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Abstract: This paper presents the implementation of the Bayesian inversion method for the character-
ization and estimation of different dielectric material properties. The scattering parameters of single
and multi-layer materials are measured using a free-space experimental setup using a standard gain
horn antenna and a Vector Network Analyzer (VNA) at Ka-band (26–40 GHz). The relative permittiv-
ity, material thickness, and material positioning error are defined as model parameters and estimated
using the observed (measured) data. The FR4 Epoxy, Rogers RT/Duriod 5880, and Rogers AD600
with different relative permittivities and thicknesses are used in the measurement setup. The results
displayed good agreement between model parameters and estimated properties of the presented
materials, while the corresponding eigenvectors provided a level of confidence in model parameter
values. The results were compared with different reported techniques to showcase the possible use of
the presented method in microwave imaging, non-destructive testing, and similar applications.

Keywords: material characterization; Bayesian inversion method; relative permittivity; material
thickness; s-parameters; eigenvectors

1. Introduction

Dielectric measurement systems for material characterization at microwave and mil-
limeter frequencies have been playing a vital role in various medical, security, and non-
destructive testing applications for the last few decades [1–3]. Different types of dielectric
measurement setups have been improved by enhancing the antenna focusing performance,
experimental setups, signal processing algorithms, etc., in order to achieve ultra-wideband
(UWB) scattering fields spectrum from the object or dielectric materials [3]. Microwave and
millimeter frequency signals are widely used to record the s-parameters for further post-
processing and estimation of electrical properties of the materials, particularly dielectrics.
The dielectric material characterization has been divided into various types of measure-
ments, which mainly depend on the nature of the characterization, i.e., (a) measurement
in the narrow or broadband spectrum, (b) material under test (MUT) is low loss or high
loss material, (c) measurement of either electrical or magnetic properties, etc. [2–5]. The
free-space dielectric measurement method has been used widely over the years to efficiently
extract the transmission and/or reflection scattering parameters from the MUT, which is
placed between the transmit and receive antennas [5]. The free-space measurement method
depends on a non-destructive evaluation technique in order to avoid physical contact with
a sample and avoid the extra machining care needed for MUT [4].

The conventional free-space measurement methods for rock properties characteri-
zation have been experimented with by Bernasconi et al. [6]. Later, a low-loss dielectric
measurement setup was also demonstrated at millimeter wave frequency bands [7] which
provided a comprehensive uncertainty analysis for material characterization. Similarly, a
method for the dielectric permittivity estimation using Brewster’s angle and the magnitude
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of the transmission and reflection coefficients measured from a reference metal and the
MUT [8]. In contrast to the conventional free-space measurement methods for microwave,
millimeter, or sub-millimeter frequencies, the dielectric properties of the low-loss and thin-
ner materials have been estimated majorly from the envelopes of measured transmission
and reflection spectra instead of the whole scattering parameters, unlike visible light or
X-rays [9,10]. In most studies, only normal incidence interactions with materials are no-
ticed to build the maximal and/or minimal envelopes. Many other interesting discussions
on analytical analysis and derivations for the envelope method and its utilization in the
dielectric measurement systems have been found in [11–13].

The time-domain Bayesian inversion method is one of the most accurate and time-
efficient inversion methods, especially for reducing the uncertainties in estimating various
materials’ electrical and magnetic parameters [14,15]. This method is used to characterize
dielectric material properties from the measured scattering parameters quantitatively. The
Bayesian inversion method is also used to extract detailed information about the model
parameters in terms of probability density. Later, this probability density can be used
to measure the uncertainty in the assumed model parameters to build confidence in the
observed data parameters [16]. Here, the joint interpretation approach is used to estimate
the dielectric constant (Er), dielectric thickness (Td2), and positioning error in the placement
of dielectric material (Td1) from the observed data set [17]. This paper applies the Bayesian
inversion method for the estimation of the mentioned properties of single and multi-layer
dielectric materials. Initially, a calibration procedure is employed, in which the scattering
data is measured by placing the reference ground plane at a finite distance from the
transmitting horn antenna.

