
Citation: Zhang, W.; Zhu, D.; Huang,

Z.; Zhou, C. Improved Multi-Strategy

Matrix Particle Swarm Optimization

for DNA Sequence Design. Electronics

2023, 12, 547. https://doi.org/

10.3390/electronics12030547

Academic Editor: Janos Botzheim

Received: 24 December 2022

Revised: 16 January 2023

Accepted: 18 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improved Multi-Strategy Matrix Particle Swarm Optimization
for DNA Sequence Design
Wenyu Zhang 1, Donglin Zhu 2, Zuwei Huang 3 and Changjun Zhou 2,*

1 Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
2 College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
3 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
* Correspondence: zhouchangjun@zjnu.edu.cn

Abstract: The efficiency of DNA computation is closely related to the design of DNA coding se-
quences. For the purpose of obtaining superior DNA coding sequences, it is necessary to choose
suitable DNA constraints to prevent potential conflicting interactions in different DNA sequences
and to ensure the reliability of DNA sequences. An improved matrix particle swarm optimization
algorithm, referred to as IMPSO, is proposed in this paper to optimize DNA sequence design. In
addition, this paper incorporates centroid opposition-based learning to fully preserve population
diversity and develops and adapts a dynamic update on the basis of signal-to-noise ratio distance
to search for high-quality solutions in a sufficiently intelligent manner. The results show that the
proposal of this paper achieves satisfactory results and can obtain higher computational efficiency.

Keywords: DNA computing; DNA sequences design; improved matrix particle swarm optimization
algorithm (IMPSO); opposition-based learning; signal-to-noise ratio distance

1. Introduction

DNA is a macromolecular polymer composed of deoxyribonucleotides, which are com-
posed of deoxyribose, phosphate and bases including adenine (A), guanine (G), thymine
(T) and cytosine (C). In 1953, after experimentational analysis, Watson and Crick proposed
a molecular model of the double-helix structure of DNA [1] and first proposed the principle
of base complementary pairing, in which the bases of the nucleotide residues in a nucleic
acid molecule are linked to each other by hydrogen bonds in the correspondence between
A and T and G and C. That is to say four possible base pairs for the A = T, T = A, G ≡ C
and C ≡ G. A and T form two hydrogen bonds between; G and C constitute the three
hydrogen bonds between. In 1994, Turing Award-winner Adleman [2] proposed a simple
problem computation using the principle of the base complementary pairing of DNA, thus
inaugurating DNA computing. DNA computing then continued to evolve toward general-
ization. In 2006, Winfree [3] proposed the DNA strand replacement reaction, which was
a new way to construct logic circuits. In addition to circuit computing, DNA computing
can be combined with a variety of intelligent computing methods, such as neural network
chaotic systems, and used in different fields.

According to the biological composition of DNA, DNA can be considered a long string
of four symbols, they are A, G, C and T. Through the alphabet of ∑ = {A, G, C, T}, two
binary numbers or one quadratic number can be used to encode DNA to store information.
In 2012, Church [4] led the first team to store a book of 659 kb in DNA, demonstrating the
storage capacity of DNA. In 2016, Extance [5] showed that 1 g of DNA can hold the contents
of 100 billion DVDs and that 1 kg of DNA can even hold all the information data in the
world. In the same year, Zhirnov et al. [6] found that DNA information storage density
is 10 million terabytes per cubic centimeter and that even simple E. coli have a storage
density of about 1019 bits per cubic centimeter, further validating the powerful storage
capacity of DNA. In addition, due to the inherent parallel mechanism of DNA, i.e., the

Electronics 2023, 12, 547. https://doi.org/10.3390/electronics12030547 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030547
https://doi.org/10.3390/electronics12030547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12030547
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030547?type=check_update&version=2

Electronics 2023, 12, 547 2 of 21

phenomenon that the leading strand and the trailing strand are replicated simultaneously,
DNA computation can be performed simultaneously on many DNA strands, which greatly
enhances the speed of DNA computation.

DNA coding sequence design is a key step in DNA computation, which realizes the
computation and transformation of data stored in it through specific reactions between
DNA molecules. The rationality of DNA coding is directly related to whether the model
can be successfully validated by biochemical experimentations and the accuracy of DNA
computation. However, DNA encoding needs to satisfy molecular biology constraints, in-
cluding physical constraints such as GC content constraints and thermodynamic constraints
such as melting temperature (Tm).

Efficient DNA computation cannot be carried out without excellent DNA coding.
Optimal DNA coding can be obtained by optimal coding algorithms, but the cost required
for optimal coding may not be satisfied in a large problem space. Therefore, in order to
provide efficient and suitable DNA coding in acceptable computational time and space,
heuristic algorithms are widely applied to the design of DNA sequences in recent years as a
shortcut algorithm. Zhu et al. [7] proposed an IBPSO algorithm to solve the DNA sequence
design problem, as well as further improving the quality of DNA sequences. Chaves-
González et al. [8] fused artificial bee colony algorithms to propose a new evolutionary
approach to create a DNA sequence on the strength of multi-objective swarm intelligence to
automatically generate reliable DNA strands that can be applied to molecular computing.
Yang et al. [9] improved the spatial dispersion in the traditional IWO algorithm and used
the IWO algorithm and the niche crowding in the algorithm to solve the DNA sequence
design problem. Zhang et al. [10] used an improved taboo search algorithm for improving
the means for the systematic design of equal-length DNA strands, which conduces the
discovery of a range of good DNA sequences that satisfy the required certain combinatorial
and thermodynamic constraints. Cervantes-Salido et al. [11] proposed a multi-objective
evolutionary algorithm for designing a DNA sequence, taking advantage of a matrix-based
GA along with specific genetic operators to improve the performance for DNA sequence
optimization compared to previous methods. Chaves-González et al. [12] proposed an
adapted multi-objective version of the differential evolution (DE) metaheuristics approach
incorporating a multi-objective standard fast non-dominated sorting genetic algorithm to
produce high-quality DNA sequences. Vega-Rodríguez et al. [13] made several rectifications
in the noted fast non-dominated sorting genetic algorithm in conjunction with a novel
multi-objective algorithm in accordance with the behavior of fireflies and proposed a new
DNA sequence design method based on multi-objective firefly algorithm for generating
reliable DNA sequences for molecular computing. The metaheuristic algorithm as a general
heuristic algorithm can greatly reduce the number of attempts in a limited searching space,
can achieve the problem solution rapidly and is heavily applied to generate reliable DNA
coding sequences by virtue of its high efficiency. However, metaheuristic algorithms, as a
product of combining random algorithms with local search algorithms, are susceptible to
randomness or fall into a local optimum due to premature search and do not necessarily
guarantee the feasibility and reliability of the resulting DNA sequences. In recent years,
in order to improve the metaheuristic algorithm, which is prone to being caught in a
local optimality, many scholars have done a lot of corresponding research and proposed
various improved metaheuristic algorithms, among which the particle swarm algorithm
is a theoretically mature and widely used emerging metaheuristic algorithm to find the
optimal solution through collaboration and information-sharing among individuals in
the population.

Particle swarm optimization [14] (PSO) is a method to seek out the global optimum by
following the current searched optimum based on the observation of the regular behavior
of the flock activity. This algorithm has appealed to the academics with the strong points
of easy implementation, high-accuracy and fast convergence and has shown advantages
in solving practical problems. However, if the parameters are not chosen reasonably, the
particles may miss the optimal solution and subsequently appear to be non-converging.

Electronics 2023, 12, 547 3 of 21

Even if all particles move in the direction of convergence, homogenization can occur. Due
to the loss of the diversity of the population in the search space, premature convergence,
poor local search ability, etc., can occur, leading to a lack of further improvement in
accuracy as well as falling into a local optimum. In specific problems, the PSO needs
to be analyzed and improved in order to achieve better results. Houssein et al. [15]
experimentally demonstrated that the PSO algorithm suffers from premature convergence,
being trapped in a local optimum and poor performance in multi-objective optimization.
Ghatasheh et al. [16] used innovative optimization paradigms to improve the prediction
power of bankruptcy modeling to generate prediction models. Zhang et al. [17] proposed a
new vector co-evolutionary particle swarm optimization algorithm (VCPSO) to enhance
population diversity and avoid premature convergence, but it suffers from falling into local
optima or inefficient execution. The multi-objective particle swarm optimization algorithm
(MOPSO) proposed by Coello et al. [18] has good search performance but only focuses on
the generation of non-dominated vectors and maintaining population diversity, without
considering the constraint functions. The region-based selection algorithm (PESA-II) in
evolutionary multi-objective optimization proposed by Corne et al. [19] shows outstanding
performance in region-based selection multi-objective algorithms but does not deal with
runtime complexity. Eberhart et al. [20] used a dynamic neighborhood particle swarm
optimization approach to solve multi-objective optimization problems, which is easy to
implement and requires few parameters to be tuned but only deals with unconstrained
multi-objective optimization problems. Deb et al. [21] developed a fast and elitist multi-
objective genetic algorithm (NSGA-II) based on multi-objective evolutionary algorithm
(MOEA), which is able to find better solution diffusion and better convergence for most of
the problems but NSGA-II algorithm uses the no-penalty parameter constraint processing
method, which has some limitations.

