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Abstract: The Internet of Things (IoT) provides robust services to connected sensors in a distributed
manner, and maintains real-time communication using wireless standards. The smart network has
offered many autonomous smart systems to collect information from remote nodes, and share it
by exploring the network layer. Researchers have recently offered a variety of ways to increase
the effectiveness of emerging applications using trustworthy relaying systems. However, there are
still many issues with route reformulation due to frequent disconnections of mobile devices and
resource limitations. Furthermore, most of the existing methods for IoT systems are unable to utilize
network resources, which lowers the performance of green networks. Thus, providing a foolproof
solution for the autonomous system with energy efficiency is a challenging task. Therefore, this paper
presents an algorithm for the mobile network using fog computing to reduce network disconnectivity.
Furthermore, using security services, the proposed algorithm efficiently explores the characteristics
of the device, and avoids malicious traffic to drain the additional energy consumption of the network.
The main aspects of the proposed algorithm are as follows: (i) using the adjustable transmission
power, the proposed algorithm offers a fault-tolerant solution to transmit the aggregated data over
the unpredictable wireless system; (ii) with the support of fog nodes, the data load is reduced among
devices with the offering of a secured authentication scheme. Using simulations, the proposed
algorithm is tested, and its significance is demonstrated against other related studies.

Keywords: energy systems; fog computing; distributed services; Mobile-IoT; next generation

1. Introduction

A new paradigm called the IoT intends to connect all intelligent physical objects
so that they can work together to offer intelligent services to users. Smart cities, smart
grids, smart hospitals, and other IoT applications are some emerging applications of
IoT systems [1–3]. IoT systems are built with a variety of hardware and networking
technologies, extracting massive volumes of data [4–6]. IoT uses wireless sensor networks
(WSNs) to sense the environment, gather data, and transfer it to the base station and other
places for analysis. Intelligent routing is a key phenomenon that is required in WSNs for
IoT to improve the quality of various smart applications [7–9]. WSNs must be mobile rather
than static for many real-time applications, including smart transportation systems, habitat
monitoring, and underwater monitoring. The development of mobile networks has gained
rapid popularity in recent decades due to the unpredictable nature of communication
devices [10–12].

Furthermore, mobile systems are capable of increasing the coverage range for data
sensing and information transmission; however, because of the frequent changes in the
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locations of the devices, most of the solutions are not able to tackle route discontinuity
and data losses [13–15]. Thus, researchers are trying to propose energy-efficient and
consistent route maintenance methods for increasing delivery performance with the support
of heterogeneous and distributed services [16–18]. On the other hand, in IoT networks,
especially for mobile communication, security is another demanding research challenge.
It not only affects the system performance but also decreases the trustworthiness among
remote devices [19–21]. IoT systems have been extensively researched in recent years to
handle remote sensing with the aid of sensors, but most of the solutions are unreliable in
the case of mobile devices, and frequently lead to data breaches. Moreover, routing holes
are increasing, which eventually raises the packet drop ratio. Thus, our study proposes
an energy-efficient next-generation mobile routing with the combination of fog nodes.
The proposed work not only reduces the latency for receiving data but also places the
least overhead on the devices with low restrictions. We also offer trusted communication
with secured authentication schemes, and ultimately increase the nodes’ reliability in a
distributed environment. The major objectives of the proposed model are as follows. The
following are the primary contributions made in this work.

i. Developed a reliable and load-balanced routing protocol for mobile devices using
analysis of QoS parameters by exploring lightweight methods.

ii. The overburden routes are excluded from routing chains and only optimal end-to-end
communication is attained with the integration of fog computing.

iii. Using a lightweight authentication scheme, the proposed algorithm achieves security
in terms of device verification, link confidentiality, and replay attacks. Such com-
munication ensures trust in an unpredictable environment with efficient computing
strategies.

iv. Using simulations, the proposed algorithm is evaluated in terms of numerous perfor-
mance parameters in the comparison of existing work.

The following sections comprise the remainder of this research article. Section 2
presents a discussion of existing studies. The proposed algorithm is described in Section 3.
The findings of the experiment are covered in Section 4. Section 5 provides the conclusion
and outlines future research.