After measuring the scattering from the reference ground, the MUT is introduced,
and the scattering parameters are measured. The material characterization is treated as
the inverse problem, and the parameter uncertainties are accounted for in the inversion
method [18–20]. An iterative inversion procedure minimizes the residual between the
assumed data and measured (observed) data, as shown in Figure 1. The measurements
are carried out with a standard gain horn antenna at Ka-band. The rest of the paper is
organized as Section 2 describes the Bayesian inversion method. Section 3 presents the
measurement results in terms of calculated model parameters and their corresponding
confidence in estimation, while Section 4 concludes the paper.
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Figure 1. Bayesian inversion procedure after scattering parameters extraction.

2. Bayesian Inversion Method

The uncertainties in material properties like dielectric constant, MUT thickness, and
positioning have been reduced significantly using Bayesian inversion. The free space
measurements are carried out where the MUT with a grounded surface is placed at a fixed
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distance from the transmitting antenna. Electrical and physical properties are parameters
related to heterogeneous well-log observations: they are fundamental in the integration of
measurements to enhance the characterization of materials [4,5]. The probabilistic approach
is used to implement the solution [6], where we have found the probability densities, solid
materials model and data uncertainties, and the prior model for the set of desired material
properties. The detailed derivation of constitutive equations is available in [11]. MATLAB
is used to implement the Bayesian inversion method.

The relative permittivity (Er) of the material, the thickness of each layer (Td2), and
the positioning error in the measurement setup (Td1) are represented in the mathematical
model. Constitutive equations relate the equivalent medium of observed data (Dobs) to the
model parameters Er, Td1, and Td2, where Er = [Er1, Er2,..]T and Td2 = [Td21, Td22,..]T are the
vectors of single as well as multi-layer materials.

Dobs = g(εr, Td1, Td2) (1)

The model mentioned above can also represent cases in which the material spacing
from the transmitting antenna is not exactly known. In that case, an additional “air”
material is introduced, and its thickness is incorporated into the model. The cross-property
relations are useful in estimating one property of material from another, e.g., Td2 can be
estimated easily, which could be further used to estimate Td1.

2.1. Current and forward Models

Using Tarantola’s notation [4], a vector Zm is defined for the unknown model parame-
ters of MUT, which are included in model space M1;

m = [εri , Td1i , Td2i, ]
T (2)

The set of initial model parameters is represented by a priori model Mpriori and a
covariance matrix CM in order to record the uncertainties in Mpriori. Another vector Zo
is defined for the observed data in the form of reflection coefficients (S11) from scattering
measurements, which is included in the model space M2,

d = [Dobs]
T (3)

Similarly, the covariance matrix Co contains uncertainties in observed data. The
forward model is defined as the prediction algorithm for accurate estimation of observed
parameters which corresponds to the given model m, denoted as;

d = g(m) (4)

where g is a non-linear vectorial function used to predict values of a physical system in
each set of model parameters m ∈ M1, and the values of observed parameters d ∈ M2,
represented as a set of equations di = gi(m1,m2, . . . ). The forward model then calculates
the approximations in modeling uncertainties and records them in matrix Cg. All the
measurements contain uncertainties, and therefore, the data set can’t be described as the
observed value but as a state of information extracted from an observed parameter. If we
represent the d = [d1, d2, . . . , dn] as the set of observed data, then the measured data can
be defined in terms of probability density ρD(d) for the observed data space M2.

2.2. Solution of the Inverse Problem

The prior probability density of model space M1 and data space M2 is defined as
ρ(d,m) for collective space M1 ×M2. The theoretical probability density is also described
as ρt(d,m) for the correlation between m and d. The information of prior and theoretical
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probability densities is combined to get the posterior state of information. The posterior
probability density σ(d,m) is defined as;

σ(d, m) =
k[ρ(d, m).(ρt(d, m)]

µ(d, m)
(5)

where µ(d,m) represents the homogeneous state of information and k is a normalization
constant. Once the posterior information in the M2 × M1 space has been defined, the
posterior information in the model space is given by the marginal probability density as;

σM(d, m) =
∫
M2

ddσ(d, m) (6)

while the posterior information in the data space is given by

σD(d, m) =
∫
M1

dmσ(d, m) (7)

The solution to the inverse problem is hidden in the probabilistic framework, and it
can be derived through the iterative procedure. The forward model is linearised around the
current model (Mk) and gives a new model (Mk+1) by using the Jacobian matrix Jk, which is
comprised of the derivatives of the forward model equation and current model parameters.