In this study, an improved multi-strategy matrix particle swarm-based optimization
algorithm, referred to as IMPSO, is proposed. Compared with the previous matrix particle
swarm algorithm, the running time under the same conditions is significantly reduced
and the values of the constraints on the DNA sequences are well maintained. In addition,
centroid opposition-based learning strategy is incorporated to preserve population diver-
sity and to obtain global and sufficient results; at the same time, this strategy is used to
reinitialize the population when the iteration numbers is a multiple of 100 to prevent the
algorithm falling into the local optimal solution, while a dynamic update in accordance
with signal-to-noise ratio distance is developed and adapted to search for high-quality
solutions in a sufficiently intelligent manner and enable every individual to search for the
best position within its own near neighborhood. The application of these two strategies
puts the global optimal solution into effect. What is more, suitable DNA constraints are
chosen to avoid potential conflicting interactions between DNA molecules to prevent the
generation of secondary structures, to control non-specific hybridization and to ensure
the reliability of DNA sequences. To verify the feasibility of the IMPSO algorithm, the
DNA sequences, the values of each constraint and their running times obtained from the
optimization of IMPSO with MPSO [22], IWO [23], PSO [24] and HS [25] were compared.
MPSO continues the search processes by introducing the speed and position update mech-
anism of the global best particle, effectively ensuring the convergence. IWO is a simple
but effective algorithm employed for finding a solution for an engineering problem. PSO
is a typical SI that reproduces the new population by learning from personal and global
guidance information. HS is a optimization algorithm to solve TSP and a specific academic
optimization problem, etc., by mimicking the improvisation of music players. To show the
competitiveness of the IMPSO algorithm in solving the DNA sequence design problem, this
paper compares the experimentational DNA sequence design results of IMPSO with those
of NCIWO, HSWOA [26], MO-ABC, CPSO [27] and DMEA [28]. NCIWO and MO-ABC
are mentioned above when introducing particle swarm optimization. HSWOA [26] is
used to design DNA sequences that meet the new combination constraint. CPSO [27] is
used to solve precocious phenomena and the local optimum of PSO by chaotic mapping.

Electronics 2023, 12, 547 4 of 21

DMEA [28] is proposed to solve the DNA sequences design and to mitigate an NP-hard
problem. With the same number of iterations, the experimental results show that the
scheme is more competitive and has higher computational efficiency in solving the DNA
sequence design problem. The main contributions of this study are as follows:

(1) The matrix particle swarm optimization is introduced to improve the efficiency of the
traditional PSO.

(2) On the basis of the centroid opposition-based learning strategy, the influence of the
optimal and worst position is considered to make the position update more reasonable.

(3) The concept of signal-to-noise ratio distance is led into, and a formula conforming to
the internal state of the population is designed.

(4) During DNA sequence optimization design experimentation, the rationality and effec-
tiveness of IMPSO are verified by comparing with the variations of various algorithms.

The rest of the paper is arranged in the following way. Section 2 presents the constraints
associated with designing DNA coding sequences. Section 3 describes the strategy along
with the algorithm flow of the IMPSO. Section 4 introduces the comparison and analysis
of the IMPSO algorithm with other optimization algorithms for DNA sequence design.
Section 5 outlines the conclusions of this paper and indicates the next steps.

2. Constraints Formulation for DNA Sequence Design

Reliable DNA sequence design is a two-dimensional discrete optimization problem,
and the relevant constraints can be partitioned into two categories, one is the combination
of constraints including continuity, hairpin, H-measure and similarity, aiming to improve
the specificity of DNA molecule recognition, and the other is thermodynamic constraints,
mainly including melting temperature (Tm) and free energy, aiming to ensure the consis-
tency of the physicochemical properties of DNA molecules.

This section describes in detail the constraints associated with designing DNA se-
quences. In the following constraint equation, S stands for the DNA sequence set; u and v,
respectively, represent two certain DNA sequences selected from the DNA sequence set S;
α is the DNA sequences number contained in DNA sequence set S, and β is the number
of bases contained in a given DNA sequence in S. T(a, Tvalue) is a threshold function that
returns a when the value is a > Tvalue, and 0 otherwise. If u and v are complementary, the
function cd(u, v) returns 1; otherwise, the result of the equation is 0.

2.1. Continuity

Continuity is the amount of contiguous identical bases (A,C,G,T) in a given single
strand of DNA. Too large a continuity value in the DNA sequence makes the DNA sequence
easily twisted and folded in the hybridization process, thus creating a secondary structure
that is not conducive to DNA computation. Assuming the continuity threshold is 3, for the
DNA sequence CAATGCGTTAGCCCCGATCTTAC, it reaches the continuity threshold,
after which the sequence will use the continuity function to calculate its continuity value,
and other sequences that do not trigger the threshold will be considered discontinuous.
The formula to calculate the continuity of a certain DNA strand is as shown below [12].

fcontinuity(S) =
α

∑
ρ=1

Continuity
(
Sρ

)
(1)

Continuity(u) =
β−CT

∑
i=1

T(contσ(u, i), CT) (2)

contσ(u, i) =

{
θ, i f ∃θ s.t.ui 6= σ, ui+θ+1 6= σ, ui+j = σ f or 1 < j ≤ θ

0, otherwise
(3)

Electronics 2023, 12, 547 5 of 21

σ ∈ {A, G, C, T}; CT is the threshold value; T(A, CY) is a count of the number of contiguous
bases in DNA above a threshold; if A > CY, then return A; otherwise, return 0. contσ(u, i)
returns the number of consecutive bases of sequence u.

2.2. Hairpin

During the process of DNA sequence self-hybridization, the overlapping part of the
sequence will fold and the corresponding bases will complementarily pair, and the pairing
forms a secondary structure called a hairpin structure. The hairpin structure consists of a
hair stem and a hair loop. If the hairpin structure is present in the DNA sequence, it will
undergo self-folding in the biochemical reaction. For avoiding self-hybridization in DNA
sequences, making the hairpin structure in DNA sequences as small as possible is of great
importance. There are two types of hairpin structures, hair stem and hair loop. Lmin is the
minimum hair loop length required for the hairpin structure; Tmin is the minimum hairpin
stem length required; l is the length of the hair loop; t is the length of the hair stem, and the
formula to calculate a DNA hairpin is as shown below [12].

fhairpin(S) =
α

∑
ρ=1

Hairpin
(
Sρ

)
(4)

Hairpin(u) =
(β−Lmin)

∑
t=Tmin

β−2t

∑
l=Lmin

β−2t−l

∑
i=1

T(
PLtil

∑
j=1

cb
(
ui+j, uβ−j

)
,

PLtil
2

) (5)

where PLtil = min(t + i, β− l − i− t) represents the maximum number of base pairs
possible when t + i + l

2 is the center of the hairpin structure. cb(u, v) determines whether
u and v are complementary; if u and v are complementary, the result is 1; otherwise, the
result is 0.

2.3. H-Measure

In DNA sequences, H-Measure is adapted to count the Hamming distance, which
indicates the number of different bases at the same position of two complementary DNA
sequences. The likelihood of hybridization between complementary strands of the same
DNA molecule is closely linked to the H-Measure, showing a positive correlation. With this
constraint, non-specific hybridization between a DNA sequence and its complementary
sequences can be controlled. H-Measure is calculated by the following formula [12].

fH−measure(S) =
α

∑
ρ=1

α

∑
θ=1,ρ 6=θ

H −measure
(
Sρ, Sθ

)
(6)

where Sρ, Sθ respectively represent two reverse parallel DNA sequences. H-Measure calcu-
lation consists of two parts: continuous and discontinuous calculations.

H −measure(u, v) = Maxg,t(hdis(u, FShi f t(v(−)gv, t))
+hcont(u, FShi f t(v(−)gv, t))

(7)

hdis(u, v) = T(
β

∑
i=1

cb(ui, vi), DH × β) (8)

hcont(u, v) =
β

∑
i=1

T(subcb(u, v, i), CH) (9)

hdis(u, v) calculates the number of complementary bases in the DNA sequence u, v. hcont(u, v)
figures the penalty value of the consecutive base pairing of DNA sequences u and v.
v(−)gv is a sequence formed by splicing two fragments of sequence v with a splice gap
of g. H-Measure is the maximum value after the summation of the above two functions.
subcb(u, v, i) defines the number of consecutive complementary paired bases of the u, v

Electronics 2023, 12, 547 6 of 21

sequence to begin with position i. DH is a real number in [0, 1], and CH is a positive integer
in [1, N].

2.4. Similarity

In DNA calculations, similarity indicates how close two DNA sequences are to each
other in terms of bases at the same position. Similarity takes into account the complemen-
tary Hamming distance after shifting in addition to the Hamming distance. The similarity
value is the maximum value of the totality of the amount of bases with the same displace-
ment and the amount of consecutive identical bases between sequences u and splicing
sequence v(−)gv. The similarity is calculated as follows [12].

fsimilarity(S) =
α

∑
ε=1

α

∑
δ=1,ε 6=δ

Similarity(Sε, Sδ) (10)

where Sε, Sδ denotes two sequences in the DNA sequence set S. The similarity is calculated
in two parts: the similarity of discontinuous sequences and the similarity of the largest
continuous common subset.