2. Related Literature

Future 6G networks provide storage and computing services by exploring fog com-
puting and IoT devices [22,23]. However, because IoT devices and fog nodes have some
resource constraints, energy-efficient solutions are needed for storage and computation
services. Fog computing is an emerging technology for facilitating cloud networks [24–26].
Several issues with cloud architectures have recently emerged as a result of the rapid
increase in IoT devices [27–29]. Fog computing can be used to increase the processing
and storage capacity of the cloud by acting as a middle layer between consumer devices
and the cloud. Offloading is a technique that can be used to move computations, data,
and energy use from resource-constrained devices to resource-rich fog/cloud layers to
enhance application quality, and improve system performance [30,31]. However, security
is still a demanding challenge from constraint networks even in the existence of fog nodes.
Many solutions have been presented to cope with network anomalies, but at the expense
of nodes’ overhead and network complexity [32,33]. The authors of [34] offer an efficient
routing method called an energy-efficient hierarchical routing protocol. It is based on
fog computing to transfer the sensors’ data, and provides a scalable solution to meet the
demands of IoT applications while maximizing the limited power supply of constraint
networks. It also offers an improved ant colony optimization algorithm that may be used
to choose the optimal path for achieving data routing.

In [35], using a novel paradigm, the authors expanded the network computing infras-
tructure for the 5G communication system. To improve the Quality of Service (QoS) and
Quality of Experience (QoE), a new design of the fog computing framework is explored in
this work. Moreover, the proposed solution offers a method for managing mobility in fog
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networks that takes into account both static and dynamic mobile nodes. The authors in [36]
proposed a solution to improve the secure flow of information for the multimedia network.
The Message Queue Telemetry Transport (MQTT) protocol over SSL/TLS is used in the
proposed system. To mitigate man-in-the-middle attacks, the Elliptic curve-ElGamal cryp-
tography method is introduced because MQTT is disposed to eavesdropping. According to
the data topic, the proposed solution uses dynamic key change and proportionate offload-
ing methods to send data selectively to the cloud and the fog, thereby conserving nodes’
energy. Authors in [37] proposed a comprehensive trust management system, based on a
Gaussian distribution (GDTMS). Furthermore, to achieve the trade-off between security,
transmission efficiency, and energy consumption, grey decision-making is included in the
trust decision. The proposed trade-off can successfully choose a trust management-based
secure routing strategy as the reliable and secure relay node. The proposed strategies can
also be used to defend against bad mouthing attacks. Simulation findings demonstrate that
GDTMS performs more efficiently than other related algorithms. The authors of [38] offer a
node-to-node communication architecture for 5G networks that is based on fog computing.
It permits communication that is purely network infrastructure-dependent. The associ-
ated next-generation evolved node base station (gNB) imports the necessary data from
neighboring fog servers to establish the connection. In data analytical units (DAUs), the
information is processed after it has been retrieved. The DAUs are built-in processing units
that work closely with gNBs and fog servers. Furthermore, a robust mobility management
strategy is proposed for dynamic mobile users to facilitate node-to-node communication.
The following elements have been found in relevant studies to give attention to dynamic
and unpredictable networks. In [39], the Trust based Next Forwarding Node Selection
algorithm and the Fuzzy Based Stable and Secure Routing algorithm are two novel algo-
rithms that are combined for achieving secure routing. Effective routing performance is
provided by the Trust based Next Forwarding Node Selection method, which employs the
trust based node selection process. It also utilizes the fuzzy inference system to explore the
qualitative analysis of trust values and links performance with discovering trustworthy
routes and handling uncertainty. Table 1 shows the summary of the discussed work and
contributions of the proposed algorithm.

Table 1. Summary of existing related studies.

Overview and Limitations

Existing
solutions

Sensors and fog computing are frequently utilized for real-time emerging
networks to automate the devices’ connection and communication systems.
Moreover, fog nodes are increasing the scalability of constraint networks and
reducing the energy consumption of interconnected devices for data
transmission.
However, due to the limited computing powers of the nodes, many solutions are
not able to cope with robust stability for the communication systems.
Furthermore, it was observed that many solutions do not offer security systems
for wireless systems, and impose additional overhead for protecting network
data. It was also noted that most proposed solutions have a longer delay for
crucial network operations due to issues with frequent network disconnectivity.

Proposed
algorithm

In this research study, we proposed for a mobile network to offer an
energy-aware solution with the combination of data trustworthiness using fog
computing. Moreover, a lightweight authentication system is developed to
support real-time communication in a reliable discipline.

