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Abstract: Single-pixel imaging (SPI) has attracted increasing attention in recent years because of its
advantages in imaging systems. However, a low reconstruction quality and a long reconstruction
time have hindered the development of SPI. Hence, in this study, we propose a Zernike SPI (ZSPI)
technique to reduce the number of illumination patterns and reconstruction time whilst retaining
robustness. First, the ZSPI technique was theoretically demonstrated. Phase-shifting Zernike moment
projections were used to illuminate the target and an inverse Zernike transform was used to recon-
struct the desired image. In order to prove the feasibility, numerical simulations were carried out
with different sample ratios (SRs) ranging from 0.1 to 0.3; an acceptable reconstruction appeared at
approximately 0.1. This result indicated that ZSPI could obtain satisfactory reconstruction results at
low SRs. Further simulation and physical experiments were compared with different reconstruction
algorithms, including noniterative, linear iterative, and nonlinear iterative methods under speckle
modulation patterns at a sample of 0.1 in terms of different targets. The results revealed that ZSPI
had a higher imaging quality and required less imaging time, particularly for low-frequency targets.
The method presented in this study has advantages for the high-efficiency imaging of low-frequency
targets, which can provide a new solution for the SPI method.

Keywords: single-pixel imaging; Zernike; imaging system; image reconstruction

1. Introduction

Single-pixel imaging (SPI) [1,2] is different from traditional array detector imaging,
and its image information acquisition method and acquisition efficiency are different. SPI
has advantages in terms of the hardware complexity and industrial cost. In addition, this
technique has potential application prospects for the simplification and integration of
future imaging systems, particularly in infrared and terahertz bands. That is, the array
sensor is immature, and three-dimensional (3D) imaging and spectral imaging require a
high resolution and sensitivity. The advent of SPI technology brings new solutions to these
problems. Although detector array technology has a superior performance in the visible
band, SPI (such as polarimetric imaging [3–5], holographic imaging [6,7], multispectral
imaging [8,9], X-ray imaging [10–12], and THz imaging [13–18]) is more suitable for un-
conventional imaging and has an accurate time and depth resolution. In addition, SPI
can meet the application requirements of different fields, including imaging through scat-
tering media [19,20], remote sensing [21], compressive radar [22], optical encryption [23],
bioluminescence microscopic imaging [24–26], gas detection [27], and 3D imaging [28–30].

SPI has certain advantages and characteristics compared with traditional imaging
technology and has achieved fruitful research results. However, the problems of imaging
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quality and sampling efficiency have not been completely solved, thereby greatly restricting
the practical application of SPI technology [31,32]. How to improve the imaging quality
and reduce the sampling time has become a leading topic discussed by researchers. The
spatial distribution of the projection pattern and the running time of the reconstruction
algorithm are two main factors that restrict SPI systems, and determine the image quality
and efficiency [33].

In SPI technology, random patterns and orthogonal basis patterns are generally se-
lected as the projection pattern. The use of random speckles [34], random binary pat-
terns [35], or other random patterns as the projection patterns often does not have or-
thogonality. Moreover, the use of a spatial light modulator makes it difficult to solve
the problem of SPI in the sampling or reconstruction of a long time period. Compressed
sensing reduces the measurement time to an extent in the case of under-sampling. How-
ever, it increases the computation time of the reconstruction algorithm accordingly, and
the quality of the image reconstruction depends on the algorithm robustness [36,37]. At
present, an increasing number of researchers have used the orthogonal basis pattern rather
than the random pattern as the projection pattern to improve the quality and efficiency of
SPI. In accordance with the different projection patterns, SPI techniques such as wavelet
transform [38,39], discrete cosine transform (DCT) [40,41], Fourier transform [42–44], and
Hadamard transform [27,28,43,45–48] have been produced.