Similarity(u, v) = Maxg,t(sdis(u, FShi f t(v(−)gv, t))
+scont(u, FShi f t(v(−)gv, t)))

(11)

sdis(u, v) = T(
β

∑
i=1

eq(ui, vi), DS× β) (12)

scont(u, v) =
β

∑
i=1

T(subeb(u, v, i), CS) (13)

FShi f t(v(−)gv, t) denotes the shift of v(−)gv by t positions, eq(u, v) is used to determine
whether u and v are equal; equal returns 1; otherwise, the result is 0; DS is a real number in
[0, 1], and CS is a positive integer in [1, N]. subeb(u, v, i) shows the amount of consecutive
equal bases from DNA sequence u and v starting from position i. Sdis(u, v) calculates the
Hamming distance of two DNA strands; Scont(u, v) calculates the sum of the consecutive
equal numbers of bases starting from positions 1 to β.

2.5. GC Content [29]

GC content stands for the amount of guanines as well as cytosines in the DNA sequence
as a percentage of the overall number of bases. GC content is directly related to the
biochemical stability of DNA sequences because G ≡ C base pairs contain three hydrogen
bonds and release more heat energy when broken than A = T base pairs containing two
hydrogen bonds, so GC content also influences the melting temperature of DNA sequences.
For the DNA sequence ACGTCGTTCGTACGC, the GC content is 60% (9/15). The GC
content (in percentage form) is calculated by the following formula.

GC(u) = 100
β

∑
i=1

GC(ui)

β
(14)

GC(τ) =
{

1, τ = G or τ = C
0, τ = A or τ = T

(15)

2.6. Melting Temperature (Tm)

Melting temperature is the temperature required for half of the base pairs of a DNA
double-stranded structure to be disrupted into a single-stranded structure. Melting tem-
perature is an important thermodynamic constraint of DNA molecules that influences
the reaction efficiency of DNA sequences, and a steady Tm allows for the better control
of hybridization reactions between DNA molecules. The G ≡ C base pair contains three

Electronics 2023, 12, 547 7 of 21

hydrogen bonds and releases more thermal energy upon breaking than the A = T base
pair containing two hydrogen bonds. Tm is usually calculated in accordance with the
nearest-neighbor thermodynamic model [30], with the following relevant equation.

fTm(S) =
∆H

◦

∆S◦ + R ln ([CT]
4)
− 273.15 (16)

where ∆H
◦

represents the enthalpy change from reactants to products, which is the total
enthalpy of adjacent bases; ∆S

◦
represents the entropy change from reactants to products,

which is the total entropy of adjacent bases. R represents the gas constant (1.987 cal/kmol),
and CT is the concentration of DNA molecules.

2.7. Fitness Function

The optimization problem of this paper belongs to the minimum optimization prob-
lem. The fitness function of the DNA sequence is determined by the constraint function
described above and is the minimum of the above constraint functions, expressed by the
following formula.

Minimize fi(x), i ∈ {Continuity, Hairpin, H −measure,
Similarity} subject to GC = 50%, Tm

(17)

3. Improved Multi-Strategy Matrix Particle Swarm Optimization
3.1. Basic Information of Matrix Particle Swarm

In order to describe the IMPSO algorithm more clearly, this section first introduces
information about matrix particle swarm, some important formulas used by the algorithm
and the operations between matrices.

3.1.1. Representation Information

Assume there exists a N individuals population to solve the D-dimensional problem.
This population is represented by a matrix X of size N × D, defined as follows.

X =

 x11 · · · x1D
...

. . .
...

xN1 · · · xND

 (18)

where xij represents the individual i and dimension j.
To accommodate the matrix-based representation, the upper bound of the variables is

represented by a matrix XB of size 1× D, the lower bound of the variables is represented
by a matrix XM of size 1× D, and the fitness values of every individual are represented by
a matrix Fit of size N × 1. The matrix Ones is an all-1 matrix, and the matrix R is a matrix
consisting of random numbers of [0, 1].

3.1.2. Common Matrix Operations

Table 1 lists the relevant matrix operations used in this paper and shows their corre-
sponding descriptions. For convenience of description, the size of matrices A and B defaults
to N × D if not specifically mentioned.

3.1.3. Initialization of Particle Swarm Related Variables

Matrix X, also called the population matrix, represents the position of individuals.
Matrix V represents the velocity, and pBest represents the personal best positions of all the
individuals in the population, respectively. Where X is initialized as follows.

XN×D = OnesN×1 × (XB− XM) ◦ RN×D + OnesN×1 × XM (19)

Electronics 2023, 12, 547 8 of 21

Table 1. Typical operations in matrix and their notations [22].

Name Description

Addition operation (+) A + B =

 a11 + b11 · · · a1D + b1D
...

. . .
...

aN1 + bN1 · · · aND + bND



Subtraction operation (−) A− B =

 a11 − b11 · · · a1D − b1D
...

. . .
...

aN1 − bN1 · · · aND − bND



Multiplication operation (×) AN×D × BD×N =



D
∑

i=1
a1i × bi1 · · ·

D
∑

i=1
a1i × biN

...
. . .

...
D
∑

i=1
aNi × bi1 · · ·

D
∑

i=1
aNi × biN



Scalar multiplication (·) c·A =

 c× a11 · · · c× a1D
...

. . .
...

c× aN1 · · · c× aND



Hadamard product (◦) A ◦ B =

 a11 × b11 · · · a1D × b1D
...

. . .
...

aN1 × bN1 · · · aND × bND



Transposition operation
(
XT) AT =

 a11 · · · aD1
...

. . .
...

a1N · · · aDN


Logical operation (≤) A ≤ B = C, ci,j =

{
1, i f ai,j ≤ bi,j

0, otherwise

Maximum operation (max) a = max(A), where a is the maximum element in A

Minimum operation (min) a = min(A), where a is the minimum element in A

Maximum indexing (maxind) k = maxind(AN×1), where k is the row index of the
maximum element in AN×1

Minimum indexing (minind) k = minind(AN×1), where k is the row index of the
minimum element in AN×1

Index operation (X[I | J]) X[I | J] =


XI1 J1 · · · XI1 Jj

...
. . .

...
XIi J1 · · · XIi Jj



The initialization process of V is as follows.

VN×D = OnesN×1 × (VB−VM) ◦ RN×D + OnesN×1 ×VM (20)

After the initialization of matrices X and V is completed, IMPSO obtains the fitness
values of all individuals, represented by a matrix Fit of size N × 1, according to the
following equation.

FitN×1 = f (X) (21)

The initialization process of pBest is as follows.

pBestN×D = OnesN×1 × (XB− XM) ◦ RN×D + OnesN×1 × XM (22)

Electronics 2023, 12, 547 9 of 21

The initialization process of pBest_Fit is as follows.

pBest_FitN×D = OnesN×1 × (VB−VM) ◦ RN×D + OnesN×1 ×VM (23)

After completing the above variable initialization process, the globally best fitness
value can be obtained by the following formula, represented by gBest_Fit.

gBest_Fit =

{
min(Fit), i f it is a minimum problem
max(Fit), i f it is a maximum problem

(24)

Furthermore, the optimization problem considered in this experimentation is the mini-
mum value problem; IMPSO can use minind() formula in Table 1 to obtain the corresponding
number of rows for individuals with the best pBest fitness value, as follows.

Index = minind (pBest_Fit) (25)

3.1.4. Velocity and Position Update

In the process of IMPSO iterations, the population continuously performs velocity
update as well as position updates from generation to generation in order to get as close as
possible to the global optimum, and the equations for velocity and position updates are
shown below.

V = ω×V + c1 × R1 ◦ (pBest− X) + c2 × R2 ◦ (Ones× gBest− X) (26)

X = X + V (27)

It is worth noting that the matrix gBest of size 1× D is actually the individual with the
best fitness value in the matrix pBest of N × D, which is the index row corresponding to
pBest. The N × D matrix X extended from the 1× D matrix gBest can be obtained by the
following matrix multiplication formula, which shows that the value of each row of the
matrix X is equal to the value of gBest.

XN×D = OnesN×1 × gBest1×D (28)

In order to avoid the elements of matrices V and X to exceed the space boundary, the
boundary should be detected and processed once the matrix V or X is updated. The specific
method can be implemented by logical operations and Hadamard products. For a more
visual description, IMPSO is illustrated with the matrix X as an example, where XB is the
upper boundary, and the detection and processing of the upper boundary can be based on
the following equation.

LOGICN×D = X > (Ones× XB) (29)

where the 1× D matrix XB is first expanded into an N × D matrix with each row equal to
XB. Further, it is then compared with the N × D matrix X. If the elements of the matrix
X at the corresponding position are greater than the value of the upper boundary, the
corresponding element position of the N × D matrix LOGIC is set to 1, and otherwise 0.
With reference to this approach, the processing of the upper boundary can be implemented
with the following equation.