3. Proposed Load-Balanced and Energy-Efficient Mobile Routing Protocol

This section describes the proposed algorithm with interaction among developed
phases.
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3.1. System Model

Let us assume that sensors are denoted by Si = (S1, S2, . . . , Sn) and are deployed
randomly. The nodes that are not in the same radius can only be communicated using
multi-hop mode. Nodes are mobile and rotated, and periodically announce their positions.
Fog nodes are placed between sensors and the sink node. Initially, nodes cooperatively
share their attributes to initiate the formulation of routing tables. Later, routing tables are
refined using cooperative decisions of the devices. The sink node is static and has sufficient
resources to control the network environment. It keeps track of the entire monitoring field
and announces alert messages if any faulty action is identified. Each cluster has only one
cluster head at a time, and with the analysis of QoS parameters, the role is updated. Before
discussing the proposed algorithm, we highlight the following network assumptions.

i. Nodes have heterogeneous resources for energy, transmission power, and memory
constraints.

ii. Each path is assigned a unique identity.
iii. After deployment, no batteries can be replaced for sensor nodes.
iv. Aggregated data are transmitted to the sink node with the support of fog nodes over

the unpredictable communication links
v. The transmission power of the nodes can be adjusted using Received Signal Strength

Indicator (RSSI).

3.2. Overview

In this section, the detail of the proposed algorithm is presented. It comprises two
phases. The first phase deals with traffic distribution over the mobile nodes with an efficient
scheme. In addition, the second is for establishing reliable and trusting communication links
with the support of fog nodes. In the beginning, nodes advertise their initial parameters in
their communication range. All the nodes receive such information and record it in their
local tables. The local table is updated with the analysis of QoS factors. Whenever any node
shifts to another range, its record is removed from the table and the new node associates its
information. Moreover, the dynamic routing metrics explicitly reduces the time of route
formulation and offers more effective connections from node to node (N2N). Each route has
a unique identity, and such information copes with a replay attack between the devices. The
security keys provide improved authentication methods for mobile devices against data
anomalies. Such actions decrease the chances of network compromising and intelligently
manage the overall communication under the supervision of the sink node.

Figure 1 depicts the three stages of the proposed algorithm. It includes communica-
tions equipment, network services, and secured services. In the deployed environment,
communication entities include IoT devices, fog nodes, and cloud systems. IoT devices
act as sensors that sense the data and send it to the fog nodes, which then send it to the
sink node. Later, the sink node collaborates with the cloud system for data processing and
storage. The first phase of the proposed algorithm provides clustering and services for link
performance. Based on the adjustable transmission range, the nodes are separated into
distinct regions. Furthermore, cluster heads are identified and their locations are made
known to all members. The final stage concerns secured sessions for both low-level and
high-level communication. N2N communications take place at the low level, whereas
fog-to-sink node communication is carried out at the high level.

3.3. Proposed Algorithm

In this section, we explained the working of the proposed algorithm. The detail is
comprised of two main phases. In the first phase, transmission power is explored to
achieve clustering with optimal data forwarding methods. The links are identified in a
more reliable way to attain long-run communication paths. The second phase offers the
trustworthiness routes with the supervision of the sink node and reduces the level of threats
from malicious devices.
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3.3.1. Routing Chains and Resources Allocation (RCRA)

This section presents a detailed explanation of the routing process with the usage of
network resources in an efficient manner. The source node s(i) records the entries of the
neighbors that fall in their transmission radius R, as defined in Equation (1).

s(i)= D(n, i) ≤ R (1)

where n is the neighbor. However, if none of any node is identified in the transmission range
of the source node, then the source node increases its transmission power trp gradually
£. However, transmission power cannot be increased more than a certain threshold T, as
defined in Equation (2).

trp(i)= trp(i) + £ (2)

where trp(i) ≤ T
Once the neighbor nodes are identified, they are grouped in a similar cluster. Af-

terward, each cluster has a specific identity CLUS_ID assigned. Each node also records
its CLUS_ID into the local table. Within clusters, the node i whose distance d is closest
to the centroid c, highest residual energy e, and minimum rotation speed RS is declared
as a cluster head CHi. All such computations are performed in a weighted manner and
probability must be highest, as defined in Equation (3).

CHi= 1/(d, c) + e +1/RS (3)

Nodes notify their status when they are elected to serve as cluster heads, and all
receiving nodes record the information in their local tables. In the proposed algorithm,
since nodes are mobile, re-selection is performed in either one of the conditions i.e., if the
energy of the CHi is dropped down to a certain threshold or CHi is moved far away from
the centroid of the cluster. In this situation, nodes again announce the re-election process
and the new node is selected for the role of cluster head. In addition, for data forwarding
to the sink node, each cluster head forms a chain with its nearest and most reliable cluster
head. The chain is refined each time when data need to be transferred from the origin
cluster. Each routing chain RCi is established based on the distances among cluster heads
and link analysis LA parameters, as defined in Equation (4).

