
indicate that the variables take values in the range [0, 1], and the total investment ratio is 1.

4. Case Analysis
4.1. Experiment Settings

(1) Individual composition

The vector X = (X1, X2, . . . , Xn) represents a portfolio strategy whose ith dimensional
component xi represents the allocation of funds to hold the ith stock in that portfolio,
namely the weight of that asset in the portfolio.

(2) Variable constraint processing

Equation (10): the feasibility of the particle is checked after the initial assignment of
the algorithm and the update of the position vector and if it does not work, the position
vector of the particle is recalculated until it is satisfied before the calculation of the objective
function is carried out.

Equation (11): the variables take values in the interval [0, 1] and the iterative process
uses the boundary to restrict within the interval.

Equation (12): variables on a non-negative constraint basis, sets = x1 + x2 + . . . + xn
when s = 0, so that all variables in the portfolio are 1

n ; when s 6= 0, let xi = xi
n ,

i = 1, 2, . . . , n.

(3) Parameter values

The particle dimension D is the number of stocks included in the portfolio, and
the number of stocks selected in this paper is 15, hence D = 15. The parameters of this
experimental algorithm are set as described in Section 2.3. of this paper, and the results
show the average of 30 independent runs of each algorithm. All PSO algorithms in this
paper were written in Python and run on a Windows system for testing.



Electronics 2023, 12, 491 9 of 15

4.2. Sample Selection

Regarding the selection of stock data, firstly, recent stock data should be selected for
analysis to have a certain practical reference value. Secondly, the number of shares is too
small to be credible, and the number of shares is too large for the average investor to be
distracted with at the same time. Finally, Markowitz’s investment theory states that the risk
of a single asset is fixed and cannot be reduced on its own, whereas investing in portfolio
form diversifies risk without reducing returns. The lower the correlation between any two
assets in a portfolio (preferably negative), the more significant the reduction in overall
portfolio unsystematic risk [47]. Some methods can be used to solve this problem [48–52].

Based on the above considerations, 30 stocks from different sectors were selected from
Choice Financial Terminal, with a time range of 1 January 2019 to 31 December 2021, for a
total of 155 weeks of closing price data. Correlation analysis was conducted on the stock
data, and 15 stocks with relatively low correlation coefficients were selected for empirical
analysis. The price trend charts and correlation coefficients for the 15 stocks are given in
Figures 4 and 5.

Figure 4 shows the weekly closing price trend for the 15 stocks data, which provides a
visual indication of the trend in stock data. Stocks vary widely in price from one another,
with 600612 being the most expensive. As shown in Figure 5, the fifteen stocks have low
correlations, with only two portfolios having correlation coefficients greater than 0.5 for
any two stocks. Stock 6 and Stock 8 have strong correlations with Stock 12, with correlation
coefficients of 0.6 and 0.5, respectively, while all other correlations are below 0.5. Stock 4
and Stock 14 have the lowest correlation, with a correlation coefficient of −0.045. After
calculation, the correlation of the stock data in this paper is low, and the mean correlation
coefficient is only 0.198. The lower the correlation between stocks is, the more effective
the portfolio choice is in reducing unsystematic risk, thus indicating that investing with a
portfolio strategy is effective in reducing risk.
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Table 4 gives the basic statistical characteristics of 15 stocks for 2019–2021, and the
returns are the weekly averages of the relative number of closing prices of the stock data.
The p-values for most of the stock returns in Table 4 are less than 0.05, which should reject
the original hypothesis and indicates that the stock returns do not conform to a normal
distribution at the 5% significance level. The p-values for 600793 and 600135 are greater than
0.05 at a level that does not present significance and cannot reject the original hypothesis,
so the data satisfies a normal distribution.

Table 4. Basic characteristics and normality test of 15 stocks from 2019 to 2021.

NO. Code Price/(yuan) Return (%) Std Prob Conclusion at the (5%) Level

1 600612 47.930 0.131 0.043 0.003 *** Distribution not normally distributed
2 603568 24.329 0.408 0.055 0.000 *** Distribution not normally distributed
3 600690 21.992 0.662 0.052 0.000 *** Distribution not normally distributed
4 600793 14.396 0.288 0.087 0.060 * Normality cannot be ruled out
5 000625 13.432 0.810 0.082 0.000 *** Distribution not normally distributed
6 600019 6.526 0.207 0.046 0.000 *** Distribution not normally distributed
7 600135 7.158 0.368 0.060 0.069 * Normality cannot be ruled out
8 600497 4.558 0.253 0.053 0.030 ** Distribution not normally distributed
9 601111 8.095 0.259 0.049 0.000 *** Distribution not normally distributed

10 600107 7.522 0.221 0.075 0.000 *** Distribution not normally distributed
11 002327 7.704 0.208 0.038 0.000 *** Distribution not normally distributed
12 601225 9.689 0.432 0.049 0.000 *** Distribution not normally distributed
13 002737 14.959 0.204 0.042 0.000 *** Distribution not normally distributed
14 002780 18.442 0.474 0.063 0.000 *** Distribution not normally distributed
15 603050 13.506 0.304 0.060 0.000 *** Distribution not normally distributed

Note: ***, **, and * represent the significance level of 1%, 5%, and 10%, respectively.