X = LOGIC ◦ XB + (1− LOGIC) ◦ X (30)

The result of the operation is the element of matrix X that is greater than the upper
bound is set to the value of the upper bound. More specifically, the element of the matrix X
that is greater than the upper bound is set to 1 at the corresponding position in the matrix
LOGIC, and thus the element of the matrix X needs to be set to the value of the upper
bound. Conversely, if an element of the matrix LOGIC is 0, it means that the element in the
corresponding position of the matrix X does not exceed the upper bound, then the element

Electronics 2023, 12, 547 10 of 21

of the matrix X in the corresponding position of that element does not need to be changed
either. The elements of the matrix X that are smaller than the lower bound also need to be
set to the value of the lower bound by a similar operation, which is not repeated here.

The next subsection describes in detail the two strategies used by the IMPSO algorithm
to improve the population best fitness value, wherein the signal-to-noise distance is used to
further update population best position on top of the basic update population position, and
improved centroid opposition-based learning strategy is used to reinitialize population-
related variables when the number of iterations is a multiple of 100 to exclude the influence
of extreme values on the best fitness value, making the center of gravity of the population
more representative.

3.2. Improved Opposition-Based Learning to Reinitialize the Population-Related Parameters

Opposition-based learning is a computational intelligence scheme proposed by
Tizhoosh [31] in 2005, which has been successfully applied to a variety of population-
based evolutionary algorithms. Traditional learning strategies are essentially based on
randomness, and once the worst-case scenario occurs, the search or optimization becomes
unmanageable and the results take a lot of time to converge. The main idea of OBL is
to consider both the points in the current space and their opposites and to select them
meritedly with a view to obtaining results closer to the global optimum. In order to fully
explore the current space and to make full use of the favorable information carried by
the population as a merit-seeking whole, the COBL centroid opposition-based learning
proposed by Rahnamayan et al. [32] was introduced on the basis of OBL.

Theorem 1. The opposite point.
Suppose there exists a number x in [l, u], then the opposite point of x is defined as

x′ = l + u− x (31)

Extending the definition of the opposite point to the D-dimension space, let p = (x1, x2, . . . , xD)
be a point in the D-dimension space, where xi ∈ [li, ui], i = 1, 2, . . . , D, then its opposite point is
defined as

p′ =
(
x′1, x′2, . . . , x′D

)
(32)

where x′i = li + ui − xi.

Theorem 2. Center of gravity.
(X1, . . . , Xn) is a group of n points with unit mass distributed in D-dimension space, and the

center of gravity of the group is defined as

M =
(X1 + X2 + . . . + Xn)

n
(33)

It can also be expressed as.

1
n ∑n

i=1 Xi,j, j = 1, 2, . . . , D (34)

Theorem 3. Center of gravity of the opposite point.
If the location of the center of gravity of a discrete uniform whole is M, then the opposite point

of a point Xi in the group is defined as

X′i = 2M− Xi, i = 1, 2, . . . , n (35)

Electronics 2023, 12, 547 11 of 21

The opposite point is located in a search space with dynamic boundary, denoted Xi,j ∈
[
aj, bj

]
.

The dynamic boundary allows the search space to shrink continuously, which is calculated as

aj = min
(
Xi,j
)
, bj = max

(
Xi,j
)

(36)

where aj is the lower boundary of the search space, and bj is the upper boundary of the search space.
If the opposite point is outside the search boundary, the opposite point can be recalculated

according to the following formula.{
aj + rand(0, 1)×

(
Mj − aj

)
, i f Xi,j < aj

Mj + rand(0, 1)×
(
bj −Mj

)
, i f Xi,j > bj

(37)

From the above, it is clear that the center-of-gravity position is chosen from the
information of the average position of the population. In real life, people calculate the
average value by removing the maximum and minimum values, so as to get rid of the
influence of extreme values. In this paper, the center-of-gravity position is also calculated
by subtracting the optimal position and the worst position to make the center-of-gravity
position more representative. Using it for the initialization of the population will produce
individuals that will be spread throughout the space, which is well prepared for the
subsequent search for the best.

3.3. Signal-to-Noise Ratio Distance for Further Update the Position

In the field of computer artificial intelligence, distance is a frequent and fundamental
concept that has important applications in subfields such as natural language processing
and computer vision. The concept of distance originates from the concepts of metrics and
measurement in the field of mathematics. Distance is used in the computer field to represent
the similarity between data; the greater the distance, the greater the degree of difference
between the data. Common distance algorithms are Euclidean distance, Mahalanobis
distance, Minkowski distance, etc. Among them, Euclidean distance is the most common
representation of the distance between two or more points, but as the number of dimensions
increases, the computation of the Euclidean distance increases substantially, which greatly
increases the time overhead, and the difference between any two points in the space
becomes weaker, leading to a uniform distribution of the data [33]. Hassanat et al. [34] uses
the Euclidean norms and greedy algorithm to find the furthest pair of points (diameter) of
a set of points in d-dimensional Euclidean feature space. On the other hand, the Euclidean
distance treats the differences between the various dimensions of points in a space as
equivalent, which sometimes does not satisfy the practical requirements. The Mahalanobis
distance is a representation of the covariance distance of the data, and the Minkowski
distance is a generalization of the Euclidean distance. In other words, the Minkowski
distance can be expressed by a generalized formulation of several distance metric formulas,
which can be degraded to Manhattan distance or Euclidean distance depending on the
parameters, and the Chebyshev distance is the form in which the Minkowski distance
takes its limit. Gueorguieva et al. [35] proposed an optimized fuzzy C-means clustering
algorithm to improve the FCM clustering results by combining Mahalanobis distances and
Minkowski distance metrics. Yang et al. [36] introduced signal-to-noise distance to measure
the degree of difference between data, which can produce more discriminative features
than the distance metric based on Euclidean distance [37], and the SNR distances of a pair
of data pi and pj are defined as

dS
(

pi, pj
)
=

var
(

pj − pi
)

var(pi)
=

var
(
hij
)

var(pi)
(38)

Electronics 2023, 12, 547 12 of 21

where var(x) = ∑n
i=1 (xi−µ)2

n denotes the variance of x, µ = ∑n
i=1 xi

n denotes the mean of x,
and n denotes the dimension of x. The larger the SNR distance, the greater the degree of
variance between the anchored and compared data.

Therefore, a new update mechanism that uses signal-to-noise ratio distance to deter-
mine the distance information between individuals and the optimal position was proposed
in this paper. Through this distance, the worst position can be moved away from. The
specific design formula is as follows.

d = var(xi(t)− best(t))/var(best(t)) (39)

xi(t + 1) = xi(t) + sigmod(d)·(xi(t)− worst(t)) (40)

In the formula, xi(t) denotes the position of the i-th individual in the tth generation,
best(t) denotes the best position in the tth generation, and worst(t) denotes the worst
position in the tth generation. It can be seen that d determines the magnitude of individual
search; the smaller d is, the smaller the distance of individual xi(t) away from the worst
position. On the contrary, the larger d is, the larger the distance is. By adjusting individual
position in this dynamic update, high-quality solutions can be searched adequately. The
intelligence of the search is enhanced.

3.4. IMPSO Algorithm
3.4.1. IMPSO Algorithm Process

Input: The size of population PopSize, the dimension of the problem PerLen, the
parameters ω, c1, c2, maximal generation max_iterations.

Step 1. Initialize the matrices X and V according to Equations (19) and (20), control
the elements of the matrix X no greater than XB and no less than XM; the elements of the
matrix V no greater than VB and no less than VM.

Step 2. The fitness value of each individual of the matrix X, represented by the matrix
Fit, is obtained from the Equation (21) in terms of individuals within the population.

Step 3. Update the best solution in terms of dimensions and select the individual with
the best adaptation value for each dimension, i.e., each column, to form a matrix gBest of
size PopSize× 1.

Step 4. The best fitness value gBest_Fit is updated by the element with the best fitness
value from the fitness value matrix Fit.

Step 5. Update the best position of an individual, specifically by using the matrix X
representing the position of the individual to obtain the personal best position matrix pBest.

Step 6. Update the matrix pBest_Fit, which represents the fitness values of the personal
best positions with the matrix Fit representing the fitness values of all the individuals in
the population.

Step 7. Perform max_iterations iterations for the following operations.
Step 8. Update velocity according to Equation (26).
Step 9. Using matrix V as reference, if the element in matrix V is greater than VB, set

the element in the corresponding position in matrix LOGIC to 1; otherwise, set it to 0.
Step 10. Using the matrix LOGIC, the elements of the matrix V greater than VB are set

to VB; otherwise, they remain unchanged.
Step 11. Using matrix V as reference, if the element in matrix V is smaller than VM,

set the element in the corresponding position in matrix LOGIC to 1; otherwise, set it to 0.
Step 12. Using the matrix LOGIC, the elements of the matrix V smaller than VM are

set to VM; otherwise, they remain unchanged.
Step 13. The personal position matrix X is updated with the matrix X and the latest

obtained matrix V according to Equation (27).
Step 14. Using matrix X as reference, if the element in matrix X is greater than XB, set

the element in the corresponding position in matrix LOGIC to 1; otherwise, set it to 0.
Step 15. Using the matrix LOGIC, the elements of the matrix X greater than XB are set

to XB; otherwise, they remain unchanged.