Zernike polynomials are widely used in the field of optical engineering owing to their
orthogonal and complete characteristics in the unit circle [49]. The description method
provided by Zernike polynomials has achieved great success in the application of optical
system designs and analyses [50], adaptive optics [51], atmospheric optics [52], optical
testing [53], wavefront shaping [54], wavefront sensing [55], interferometry [56], aberration
characteristics and the correction of human eyes [57], and other fields. Considering the
orthogonal and complete characteristics of Zernike polynomials, Zernike polynomials can
be introduced into the SPI method.

In this work, a Zernike single-pixel imaging (ZSPI) method based on a discrete Zernike
transform was proposed. The ZSPI method was theoretically demonstrated. Phase-shifting
Zernike moment projections were used to illuminate the target, and an inverse Zernike
transform was used to reconstruct the desired image. ZSPI could obtain satisfactory
reconstruction results at low sample ratios. Further simulation and physical experiment
results revealed that the Zernike single-pixel imaging had a higher imaging quality and
required less imaging time.

2. Theory and Methods

The proposed ZSPI technique was based on the theorem of a Zernike transform. This
technique employs Zernike polynomials as structured light patterns to illuminate the scene,
and uses a detector that has no spatial resolution to collect the resulting light. A two-step
phase-shifting Zernike illumination pattern based on a discrete Zernike transform was
employed for the Zernike moment acquisition, which could obtain the Zernike coefficients
and eliminate random noise. The final target was reconstructed by an inverse discrete
Zernike transform.

2.1. Zernike Basis Pattern

The Zernike polynomial is a common mathematical description in optics such as
defining any function of pupil optical systems, wavefront phases, or wave aberrations [58].
In this study, we attempted to sample the image through the Zernike basis in SPI.
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Zernike polynomials are a product of angular functions and radial polynomials [52] as
shown in Equation (1). Zernike basis patterns are orthogonal in the unit circle. Therefore,
they are defined with polar coordinates as follows:{

Zevenj =
√

n + 1Rm
n (r)
√

2 cos mθ

Zoddj =
√

n + 1Rm
n (r)
√

2 sin mθ
m 6= 0

Zj =
√

n + 1R0
n(r) m = 0

(1)

where (r, θ) is the polar coordinate in the unit circle, n is the order of the Zernike polynomial,
and m represents the angular frequencies, which must meet m ≤ n; n− |m| is even. Zj
denotes the Zernike polynomial of mode order j [52].

Rm
n (r) represents the radial polynomial and is deduced from the Jacobi polynomials.

It is defined as follows:

Rm
n (r) =

(n−m)/2

∑
s=0

(−1)s(n− s)!
s![(n + m)/2− s]![(n−m)/2− s]!

rn−2s (2)

Similar to Fourier patterns, which have been used as representative SPI techniques
for illumination by a deterministic orthogonal model rather than random patterns, the
Zernike basis pattern is a matrix of grayscale values. Figure 1 shows the Zernike basis
patterns of different mode numbers. It is well-known that Hadamard basis patterns only
have horizontal and vertical features. Fourier basis patterns have horizontal, vertical, and
oblique features whilst Zernike basis pattern have all direction features; the higher the
order, the greater the directional resolution. In the experiment, the Zernike base pattern
of multiple gray levels was generated for the projection by upsampling and dithering
binarization to achieve high-speed and high-quality SPI technology.
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2.2. Zernike Transform and Inverse Zernike Transform

The proposed method was based on direct and inverse discrete Zernike transforms.
For a continuous signal, the Zernike moment of order (n, m) was defined as the double
integrals inside the unit circle, which is expressed as follows [59]:

Anm =
n + 1

π

x

D
I(x, y)Z∗nm(x, y)dxdy (3)

where I(x, y) represents a two-dimensional (2D) image function and D is the integration
range of the unit circle

(
x2 + y2 ≤ 1

)
. Znm(x, y) is a Zernike function and * stands for

the conjugate.
For a discrete signal, we were required to discretize a digital image by summation

rather than integration to calculate its Zernike moment. Assuming that I
(
xi, yj