Mk+1 = Mpriori − [JT
kC−1

d Jk + C−1
M ]
−1

JT
kC−1

d .
[
(g(Mk)− d)− Jk

(
Mk −Mpriori

)]
(8)

Here, matrix Cd stores the uncertainties of both observed and modeling data, with
the Gaussian assumption of Cd = Co + Cg [9]. After the 1st iteration, the current estimated
model M1 is set to a priori model Mpriori. The solution is obtained by upgrading the current
model until the posterior probability density of the model is maximized [11]. The iterative
algorithm stops when;

Mi,k+1 −Mi,k < ε, ∀i = 1, . . . , Zm (9)

The uncertainty of the solution is stored in matrix CM,post, which computes the overall
uncertainties of the solution as;

CM,post = [JT
kC−1

d Jk + C−1
M ]
−1

(10)

2.3. Analysis of Uncertainties

The singular value decomposition analysis [9] is performed on the uncertainty of ob-
served data by using the same constitutive equations around the reference Mpriori model m0;

m0 =
[
ε0

r_i T0
d2_i

]T
(11)

d− d0 = g(m−m0) (12)

Here, d0 is the data vector generated by the reference Mpriori model using the constitu-
tive equations, whereas J is the Jacobian matrix which contains all the first-order partial
derivatives of the forward model [9] with respect to the model parameters.

J =
[

dDobs
dεr

dDobs
dTd1

dDobs
dTd2

]
(13)

The singular value decomposition of g is [3,9];

J = AΛBT (14)

Here, matrix A contains the eigenvectors of data space while the Λ is the diagonal
matrix of all the singular values. The Λ matrix represents the magnitude of data due to the
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normalized variation along the eigenvectors axis in the model space. The matrix B contains
the eigenvectors of the model space, where linear pairs of the unknown model parameters
Er, Td1, and Td2 are formed by developing the model space’s orthogonal basis [11].

3. Material Parameter Estimation and Analysis
3.1. Single-Layered Materials

In the case of single-layer MUT measurements, one-sided copper (PEC) coated mate-
rials are used. The scattering parameters of different single-layer materials are measured
at different distances (SD) from the transmitting antenna, such as 6, 8, 10, 13, and 18 cm.
The first single-layer material presented with the given properties of FR4 Epoxy, Er = 4.4
and Td2 = 1.52 mm. Figure 2a shows the Er vs. Td1/Td2 graph where the Er value of corre-
sponding thickness is plotted for each value of SD. The relative permittivity of FR4 Epoxy
is estimated between 4.465 and 4.588, and it is observed that increasing the value of SD
decreases the accuracy of the estimated Er value. The positioning error remained less than
−0.1 mm, whereas the thickness of FR4 Epoxy is estimated between 1.518 and 1.429 mm
for each value of SD. The absolute values of eigenvectors in the model space are shown
in Figure 2b, where the eigenvectors are stacked on the horizontal axis (left to right) with
decreasing singular values, whereas the model parameters are stacked on the vertical axis
(bottom to top). From the legend bar, the blue color shows the lowest confidence, and the
yellow color shows the highest confidence on the model parameters. From Figure 2b, Td2
acquired the highest confidence (associated with the first eigenvector), then Td1 (second
eigenvector), and finally Er (third eigenvector).
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The second single-layered material presented is Rogers RT/Duriod 5880 with Er = 2.2
and Td2 = 0.65 mm. Figure 2c shows the Er vs. Td1/Td2 graph for each SD value. The posi-
tioning error, Td1, is much lower (−0.007 mm) for the case of 6 cm, whereas it is −0.034 mm
for the case of 13 cm. The thickness of Roger RT/Duriod 5880 is estimated to be between
0.642 and 0.612 mm. From Figure 2d, Td2 shows the highest confidence (associated with the
first eigenvector), then Td1 (second eigenvector), and finally Er (third eigenvector). In these
free space measurements, the solution to the inversion problem found higher confidence
in the thickness of the MUT compared to the Er. It can be observed that, for all the other
single-layer materials, the Er decreases with increasing the distance SD. Table 1 summarizes
the estimation of the parameters for single-layer materials.