Electronics 2023, 12, 547 13 of 21

Step 16. Using matrix X as reference, if the element in matrix X is smaller than XM, set
the element in the corresponding position in matrix LOGIC to 1; otherwise, set it to 0.

Step 17. Using the matrix LOGIC, the elements of the matrix X smaller than XM are
set to XM; otherwise, they remain unchanged.

Step 18. Update the matrix Fit representing the fitness values of all the individuals
with the latest obtained matrix X according to Equation (21).

Step 19. Update the matrix pBest and the matrix pBest_Fit. If the matrix pBest_Fit is
larger than the corresponding value in the matrix Fit, the corresponding element in the
matrix LOGIC is set to 1; otherwise, it is set to 0.

Step 20. If the matrix pBest_Fit is smaller than the corresponding value in the matrix
Fit, it means that the updated personal position matrix is not as good as the previous
personal position matrix, so the matrix pBest that represents the personal best positions of
all the individuals in the population does not need to be updated. Conversely, it means that
the latest personal position matrix is better than the previous individual matrix, because
the personal best fitness value is optimized, so it needs to be updated to the latest personal
position matrix X.

Step 21. The matrix Fit corresponds to the personal best fitness values of the population
matrix X. The matrix pBest_Fit corresponds to the matrix pBest, and the best personal fitness
values matrix is updated based on the personal best position matrix by comparing the
previous equation.

Step 22. Using Equations (38)–(40) to further update the position of the population particles.
Step 23. Individuals with the best fitness values are selected in terms of dimensions,

and the corresponding elements are assigned to the matrix gBest according to the obtained
individuals and dimensions in the matrix pBest.

Step 24. The element with the best fitness value is selected in the personal best fitness
value matrix pBest, which is the best solution fitness value.

Step 25. When the number of iterations is a multiple of 100, the population-related
variables are reinitialized using Equations (31)–(37). Exit the loop at the end of the iteration
count; otherwise, go back to step8 to continue the iterations.

Output: The found best solution fitness gBest_Fit.
The matrix pBest represents the best personal positions of all the individuals in the

IMPSO population. pBest_Fit is a matrix that selects the element with the best fitness value
in all dimensions in terms of individuals, with a matrix size of PopSize× 1. gBest is a matrix
that finds the corresponding row number of the best personal fitness value matrix pBest_Fit,
i.e., the individual with the best personal fitness value, in terms of dimensions, to achieve
the goal of finding the individual with the best fitness value for each dimension, and the
matrix size is 1× PerLen. gBest_Fit is the matrix with the best fitness value in the personal
best fitness value matrix pBest_Fit.

3.4.2. Flowchart Based on IMPSO Algorithm to Optimize DNA Sequence

To solve the problem of excessive time consumption and low quality in DNA sequence
design optimization problems, this study proposes a multi-strategy matrix particle swarm
and introduces an efficient matrix particle swarm to reduce the time consumption of
the algorithm, then introduces novel centroid opposition-based learning to initialize the
population during the optimization search to avoid the population falling into local states
and finally introduces a signal-to-noise ratio to judge the distance between individuals for
updates with high quality. The efficiency and reliability of DNA computing are inseparable
from the design of the DNA chain. In order to design more excellent DNA sequences, it
can be effective to combine the objective function and the constraints of the DNA chain.
Before applying the objective function for calculation, the population particles are coded by
dividing them by four, so that the matrix particle swarm can be coded with the four bases
(A, C, G, T) of DNA. The specific algorithm flowchart is shown as Figure 1.

Electronics 2023, 12, 547 14 of 21

Electronics 2023, 12, x FOR PEER REVIEW 14 of 21

with the four bases (A, C, G, T) of DNA. The specific algorithm flowchart is shown as
Figure 1.

Initialize the population matrix
representing the location of

individuals using Equation (19)

Update the position and
velocity of the Matrix Particle

Swarm using Equations.(26)–
(27)

Calculate the fitness values
according to Equation (21)

New fitness values are smaller
than original fitness values Update best position

Update the location of
the population according
to Equations. (38)–(40)

Re-calculate fitness
values to get global

best position

Whether the maximum
number of the iterations has

been reached?

Output Minimum
Location and Cost

end

Re-initialize the population-
related parameters

according to Equations.
(31)–(37)

Iterations%100==0?Ierations = iterations + 1

Input the relevant parameters
and the maximum number of

iterations

yes

no

no

yes

no

yes

start

Figure 1. IMPSO algorithm flowchart.

4. Results and Analysis
4.1. Algorithm Parameters

In this section, IMPSO is applied to DNA sequence design experimentation to
demonstrate the high efficiency of the IMPSO in solving the DNA coding sequence design
problem. All experiments were carried out on a computer with Intel (R) Core (TM) i5-
10200H (2.40 Ghz) CPU, 16 GB RAM, 64-bit OS, and MATLAB R2020b simulation plat-
form. In this experiment, the DNA molecule concentration is set to 10 nm, the salt solution
concentration in the experimentation is set to 1 mol/L, the minimum values of the hair
stem and hair loop were set to 6, and in the experiment on similarity and H-Measure, the
penalty threshold for base continuity equality is set to 6, and, for discontinuity, it is set to
0.17. The continuity threshold for a single DNA strand is set to 2. The other parameters
used in this study are described in Table 2.

Table 2. Related parameters in IMPSO algorithm.

Symbol Implication Value
Max_iteration Maximum number of iterations 3000

PopSize Size of the population 20
PerLen Length of the individual 20 𝑋𝐵 Upper bound 3 𝑋𝑀 Lower bound 0 𝑉𝐵 Maximum velocity constraint 3 𝑉𝑀 Minimum velocity constraint 0

Figure 1. IMPSO algorithm flowchart.

4. Results and Analysis
4.1. Algorithm Parameters

In this section, IMPSO is applied to DNA sequence design experimentation to demon-
strate the high efficiency of the IMPSO in solving the DNA coding sequence design prob-
lem. All experiments were carried out on a computer with Intel (R) Core (TM) i5-10200H
(2.40 Ghz) CPU, 16 GB RAM, 64-bit OS, and MATLAB R2020b simulation platform. In this
experiment, the DNA molecule concentration is set to 10 nm, the salt solution concentration
in the experimentation is set to 1 mol/L, the minimum values of the hair stem and hair loop
were set to 6, and in the experiment on similarity and H-Measure, the penalty threshold for
base continuity equality is set to 6, and, for discontinuity, it is set to 0.17. The continuity
threshold for a single DNA strand is set to 2. The other parameters used in this study are
described in Table 2.

4.2. Algorithm Results
4.2.1. Experimentation on the Effectiveness of IMPSO in Solving DNA Coding

To verify the feasibility of the IMPSO algorithm, the DNA sequences, the values of
each constraint and their running times obtained from the optimization of IMPSO with
MPSO, IWO, PSO and HS were compared. The results in Table 3 show that the IWO,
PSO and HS algorithms take a long time to solve the DNA sequence design problem, all

Electronics 2023, 12, 547 15 of 21

above 20,000 s, and IWO even takes more than 35,000 s. The performance of MPSO shows
that the running time of the swarm intelligence algorithm based on matrix operations is
significantly reduced under the same conditions and that the values of each constraint
of the DNA sequence do not become worse. The IMPSO algorithm requires more than
two times more time compared to MPSO, which is due to the time required to add the
improvement strategy. Although the time consumed increases, all the metrics of the DNA
sequences obtained by IMPSO are better than those of MPSO, so the extra time consumption
is worthwhile to obtain higher computational efficiency.

Table 2. Related parameters in IMPSO algorithm.

Symbol Implication Value

Max_iteration Maximum number of iterations 3000
PopSize Size of the population 20
PerLen Length of the individual 20

XB Upper bound 3
XM Lower bound 0
VB Maximum velocity constraint 3
VM Minimum velocity constraint 0
ωmin Minimum number of dynamic constant 0.4
ωmax Maximum number of dynamic constant 0.9
C10 Initial factor for self-learning 2.5

C1min Minimum factor for self-learning 0.5
C20 Initial factor for social learning 2.5

C2min Minimum factor for social learning 0.5
D The size of Hamming Distance 11

4.2.2. Experimentations on the Competitiveness of IMPSO in Designing DNA Sequence

For demonstrating the competitiveness of IMPSO to solve DNA sequence design,
this paper compares the experimentational DNA sequence design results of IMPSO with
those of NCIWO, HSWOA, MO-ABC, CPSO and DMEA by comparing the average values
of continuity, hairpin, H-Measure, similarity and the variance of Tm to assess sequence
quality. Among these metrics, H-Measure and similarity are beneficial in preventing DNA
strands from mismatching, and hairpin and continuity are beneficial in avoiding secondary
structures in DNA strands. To ensure the fairness of the experimentations, parameters in the
mentioned algorithm are set in accordance with their relevant references, and population
size and iterations numbers were kept consistent.