)
was a

function defined from the identity element, Equation (4) could be used to approximate
the following:

∼
Anm =

n + 1
π

N

∑
i

N

∑
j

I
(
xi, yj

)
wnm

(
xi, yj

)
(4)

where xi = (2i− N − 1)/N and yj = (2j− N − 1)/N.
i and j were taken such that (x, y) ∈ D, and

wnm
(

xi, yj
)
=
∫ xi+

∆
2

xi− ∆
2

∫ yi+
∆
2

yi− ∆
2

Znm(x, y)dxdy ≈ ∆2Znm
(
xi, yj

)
(5)

where ∆ = (2/N) represents the pixel width. wnm
(
xi, yj

)
could be numerically calculated,

and the most commonly used formula was as follows:

wnm
(
xi, yj

)
≈ ∆2Znm

(
xi, yj

)
(6)

From the above derivation, the precision of the Zernike moment was affected by
geometric and numerical integration errors. The geometric error was caused by the fact
that the total area covered by all square pixels involved in the Zernike moment calculation
was not an exact unit circle from Equation (4) [59]. The numerical integration was caused
by the approximate formula of Equation (6). Although the above errors could be reduced
by a few techniques, they could never be eliminated as long as the Zernike moments were
computed in Cartesian coordinates [59].

Therefore, image I
(
xi, yj

)
could be approximated as follows:

I
′
(x, y) = ∑

n
∑
m

AnmZnm
(
xi, yj

)
(7)

In accordance with the theoretical analysis, a 2D image could be regarded as a linear
superposition of a series of Zernike base patterns and the Zernike coefficient was the weight
of the corresponding Zernike base patterns. For a 2D image, the Zernike forward transform
could decompose the 2D image into different Zernike base patterns and corresponding
weights. The inverse Zernike transform combined different Zernike base patterns into 2D
images in accordance with the weight.

2.3. Principle of ZSPI

ZSPI is based on a Zernike transform and an inverse Zernike transform. ZSPI provides
a solution when an image consists of a weighted sum of the Zernike basis pattern with
different mode ordering. Therefore, image reconstruction by the Zernike moment is the
process of obtaining the weight of the image corresponding with each Zernike basis pattern.
Zernike basis patterns were generated by using the method of Section 2.1. These patterns
were projected onto the target and a bucket detector was used to detect the reflected light
intensity of the target.
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We assumed that the target was reflective and the reflection intensity of the target in
the direction of the bucket detector measurement was Ref(x, y). In this case, the image was
proportional to the intensity reflection distribution. That is, I(x, y) ∝ Ref(x, y).

Therefore, the intensity of the reflected light of the target illuminated by the Zernike
basis pattern lighting Eφ(n, m) could be given as follows:

Eφ(n, m) =
x

D
Ref(x, y) · Zj

∗(x, y)dxdy (8)

where D represents the projected region of the Zernike basis pattern. The response value of
the bucket detector was as follows:

Tφ(x, y) = Tn + ε · Eφ(n, m) (9)

where Tn is the DC component caused by the background illumination and ε is a factor
related to the magnification of the bucket detector and the position relationship between
the object and bucket detector.

Two measurements were needed to obtain the Zernike moment corresponding with
each pixel in the target image. We illuminated the scene with two Zernike basis patterns of
mode ordering j with a phase-shift of π. They were denoted as Z1 and Z2.{

Z1(x, y) = Zj
∗(x, y)

Z2(x, y) = −Zj
∗(x, y)

(10)

The bucket detectors received light signals from the target, and the signal acquisition
and analog/digital conversion were conducted by the signal acquisition device. The
computer recorded the response value T of the detector. The response value of the bucket
detector was denoted as T. {

T1(x, y) = Tn + β · Eφ1(n, m)
T2(x, y) = Tn + β · Eφ2(n, m)