Table 1. Summary of Single-layer Material Estimation.

Materials Parameters
Distance b/w Tx and MUT

6 cm 8 cm 10 cm 13 cm 18 cm

FR4 Epoxy

Er 4.465 4.469 4.516 4.572 4.588

Td1 (mm) −0.073 −0.082 −0.012 −0.091 −0.096

Td2 (mm) 1.514 1.518 1.511 1.432 1.429

Rogers RT/Duriod
5880

Er 2.192 2.201 2.187 2.188 2.189

Td1 (mm) −0.007 −0.011 −0.019 −0.031 −0.034

Td2 (mm) 0.642 0.640 0.632 0.618 0.612

3.2. Multi-Layered Materials

The free space measurements are carried out at Ka-band for three different multi-layer
cases, which are comprised of two dual-layer cases and one tri-layer case. All the multi-
layer cases presented above are measured at a distance of 10 cm from the transmitting
antenna. The dual-layer cases show a good estimation of model parameters with low
positioning error, whereas the tri-layer case showed a relatively higher positioning error
with a suitable estimation of model parameters.

The information about model parameters in terms of probability density [4,5] is used
to find uncertainties in the model to build confidence in measured data. The echo response
of both computed and observed data is compared, and ambiguities have been reduced
between the MUT thicknesses and positioning error, where the initial value of positioning
error is set to 0. Three materials used in the measurement campaign have given material
properties of FR4 Epoxy, Er = 4.4 and Td2 = 1.52 mm/0.78mm, Rogers RT/Duriod 5880 with
Er = 2.2 and Td2 = 0.65 mm, and Rogers AD600 with Er = 6.15 and Td2 = 0.5 mm. In these
cases, the desired probability density is achieved with maximum third model iterations
(M3) from the prior model (Mpriori). The minimum residual percentage of 6.2% is found
for case 2 at the second model iteration (M2), but the estimation of model parameters is in
good agreement with prior model parameters. The residual response for tri-layer materials
was below 15% at the third model iteration (M3). Figure 3 shows the Er vs. Td1/Td2 graph
where the Er value of each layer with respect to the corresponding thickness is plotted for
all the multi-layer cases. The positioning error is −0.027 mm for the tri-layer case, but still,
the inversion method was able to estimate model parameters correctly. For both dual-layer
cases, the positioning error between −0.012 and −0.018 mm and the model parameters
was estimated with less than 5% tolerance.

The Jacobian matrix J is calculated for all the multi-layer cases, and the confidence
in model parameters has been found compared to the given model space. The absolute
values of eigenvectors in the model space are shown in Figure 4, where eigenvectors are
ordered (left to right) with decreasing singular values. It is observed that, for the first two-
layer case (left side), Td21 was the parameter with the highest confidence (associated with
the first eigenvector), then Td22 (second eigenvector), Td1 (third eigenvector), Er2 (fourth
eigenvector) and finally, Er1 (fifth eigenvector), whereas, for the two-layer case (right side),
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Td22 is the parameter with the highest confidence (associated to the first eigenvector),
then Td21 (second eigenvector), Er2 (third and fourth eigenvector), and finally, Td1 (fifth
eigenvector). For the case of tri-layer material, Td22 was the parameter with the highest
confidence (associated with the first eigenvector), then Td21 (second eigenvector), Td23
(third eigenvector), Er3 (fourth eigenvector), Er4 (fifth eigenvector) and finally, Td1 and
Er1 (sixth and seventh eigenvector respectively). The multi-layer cases, along with the
estimated model parameters, are tabulated in Table 2.
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Table 2. Summary of Multi-layer Material Estimation.