4.3. Comparisons and Analysis

Controlling continuity and hairpin structure in DNA sequences can prevent self-
hybridization in DNA molecules to produce secondary structures and to ensure the re-
liability of DNA calculations. By constraining similarity and H-Measure, non-specific
hybridization between a DNA sequence and its complementary sequences can be con-
trolled. Melting temperature and free energy are important thermodynamic constraints of
DNA molecules, and maintaining their stability is conducive to control the hybridization
reaction between DNA molecules and to improve the reaction efficiency of DNA sequences.

4.3.1. Control Secondary Structures

From the results in Table 4 and Figure 2, it can be seen that the continuity and hairpin
of IMPSO and HSWOA are 0; however, the continuity or hairpin structures of NCIWO,
MO-ABC, CPSO and DMEA exceed 0. This indicates that the DNA sequences created by
IMPSO and HSWOA prevent secondary structures with advantage.

Electronics 2023, 12, 547 16 of 21

Table 3. Comparison of DNA sequences and their constraint values and Cputime.

DNA Sequences (5′-3′) Continuity Hairpin H-Measure Similarity Tm GC%

IWO [23]
CCAACCTCCGAACCTACATA 0 0 50 57 63.24 50

CAGAACCAGAACAACGCCAA 0 0 52 56 65.76 50
ATTAACCACCTGCCTCTCTG 0 0 54 54 63.85 50
CGATTACACTCCTCACACCA 0 0 51 56 63.78 50

CAGCCAGGTGAAGATAAGAC 0 0 59 53 62.33 50
ACGGTGCTACCTGTTCCTAT 0 0 61 54 65.13 50
AGTATTGCGACGGCCTTCAA 0 0 61 50 66.89 50

Average 0 0 55.43 54.29 64.42 50
Cputime(s) 35,379.59

PSO [24]
TACCTCCGTTCTTGCCACTT 0 0 58 49 65.91 50

CGGTGAGAGATGACGATTAG 0 0 60 48 61.85 50
ATAGCGTGACCAGCCAACAA 0 0 63 49 66.88 50
GTTGGATTGCGTACTCTCTG 0 0 61 47 62.92 50
TGTTGGTCAACCTGATGCTG 0 0 64 49 65.25 50
AGTTCTTAGGAGCGTGCAGA 0 0 61 49 65.64 50
CCGCCACACGAATCAATCTA 0 0 63 47 64.81 50

Average 0 0 61.43 48.29 64.75 50
Cputime(s) 20,814.27

HS [25]
AGGAGAGACCTGGATTGAGT 0 0 60 51 64.16 50
TGTAGGAAGAGTGTGAACGG 0 0 61 46 63.71 50
GCAACCAACCATTACTCGAC 0 0 57 50 63.78 50

CCTTCCTTCCGCCTTATATC 0 0 64 44 61.9 50
AGGACATGAGAATCACACGG 0 0 60 52 64.15 50
GCAGAGACAATAACAAGCGG 0 0 56 53 63.83 50
GCCAATCAACATCGACACCT 0 0 58 54 65.35 50

Average 0 0 59.43 50 63.84 50
Cputime(s) 21,364.64

MPSO [22]
TCCAAGCACACCATACCTCT 0 0 58 50 65.39 50

CGGAGAAGAAGTAGAACTGG 0 0 55 51 61.66 50
GACCACACTCAGGATCCATA 0 0 58 55 62.96 50
GCCAATATAGGCCACAGAGA 0 0 64 50 63.69 50
TCGCGTATCGTTGGTGTCTA 0 0 65 48 65.66 50

TTAACCGAGAATCTCGCAGG 0 0 61 51 64.18 50
ACATGAAGGTGCGGAAGCTT 0 0 61 51 67.18 50

Average 0 0 60.29 50.86 64.39 50
Cputime(s) 6691.05

IMPSO
GGAGGTTAGGTTAGTGTTGG 0 0 53 53 61.90 50

CGACAAGAGATGAGAACACC 0 0 54 49 62.57 50
GAGTAGGTGAGATGGTAAGG 0 0 47 55 60.80 50
CAACGAACACGAACCAGTCA 0 0 64 45 65.40 50

GTTGGTGGTTGGTCCTTGTA 0 0 58 47 64.57 50
TATACCTAGAGTGAACGGCG 0 0 61 50 63.04 50
CCGCCATGAGGAAGTGTATA 0 0 59 51 63.66 50

Average 0 0 56.57 50 63.13 50
Cputime(s) 15,008.97

Electronics 2023, 12, 547 17 of 21

Table 4. Comparison of DNA sequences and corresponding constraint values.

DNA Sequences (5′-3′) Continuity Hairpin H-Measure Similarity Tm GC%

IMPSO
GGAGGTTAGGTTAGTGTTGG 0 0 53 53 61.90 50

CGACAAGAGATGAGAACACC 0 0 54 49 62.57 50
GAGTAGGTGAGATGGTAAGG 0 0 47 55 60.80 50
CAACGAACACGAACCAGTCA 0 0 64 45 65.40 50

GTTGGTGGTTGGTCCTTGTA 0 0 58 47 64.57 50
TATACCTAGAGTGAACGGCG 0 0 61 50 63.04 50
CCGCCATGAGGAAGTGTATA 0 0 59 51 63.66 50

Average 0 0 56.57 50 63.13 50

HSWOA [26]
CTCGTCTAACCTTCTTCAGC 0 0 63 51 62.28 50

CTGTGTGGAATGCAAGGATG 0 0 64 48 63.82 50
CGAGCGTAGTGTAGTCATCA 0 0 63 69 63.56 50
AGTTACAGGACACCACCGAT 0 0 65 51 66.39 50
CAGTAGCAGTCATAACGAGC 0 0 64 56 62.69 50
GCATAGCACATCGTAGCGTA 0 0 59 54 64.60 50
TGGACCTTGAGAGTGGAGAT 0 0 62 50 64.44 50

Average 0 0 62.86 54.14 63.97 50

NCIWO [9]
ACACCAGCACACAGAAACA 9 0 55 46 66.99 50
GTTCAATCGCCTCTCGGTAT 0 0 57 52 64.26 50
GCTACCTCTTCCACCATTCT 0 0 55 53 63.55 50

GAATCAATGGCGGTCAGAAG 0 0 66 47 63.58 50
TTGGTCCGGTTATTCCTTCG 0 0 65 52 64.44 50
CCATCTTCCGTACTTCACTG 0 0 56 56 62.30 50
TTCGACTCGGTTCCTTGCTA 0 0 58 54 65.61 50

Average 1.29 0 58.86 51.43 64.39 50

MO-ABC [8]
GTAAGGAAGGCAAGGCAGAA 0 0 42 54 64.70 50

GTTGGTGGTTGTTGGTGGTT 0 0 46 36 66.00 50
GGAGACGGAATGGAAGAGTA 0 0 44 55 62.93 50

CCATTCTTCTCTTCTCTCCC 9 0 67 22 61.39 50
AGGAGAGGAGAGGAGGAAAA 16 0 31 53 63.80 50
ATAAGAGAGAGAGAGAGGGG 16 0 34 51 61.11 50
GAGCCAACAGCCAACCAAAA 16 0 48 45 66.40 50

Average 8.14 0 44.57 45.14 63.76 50

CPSO [27]
GACCGGTAAGATGAAGAGGA 0 0 60 50 62.94 50

CTATGCTTCTATCGCCTTCC 0 0 61 51 62.23 50
TAGTTGCACGAGAGAAGCAG 0 0 60 51 64.38 50
CGTGTACGAGCCTAATAAGG 0 0 64 54 62.14 50
CTTTGTCCATTGCACATCCG 9 0 61 53 64.42 50
TCCTATCCGAGATGATCCGT 0 3 63 55 64.08 50
TTCAACTTACGCTGTACGGC 0 6 63 54 65.25 50

Average 1.29 1.29 61.71 52.57 63.63 50

DMEA [28]
TGAGTTGGAACTTGGCGGAA 0 0 70 52 66.76 50
CAGCATGTTAGCCAGTACGA 0 0 60 55 64.65 50
TTGAGTCCGCGTGGTTGGTC 0 0 63 53 69.79 60
AATTGACACTCTGATTCCGC 0 0 73 58 62.89 45
CATACATTGCATCAACGGCG 0 0 67 53 64.84 50
ATACACGCACCTAGCCACAC 0 0 59 50 66.93 55
GTTCCACAACAGGTCTAATG 0 3 61 53 60.65 45

Average 0 0.43 64.71 53.43 65.22 50.71

Electronics 2023, 12, 547 18 of 21

Electronics 2023, 12, x FOR PEER REVIEW 18 of 21

CATACATTGCATCAACGGCG 0 0 67 53 64.84 50
ATACACGCACCTAGCCACAC 0 0 59 50 66.93 55
GTTCCACAACAGGTCTAATG 0 3 61 53 60.65 45

Average 0 0.43 64.71 53.43 65.22 50.71

Figure 2. Comparison results among average values of IMPSO, HSWOA,NCIWO, MO-ABC, CPSO,
DMEA and IMPSO in continuity and hairpin.