(11)

In accordance with the two-step phase-shift algorithm, the Zernike forward transfor-
mation integral formula of the reflection intensity Ref(x, y) could be obtained as follows:

T1(x, y)− T2(x, y) = β ·
(
Eφ1(n, m)− Eφ2(n, m)

)
= β ·

(s
D Ref(x, y) · Zj

∗(x, y)dxdy−
s

D Ref(x, y) · (−Zj
∗(x, y))dxdy

)
= 2β ·

s
D Ref(x, y) · Zj

∗(x, y)dxdy
= 2β · Z{Ref(x, y)}

(12)

where Z{} represents the Zernike transformation. The distribution relation between the
object image and the reflection intensity of the object was I(x, y) ∝ Ref(x, y); that is, the
proportional relation was satisfied. Hence, the Zernike moment in the process of SPI could
be obtained from the following formula:

A(x, y) = T1(x, y)− T2(x, y) (13)

3. Results and Discussion
3.1. Numerical Simulations

In this section, an image named “cameraman” (128 by 128 pixels) was utilized as the
target scene and simulated by ZSPI with different sampling ratios (SRs), which were taken
from the Zernike basis pattern. SR was the ratio between the actual and total measurement
numbers on behalf of the capture efficiency. The peak signal-to-noise ratio (PSNR) and
root mean square error (RMSE) were used to quantitatively evaluate the quality of the
target reconstructions.

PSNR = 10 log10

(
D2/MSE

)
(14)
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RMSE =
√

MSE (15)

where MSE denotes the mean square error.
All the simulations were performed using MATLAB R2020a (R2020a, MathWorks,

Nedick, MA, USA, 2020) on a personal computer (PC, Intel Core i7 CPU, 2.90 GHz,
16 G RAM, 64 bit, Windows 10). The target scene was reconstructed by ZSPI of different SRs
ranging from 0.1 to 0.3. Figure 2 shows the results. From Figure 2, the reconstructions of SR
below 0.1 had a degree of ring call in the image; an acceptable reconstruction appeared at
above 0.1, which could be set as the quality benchmark. Figure 3 shows the distributions of
the light intensity sequence and measurement numbers. From Figure 3, it can be seen that
the large intensity values were concentrated in front of the horizontal axis of the coordinate
axis. This finding indicated that the Zernike reconstruction could obtain the desired result
by using the first few projections of the Zernike pattern.
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In order to quantitatively evaluate the quality of the reconstructions, the normalized
RMSE and PSNR were determined. Figure 4 shows the results of the normalized RMSE
and PSNR of the reconstructions of different SRs. The most obvious result was that the
SR of 0.14 could obtain a smaller RMSE and a larger PSNR with under-sampling, which
could be considered to be the appropriate SR of ZSPI. This finding indicated again that
the intensity values of the Zernike pattern were concentrated in the front part by the
Zernike reconstruction.
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In this study, we selected the noniterative methods of differential ghost imaging
(DGI), linear iterative methods of conjugate gradient descent (CGD), nonlinear iterative
methods of discrete cosine transform (DCT), and compressive sensing based total variation
(TV) algorithms for a comparison to further verify the imaging performance of the ZSPI
system [60]. Figure 5 shows the performance of ZSPI with various algorithms at the same
SR of 0.1, including the DGI, CGD, DCT, and TV algorithms from speckle modulation
patterns based on the simulated data. At the same low sampling rate, the image quality of
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the different reconstruction algorithms was compared. As shown in Figure 5, ZSPI had a
higher reconstruction quality than several other algorithms. The PSNR and RMSE were
used to quantitatively compare the imaging quality.
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To quantitatively compare the quality of the target reconstructions, the RMSE and
PSNR of different reconstruction methods were determined. The results of the performance
of ZSPI, DGI, CGD, DCT, and TV are shown in Figure 6a. From these results, it could be
seen that the PSNR of ZSPI was remarkably higher than that of the other reconstruction
methods. Moreover, the RMSE was remarkably lower than that of the other reconstruction
methods, which proved that ZSPI had a better imaging quality at low SRs. Furthermore,
to investigate the efficiency of the image reconstruction, the reconstruction times were
measured for DGI, CGD, DCT, TV, and ZSPI. The results are shown in Figure 6b. The
reconstruction times of DGI, CGD, DCT, TV, and ZSPI were 0.16868, 11.25305, 151.19757,
72.42121, and 3.29553, respectively. Although there were five reconstruction methods for
comparison, the data of DGI are not contained in Figure 6b because its reconstruction times
were too small to be exhibited. However, the DGI algorithms from the speckle modulation
patterns had the largest PSNR and the lowest RMSE. Therefore, we observed that ZSPI
required less running reconstruction time for a small-scale reconstruction.