Figure 6 shows the histogram of the normality test for 15 stocks. If the normality plot is
roughly bell-shaped (high in the middle and low at the ends), the data are largely accepted
as normally distributed. It can be seen from the figure that the normal distribution plots
of the 600793 and 600135 stock data roughly show a bell shape, which is consistent with
normal distribution. However, the normal distribution of most stocks does not show a bell
shape and does not conform to normal distribution.
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It is difficult for all the stock data to conform to the assumption that asset returns are
normally distributed in MV. Secondly, the real loss refers to the fluctuation below the mean
of returns; thus, the portfolio model based on the lower half-variance risk function is more
realistic, so the MSV model is used for empirical analysis later in the paper.

4.3. Interpretation of Result

In order to verify the effectiveness of the semi-variance risk measure in practice, six
different levels of return (0.005 to 0.0030) are set in this paper. Table 5 gives the risk
values obtained by different algorithms at the same return level, and the best results are
identified in bold font. A visualization of the Pareto frontier (PF) obtained by solving the
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four algorithms is given in Figure 7. The optimal investment ratios derived from each
algorithm solved at the expected return level of 0.03 are given in Table 6 to visually compare
the effectiveness of the APSO/DU algorithm in solving the MSVPOP.

Table 5. Experimental results of five algorithms.

NO. µ
MSV

PSO-TVIW PSO-TVAC PSOCF APSO/DU

1 0.0030 3.70 × 10−4 3.82 × 10−4 3.63 × 10−4 3.33 × 10−4

2 0.0025 3.52 × 10−4 3.69 × 10−4 3.57 × 10−4 3.16 × 10−4

3 0.0020 3.34 × 10−4 3.48 × 10−4 3.37 × 10−4 3.08 × 10−4

4 0.0015 3.20 × 10−4 3.37 × 10−4 3.27 × 10−4 3.02 × 10−4

5 0.0010 3.16 × 10−4 3.26 × 10−4 3.10 × 10−4 2.84 × 10−4

6 0.0005 2.99 × 10−4 3.04 × 10−4 2.95 × 10−4 2.78 × 10−4
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Table 6. The optimal investment ratio solved by each algorithm at µ = 0.03.

Code PSO-TVIW PSO-TVAC PSOCF APSO/DU

1 600612 0.1166 0.0782 0.0932 0.0729
2 603568 0.0000 0.0655 0.0817 0.1129
3 600690 0.1015 0.0861 0.0055 0.0277
4 600793 0.0000 0.0832 0.0062 0.0168
5 000625 0.0000 0.0186 0.0360 0.0078
6 600019 0.0767 0.0504 0.0091 0.0692
7 600135 0.0692 0.0317 0.1147 0.0038
8 600497 0.0000 0.0812 0.0000 0.0031
9 601111 0.0563 0.0802 0.0573 0.0611
10 600107 0.1311 0.0589 0.0518 0.0081
11 002327 0.1057 0.0760 0.1935 0.1773
12 601225 0.0276 0.0839 0.1324 0.0992
13 002737 0.1338 0.0718 0.0019 0.1273
14 002780 0.1322 0.0746 0.1378 0.0725
15 603050 0.0493 0.0596 0.0790 0.1402

MSV 3.70 × 10−4 3.82 × 10−4 3.63 × 10−4 3.33 × 10−4

Table 5 and Figure 7 show that as returns increase, the portfolio’s risk also increases,
in line with the law of high returns accompanied by high risk in the equity market. Taking
the expected return u = 0.003 as an example, APSO/DU has the smallest value of risk
(2.78 × 10−4) and the PSO-TVAC algorithm has the largest value of risk (3.82 × 10−4), so
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the portfolio solved by the APSO/DU algorithm is chosen at the expected return level of
0.03, corresponding to the smallest value of risk. A sensible person should choose this
portfolio. Similar to the other return levels analyzed, the APSO/DU algorithm proposed
in this paper is always lower than the results calculated by the other algorithms. The
APSO/DU algorithm calculates a lower value of risk than the three classical adaptive
improved particle swarm algorithms when the expected returns are the same, indicating
that the combination of improved particle swarm solutions obtains relatively better results
at the same expected return, and APSO/DU has stronger global search capability and more
easily finds the optimal global solution.

The optimal investment ratios derived from each algorithm solved at the expected re-
turn level of 0.03 are given in Table 6 to visually compare the effectiveness of the APSO/DU
algorithm in solving the MSVPOP.

5. Conclusions

In order to cope with the POPMSV challenge well, a multi-strategy adaptive particle
swarm optimization, namely APSO/DU, was developed, which has the following two ad-
vantages. Firstly, the variable constraint (1) is set to better represent the stock selection, and
asset weights of the solution in the POP help to cope with the MSVPOP challenge efficiently.
Secondly, an improved particle swarm optimization algorithm (APSO/DU) with adaptive
parameters was proposed by adopting a dual-update strategy. It can adaptively adjust the
relevant parameters so that the search behavior of the algorithm can match the current
search environment to avoid falling into local optimality and effectively balance global
and local search. The sole adjustment of w and c1 and c2 would weaken the uniformity of
the algorithm’s evolutionary process and make it difficult to adapt to complex nonlinear
optimization, so a dual dynamic adaptation mechanism is chosen to adjust the core pa-
rameters. The APSO/DU algorithm is more adaptable to nonlinear complex optimization
problems, improving solution accuracy and approximating the global PF. The results show
that APSO/DU exhibits stronger solution accuracy than the comparison algorithm, i.e., the
improved algorithm finds the portfolio with the least risk at the same level of return, more
closely approximating PF. The above research results can be used for investors to invest in
low-risk portfolios with valuable suggestions with good practical applications.
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