4.3.2. Control Nonspecific Hybridization
From Table 4 and Figure 3, H-Measure and similarity values of IMPSO are more de-

sirable than other algorithms, only second to MO-ABC, due to their priority to the con-
straints set of H-Measure and similarity at the expense of continuity and hairpin structure,
so the sequences of IMPSO are overall superior to those of MO-ABC.

Figure 3. Comparison results among average values of HSWOA, NCIWO, MO-ABC, CPSO, DEMA
and IMPSO in H-Measure and similarity.

Figure 2. Comparison results among average values of IMPSO, HSWOA, NCIWO, MO-ABC, CPSO,
DMEA and IMPSO in continuity and hairpin.

4.3.2. Control Nonspecific Hybridization

From Table 4 and Figure 3, H-Measure and similarity values of IMPSO are more
desirable than other algorithms, only second to MO-ABC, due to their priority to the
constraints set of H-Measure and similarity at the expense of continuity and hairpin structure,
so the sequences of IMPSO are overall superior to those of MO-ABC.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 21

CATACATTGCATCAACGGCG 0 0 67 53 64.84 50
ATACACGCACCTAGCCACAC 0 0 59 50 66.93 55
GTTCCACAACAGGTCTAATG 0 3 61 53 60.65 45

Average 0 0.43 64.71 53.43 65.22 50.71

Figure 2. Comparison results among average values of IMPSO, HSWOA,NCIWO, MO-ABC, CPSO,
DMEA and IMPSO in continuity and hairpin.

4.3.2. Control Nonspecific Hybridization
From Table 4 and Figure 3, H-Measure and similarity values of IMPSO are more de-

sirable than other algorithms, only second to MO-ABC, due to their priority to the con-
straints set of H-Measure and similarity at the expense of continuity and hairpin structure,
so the sequences of IMPSO are overall superior to those of MO-ABC.

Figure 3. Comparison results among average values of HSWOA, NCIWO, MO-ABC, CPSO, DEMA
and IMPSO in H-Measure and similarity.

Figure 3. Comparison results among average values of HSWOA, NCIWO, MO-ABC, CPSO, DEMA
and IMPSO in H-Measure and similarity.

4.3.3. Thermodynamics of Tm

In DNA calculation, DNA sequences need to be as consistent as possible in terms
of Tm to dominate biochemical reactions. In this experiment, the variance was used to
measure the fluctuation of the Tm of the DNA sequences generated by each algorithm.

Electronics 2023, 12, 547 19 of 21

From Table 4 and Figure 4, the variance of Tm of IMPSO is superior to MO-ABC and DMEA
and slightly inferior to CPSO, HSWOA and NCIWO.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 21

4.3.3. Thermodynamics of Tm
In DNA calculation, DNA sequences need to be as consistent as possible in terms of

Tm to dominate biochemical reactions. In this experiment, the variance was used to meas-
ure the fluctuation of the Tm of the DNA sequences generated by each algorithm. From
Table 4 and Figure 4, the variance of Tm of IMPSO is superior to MO-ABC and DMEA
and slightly inferior to CPSO, HSWOA and NCIWO.

Figure 4. Comparison results among average values of HSWOA, NCIWO, MO-ABC, CPSO, DEMA
and IMPSO in Tm variance.

5. Conclusions
To preferably solving the problem of DNA sequence optimization design, an im-

proved multi-strategy matrix particle swarm optimization algorithm is proposed in this
paper, which uses an approach in accordance with the signal-to-noise ratio distance to
dynamically update the optimal and worst positions of individuals within the population
and can adequately search for high-quality solutions. The centroid opposition-based
learning strategy is introduced to improve the search range of the algorithm and to ex-
clude the extreme differences brought by the optimal and worst positions when calculat-
ing the center-of-gravity positions, so that the center-of-gravity positions are more repre-
sentative. The individuals generated in the initialization of the population of matrix par-
ticles can be spread over the whole space, making full use of the favorable information
carried by the population as a whole in the search for the global best, avoiding the prem-
ature convergence of the population into a local optimum and fully preparing for the sub-
sequent search for the global optimum. Finally, matrix operations are used to greatly re-
duce the algorithm running time and to obtain higher computational efficiency without
sacrificing the DNA constraint values. Experiments comparing with other particle swarm
algorithms confirm that, excluding the MPSO algorithm, the runtime of the swarm intel-
ligence algorithm based on matrix operations is significantly reduced under the same con-
ditions, that various constraint values of DNA sequences do not become worse compared
with other algorithms and that the comprehensive capability and reliability of DNA com-
putation are outstanding. The improved multi-strategy matrix particle swarm algorithm
(IMPSO) does not underperform in terms of DNA constraint values compared with other
DNA sequence design experiments, taking into account the global picture and obtaining
optimized sequences of high quality, verifying the effectiveness of the algorithm and

Figure 4. Comparison results among average values of HSWOA, NCIWO, MO-ABC, CPSO, DEMA
and IMPSO in Tm variance.

5. Conclusions

To preferably solving the problem of DNA sequence optimization design, an improved
multi-strategy matrix particle swarm optimization algorithm is proposed in this paper,
which uses an approach in accordance with the signal-to-noise ratio distance to dynamically
update the optimal and worst positions of individuals within the population and can
adequately search for high-quality solutions. The centroid opposition-based learning
strategy is introduced to improve the search range of the algorithm and to exclude the
extreme differences brought by the optimal and worst positions when calculating the center-
of-gravity positions, so that the center-of-gravity positions are more representative. The
individuals generated in the initialization of the population of matrix particles can be spread
over the whole space, making full use of the favorable information carried by the population
as a whole in the search for the global best, avoiding the premature convergence of the
population into a local optimum and fully preparing for the subsequent search for the global
optimum. Finally, matrix operations are used to greatly reduce the algorithm running time
and to obtain higher computational efficiency without sacrificing the DNA constraint values.
Experiments comparing with other particle swarm algorithms confirm that, excluding
the MPSO algorithm, the runtime of the swarm intelligence algorithm based on matrix
operations is significantly reduced under the same conditions, that various constraint
values of DNA sequences do not become worse compared with other algorithms and that
the comprehensive capability and reliability of DNA computation are outstanding. The
improved multi-strategy matrix particle swarm algorithm (IMPSO) does not underperform
in terms of DNA constraint values compared with other DNA sequence design experiments,
taking into account the global picture and obtaining optimized sequences of high quality,
verifying the effectiveness of the algorithm and meeting the requirements for application
to DNA computation. However, the individual capabilities under the combined capability,
especially the melting temperature variance, need to be improved. By not sacrificing the
DNA constraint values and making full use of the whole population diversity, the CPU
running time will also be increased. How to find a breakthrough point to gradually improve

Electronics 2023, 12, 547 20 of 21

the single-item capability without sacrificing any necessary constraint to achieve a more
excellent DNA computation capability is also something that needs further consideration
in future work.

Author Contributions: Data curation, W.Z.; formal analysis, W.Z. and Z.H.; funding acquisition,
C.Z.; software, W.Z. and D.Z.; supervision, D.Z.; validation, C.Z. and Z.H.; writing—review and
editing, W.Z. and D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant numbers 62272418, and 62002046.

Data Availability Statement: Dataset used in this study may be available on demand.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Watson, J.D.; Crick, F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171,

737–738. [CrossRef]
2. Adleman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994, 266, 1021–1024. [CrossRef]

[PubMed]
3. Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free Nucleic Acid Logic Circuits. Science 2006, 314, 1585–1588.

[CrossRef] [PubMed]
4. Church, G.M.; Gao, Y.; Kosuri, S. Next-generation Digital Information Storage in DNA. Science 2012, 337, 1628. [CrossRef]

[PubMed]
5. Extance, A. How DNA Could Store All the World’s Data. Nature 2016, 537, 22–24. [CrossRef]
6. Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic Acid Memory. Nat. Mater. 2016, 15, 366–370.

[CrossRef]
7. Zhu, D.L.; Huang, Z.W.; Liao, S.G.; Zhou, C.J.; Yan, S.Q.; Chen, G. Improved Bare Bones Particle Swarm Optimization for DNA

Sequence Design. IEEE Trans. NanoBioscience 2022. [CrossRef]
8. Chaves-González, J.M.; Vega-Rodríguez, M.A.; Granado-Criado, J.M. Multiobjective Swarm Intelligence Approach Based on

Artificial Bee Colony for Reliable DNA Sequence Design. Eng. Appl. Artif. Intell. 2013, 26, 2045–2057. [CrossRef]
9. Yang, G.J.; Wang, B.; Zheng, X.; Zhou, C.J.; Zhang, Q. IWO Algorithm Based on Niche Crowding for DNA Sequence Design.

Interdiscip. Sci. Comput. Life Sci. 2017, 9, 341–349. [CrossRef]
10. Zhang, K.; Xu, J.; Geng, X.T.; Xiao, J.H.; Pan, L.Q. Improved Taboo Search Algorithm for Designing DNA Sequences. Prog. Nat.