3.2. Experiments

Figure 7 shows the physical experiment setup of ZSPI, which included an LED light
source (400–760 nm @ 20 W), a digital micromirror device (DMD, ViALUX V-7001), a
bucket detector (Thorlabs PDA36A), a data acquisition card (Gage CSE22G8, Vitrek), and
a computer. The computer was used to generate the illumination patterns, which were
sent to the DMD. The DMD projected these patterns onto the object. The bucket detector
was used to receive the light reflected by the object whilst converting the intensity into the
corresponding voltage, which was recorded by the data acquisition card. The resolution
of the DMD was 1024 × 768 and the refresh rate was 22 kHz. The “cameraman” and the
emblem of Beijing Information Science and Technology University were selected as the
imaging targets. The reconstruction size was 128 by 128 pixels.
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Two groups of experiments based on the above experimental setup were performed
to demonstrate the reconstruction performance of ZSPI. In these experiments, ZSPI was
compared with various algorithms at the same sample of 0.1, including DGI, CGD, DCT, and
TV algorithms from speckle modulation patterns. Figure 8 shows the physical experimental
results. Intuitively, ZSPI had a better imaging quality. The structural similarity index
measure (SSIM) was calculated for these experimental results to quantitatively evaluate
the experimental performance. Figure 9 shows the SSIM performance. The most evident
result was that ZSPI had a maximum value of the SSIM for both imaging targets compared
with other algorithms from speckle modulation patterns. Therefore, it could be concluded
that ZSPI had a better imaging quality at a low SR. Furthermore, from Figure 9, the values
of the SSIM of ZSPI of the “cameraman” and emblem were 0.2794 and 0.3169, respectively.
It was indicated that ZSPI had the advantage of reconstructing a low-frequency target.
Figure 9 also shows the reconstruction time of DGI, CGD, DCT, TV, and ZSPI. As shown in
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the figure, for the same SR, ZSPI corresponded with the shortest running time, which was
the same as the numerical simulation results.
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4. Conclusions

In this study, a ZSPI technique was proposed to reduce the number of illumination
patterns and reconstruction time whilst retaining its robustness. In order to prove the
feasibility, numerical simulations were carried out with different SRs ranging from 0.1
to 0.3; an acceptable reconstruction appeared at approximately 0.1. This result indicated
that ZSPI could obtain satisfactory reconstruction results at low SRs. Further simulation
and physical experiments were compared with different reconstruction algorithms such as
DGI, CGD, DCT, and TV under speckle modulation patterns at a sample of 0.1 in terms of
different targets. The results proved that ZSPI had a higher imaging quality and required
less imaging time, particularly for low-frequency targets. The proposed method had an
evident advantage in reconstructing high-quality pictures with relatively few illumination
patterns and a lower reconstruction time, which could be used as a reference for SPI
methods such as low-frequency target fast SPI. In addition, the proposed method could be
used as a rotated object classification method in microcosmic or remote sensing due to the
rotation invariant of the Zernike moments.
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