Cases Materials Er Td2 (mm) Td1 (mm)

Case 1
Rogers RT/Duriod 5880 Er1 2.177 Td21 0.638 −0.012FR4 Epoxy Er2 4.468 Td22 0.759

Case 2
Rogers AD600 Er1 6.152 Td21 0.504 −0.018FR4 Epoxy Er2 4.487 Td22 1.503

Case 3
Rogers RT/Duriod 5880 Er1 2.487 Td21 0.631

−0.027FR4 Epoxy Er2 4.690 Td22 0.776
Rogers AD600 Er3 6.147 Td23 0.501

Figure 5 shows the overview of the confidence level on the estimated parameters.
In the free space measurements, the inversion problem has found higher confidence in
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the thicknesses (Td2) of the MUT as compared to dielectric constants (Er) of the different
layers. In this regard, it is imperative to mention that many other multi-layer cases have
been evaluated in order to validate the inversion method, but only the results of a few
known materials are presented to promote the reproducibility of the experiments and the
corresponding Bayesian inversion method.
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The presented results are also compared with some of the recently reported material
properties estimation methods. The loaded waveguide technique and clamped waveguide
technique have been used in [11], EM simulations were conducted to measure the scattering
(S) parameters in [12], and the reflection measurements of a loaded and unloaded CPW
(co-planar waveguide) line sample holder were conducted in [13]. The tabular comparison
with these techniques is presented in Table 3. The presented Bayesian inversion method
showed a lower percentage error in the estimation of relative permittivity as compared to
others. Additionally, the presented inversion method estimates (a) the relative permittivity
of multi-layer materials, (b) the thickness of the materials, and (c) the positioning error in
the placement of the material under test.

Table 3. Comparison of the Presented Inversion Method with Other Techniques.

Reference Method Materials Thickness Eref Ecal % Error

Ref [11]
Loaded waveguide technique

and Clamped waveguide
technique

Neoprene
foam - 1.40 1.41 1.6

Carbon-filled rubber - 10.57 10.84 2.5
Carbon-filled polyethylene - 3.22 3.28 1.9

Conductive ABS-PVC - 7.97 8.62 8.1

Ref [12]
EM simulations to measure the

scattering (S) parameters
RT/Duroid - 3.55 3.60 <2

3D PLA (polylactide) - 2.7 2.55 <5

Ref [13]

Reflection measurements of
a loaded and unloaded CPW

(coplanar waveguide)
line sample holder

Teflon 1.6 1.95 2 2.5
Polycarbonate 1.6 2.76 2.8 1.42

RT/Duroid 6002 2.5 2.85 2.94 3.1
FR-4 Epoxy 1.5 4.22 4.36 3.2

RT/Duroid 6006 2.5 6.65 6.45 3.1
RT/Duroid 6010.2LM 2.5 10.72 10.70 0.2

This work Bayesian inversion method
Rogers RT/Duriod 5880 0.65 4.4 4.46 1.5

FR4 Epoxy 1.5 2.2 2.17 1.0
Rogers AD600 0.5 6.15 6.15 0.32
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4. Conclusions

The Bayesian inversion method provides a measure of reliability in estimating the
dielectric material properties because of the probabilistic approach. The presented Bayesian
inversion method employs the measured scattering parameters to estimate the relative
permittivity, material thickness, and MUT positioning error for several single-layer and
three multi-layer materials. The measurements are carried out at Ka-band (26–40 GHz)
using a standard gain horn antenna. The FR4 Epoxy, Rogers RT/Duriod 5880, and Rogers
AD600 with relative permittivities 4.4, 2.2, and 6.15, and thicknesses of 1.52/0.78 mm,
0.65 mm, and 0.5 mm, respectively, are used in the measurement setup. The estimated
model parameters showed 80% and above accuracy for all the presented cases. The confi-
dence in the estimated model parameters has also been found in terms of eigenvectors. The
proposed method and analysis can improve microwave imaging accuracy, non-destructive
testing (NDT), and various quality control and security systems applications.
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