Sci. 2008, 18, 623–627. [CrossRef]
11. Cervantes-Salido, V.M.; Jaime, O.; Brizuela, C.A.; Martínez-Pérez, I.M. Improving the Design of Sequences for DNA Computing:

A Multiobjective Evolutionary Approach. Appl. Soft Comput. 2013, 13, 4594–4607. [CrossRef]
12. Chaves-González, J.M.; Vega-Rodríguez, M.A. DNA Strand Generation for DNA Computing by Using A Multi-objective

Differential Evolution Algorithm. Biosystems 2014, 116, 49–64. [CrossRef]
13. Chaves-González, J.M.; Vega-Rodríguez, M.A. A Multiobjective Approach Based on The Behavior of Fireflies to Generate Reliable

DNA Sequences for Molecular Computing. Appl. Math. Comput. 2014, 227, 291–308. [CrossRef]
14. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [CrossRef]
15. Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major Advances in Particle Swarm Optimization: Theory, Analysis, and

Application. Swarm Evol. Comput. 2021, 63, 100868. [CrossRef]
16. Ghatasheh, N.; Faris, H.; Abukhurma, R.; Castillo, P.A.; Al-Madi, N.; Mora, A.M.; Al-Zoubi, A.M.; Hassanat, A. Cost-sensitive

Ensemble Methods for Bankruptcy Prediction in A Highly Imbalanced Data Distribution: A Real Case from the Spanish Market.
Prog. Artif. Intell. 2020, 9, 361–375. [CrossRef]

17. Zhang, Q.K.; Liu, W.G.; Meng, X.X.; Yang, B.; Vasilakos, A.V. Vector coevolving particle swarm optimization algorithm. Inf. Sci.
2017, 394, 273–298. [CrossRef]

18. Coello, C.A.C.; Lechuga, M.S. MOPSO: A Proposal for multiple objective particle swarm optimization. In Proceedings of the 2002
Congress on Evolutionary Computation Part of the 2002 IEEE World Congress on Computational Intelligence, Honolulu, HI,
USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [CrossRef]

19. Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization.
In Proceedings of the 3rd Annual Conference on Genetic And Evolutionary Computing Conference, San Francisco, CA, USA,
7–11 July 2001; pp. 283–290. [CrossRef]

20. Hu, X.H.; Eberhart, R. Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In Proceedings
of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; pp. 1677–1681. [CrossRef]

21. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A Fast And Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans.
Evol. Comput. 2022, 6, 182–197. [CrossRef]

http://doi.org/10.1038/171737a0
http://doi.org/10.1126/science.7973651
http://www.ncbi.nlm.nih.gov/pubmed/7973651
http://doi.org/10.1126/science.1132493
http://www.ncbi.nlm.nih.gov/pubmed/17158324
http://doi.org/10.1126/science.1226355
http://www.ncbi.nlm.nih.gov/pubmed/22903519
http://doi.org/10.1038/537022a
http://doi.org/10.1038/nmat4594
http://doi.org/10.1109/TNB.2022.3220795
http://doi.org/10.1016/j.engappai.2013.04.011
http://doi.org/10.1007/s12539-016-0160-0
http://doi.org/10.1016/j.pnsc.2008.01.005
http://doi.org/10.1016/j.asoc.2013.06.010
http://doi.org/10.1016/j.biosystems.2013.12.005
http://doi.org/10.1016/j.amc.2013.11.032
http://doi.org/10.1109/MHS.1995.494215
http://doi.org/10.1016/j.swevo.2021.100868
http://doi.org/10.1007/s13748-020-00219-x
http://doi.org/10.1016/j.ins.2017.01.038
http://doi.org/10.1109/CEC.2002.1004388
http://doi.org/10.5555/2955239.2955289
http://doi.org/10.5555/1251972.1252305
http://doi.org/10.1109/4235.996017

Electronics 2023, 12, 547 21 of 21

22. Zhan, Z.H.; Zhang, J.; Lin, Y.; Li, J.Y.; Huang, T.; Guo, X.Q.; Wei, F.F.; Kuang, S.X.; Zhang, X.Y.; You, R. Matrix-Based Evolutionary
Computation. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 315–328. [CrossRef]

23. Mehrabian, A.R.; Lucas, C. A Novel Numerical Optimization Algorithm Inspired from Weed Colonization. Ecol. Inform. 2006, 1,
355–366. [CrossRef]

24. Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
25. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68.

[CrossRef]
26. Xue, L.; Wang, B.; Lv, H.; Yin, Q.; Zhang, Q.; Wei, X.P. Constraining DNA Sequences with A Triplet-bases Unpaired. IEEE Trans.

NanoBiosci. 2020, 19, 299–307. [CrossRef]
27. Liu, Y.Y.; Zheng, X.D.; Wang, B.; Zhou, S.H. The Optimization of DNA Encoding Based on Chaotic Optimization Particle Swarm

Algorithm. J. Comput. Theor. Nanosci. 2016, 13, 443–449. [CrossRef]
28. Xiao, J.H.; Jiang, Y.; He, J.J.; Cheng, Z. A Dynamic Membrane Evolutionary Algorithm for Solving DNA Sequences Design with

Minimum Free Energy. MATCH Commun. Math. Comput. Chem. 2013, 70, 971–986.
29. Shin, S.Y.; Lee, I.H.; Kim, D.; Zhang, B.T. Multiobjective Evolutionary Optimization of DNA Sequences for Reliable DNA

Computing. IEEE Trans. Evol. Comput. 2005, 9, 143–158. [CrossRef]
30. Watkins, N.E., Jr.; SantaLucia, J., Jr. Nearest-neighbor Thermodynamics of Deoxyinosine Pairs in DNA Duplexes. Nucleic Acids

Res. 2005, 33, 6258–6267. [CrossRef] [PubMed]
31. Tizhoosh, H.R. Opposition-based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International

Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [CrossRef]

32. Rahnamayan, S.; Jesuthasan, J.; Bourennani, F.; Salehinejad, H.; Naterer, G.F. Computing Opposition by Involving Entire
Population. In Proceedings of the IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 1800–1807.
[CrossRef]

33. Milman, V.D. New Proof of the Theorem of A. Dvoretzky on Intersections of Convex Bodies. Funct. Anal. Its Appl. 1971, 5,
288–295. [CrossRef]

34. Hassanat, A.B.A. Furthest-Pair-Based Decision Trees: Experimentational Results on Big Data Classification. Information 2018,
9, 284. [CrossRef]

35. Gueorguieva, N.; Valova, I.; Georgiev, G. M&MFCM: Fuzzy C-means Clustering with Mahalanobis and Minkowski Distance
Metrics. Procedia Comput. Sci. 2017, 114, 224–233. [CrossRef]

36. Yang, J.H.; Yu, J.H.; Huang, C. Adaptive Multistrategy Ensemble Particle Swarm Optimization with Signal-to-Noise Ratio
Distance Metric. Inf. Sci. 2022, 612, 1066–1094. [CrossRef]

37. Yuan, T.T.; Deng, W.H.; Tang, J.; Tang, Y.N.; Chen, B.H. Signal-To-Noise Ratio: A Robust Distance Metric for Deep Metric Learning.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 4810–4819. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TETCI.2020.3047410
http://doi.org/10.1016/j.ecoinf.2006.07.003
http://doi.org/10.1007/s11721-007-0002-0
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1109/TNB.2020.2971644
http://doi.org/10.1166/jctn.2016.4825
http://doi.org/10.1109/TEVC.2005.844166
http://doi.org/10.1093/nar/gki918
http://www.ncbi.nlm.nih.gov/pubmed/16264087
http://doi.org/10.1109/CIMCA.2005.1631345
http://doi.org/10.1109/CEC.2014.6900329
http://doi.org/10.1007/BF01086740
http://doi.org/10.3390/info9110284
http://doi.org/10.1016/j.procs.2017.09.064
http://doi.org/10.1016/j.ins.2022.07.165
http://doi.org/10.1109/CVPR.2019.00495

	Introduction
	Constraints Formulation for DNA Sequence Design
	Continuity
	Hairpin
	H-Measure
	Similarity
	GC Content B29-electronics-2151114
	Melting Temperature (Tm)
	Fitness Function

	Improved Multi-Strategy Matrix Particle Swarm Optimization
	Basic Information of Matrix Particle Swarm
	Representation Information
	Common Matrix Operations
	Initialization of Particle Swarm Related Variables
	Velocity and Position Update

	Improved Opposition-Based Learning to Reinitialize the Population-Related Parameters
	Signal-to-Noise Ratio Distance for Further Update the Position
	IMPSO Algorithm
	IMPSO Algorithm Process
	Flowchart Based on IMPSO Algorithm to Optimize DNA Sequence

	Results and Analysis
	Algorithm Parameters
	Algorithm Results
	Experimentation on the Effectiveness of IMPSO in Solving DNA Coding
	Experimentations on the Competitiveness of IMPSO in Designing DNA Sequence

	Comparisons and Analysis
	Control Secondary Structures
	Control Nonspecific Hybridization
	Thermodynamics of Tm

	Conclusions
	References