RCi= D
(
CHi, CHj

)
, LA(i, j) (4)

To compute the LA, the proposed algorithm utilizes the delay time DT for transmitting
packets TP as defined in Equation (5).

LA(i, j)= DT n TP (5)
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DT is directly proportional to the number of packets transmitted over the link (i, j).
When the number of packets increases on the link (i, j), it indicates a high degree of
traffic, such a link is marked as congested and avoids include in the routing chains. The
flowchart of the proposed algorithm, in terms of fog-based routing, is shown in Figure 2.
First, the nodes are organized into regions based on the adjustable transmission radius
with individual identification. Each region is responsible for exploring its cluster head
and sending the information to the fog nodes. The proposed algorithm offers a multi-hop
model for data forwarding thus it lowers energy consumption when data are transmitted
over a longer distance. In data forwarding, link analysis is also employed, in addition to
the least distance between cluster heads. For link analysis, the number of sent packets on
the specific link is used to compute the delay time. The proposed algorithm initiates the
process of data transmission after finding a trustworthy link.
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Algorithm 1 elaborates the pseudocode of the proposed algorithm in terms of data
routing using efficient chaining and resource utilization.

Algorithm 1 Network routing with efficient resource allocation

Procedure RCRA
compute the transmission range of nodes
nodes are divided into regions
assign a unique id to each region
for (i = 1; i <= N; i++)

do
analyze the members’ parameters
if node (i) is optimized then

set as cluster head
end if

end for
cluster head to fog communication

establish routing chain using RCi = D
(

CHi, CHj

)
, LA(i, j)

fog to sink communication
end procedure
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3.3.2. Reliability-Based Lightweight Authentication (RLA)

In this section, the detail of network reliability with lightweight authentication meth-
ods is discussed. The proposed algorithm provides a simple and lightweight security
mechanism for achieving reliable communications. It explores the concepts of hybrid
cryptography and utilizes the methods of symmetric and asymmetric key management. In
the proposed algorithm, the peer devices di and dj nodes shared the session key SK for the
link (i, j), as defined in Equation (6).

di − > dj: SK(i, j) (6)

Moreover, before sharing the SK, the proposed algorithm encrypts the key with the
support of private/public keys. di encrypts the SK denoted by SK′, using the public key of
dj and upon receiving, the SK′ is decrypted by using the private key of dj. In this way, both
the devices have the secured session key and can use it for data forwarding of message M
along with time stamp TS as defined in Equation (7).

di − > dj: E(SK(M)+TS (7)

In Figure 3, key management and reliable forwarding are the two main stages. In
keys management, various keys are generated based on hybrid cryptography. Moreover,
keys are verified and securely distributed among the devices. Afterward, the received keys
are utilized for N2N low-level security. Furthermore, later, fog nodes are communicated
with sink nodes with the same practice for achieving secure key distribution and data
encryption. Algorithm 2 shows the pseudocode of the proposed algorithm for securing the
network connections with lightweight authentication.

Algorithm 2 Secured network connections with a lightweight authentication scheme

Procedure RLA
if devices di and dj has any data to transmit then

call con_dev( )
end if
devices di and dj nodes shared the session key SK for the link (i, j)

di − > dj: SK(i, j)
di encrypts the SK denoted by SK′, using the public key of dj

SK′ is decrypted by using the private key of dj
if SK′ is verified then

send the data packets M
di − > dj: E(SK(M) + TS

end if
if the session time is expired then

call con_dev( )
end if

end procedure
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4. Simulation Environment

In this section, we provide the parameters used in simulation configurations along
with the evaluation of results. The results are conducted through various simulations using
Matlab (R2021b). We adopted the free space model in conducting the simulations. All the
simulation generated data are recorded in log files, and later, using scripting modules, the
required information is extracted to evaluate the performance metrics. The comparisons
are performed with the existing techniques, FBSSR and GDTMS. Mobile devices, fog nodes,
and sink nodes make up the simulation environment. For mobile devices, the fog nodes
are placed closer to the sink node to reduce communication latency and overhead. Mobile
devices are in the range of 100 to 500, and they are rotated with the predefined speed in
their radius. The transmission range is set to 3m for each device. Each device is assigned
a unique address, and no data is allowed for direct transmission in case the distance is
higher than the threshold. The initial energy of devices is set to 2j with limited memory
and processing resources. We deployed 10 fog nodes in the simulation environment. The
packets are sensing with the rate of 1s to 5s. The packet size is up to 100 bytes. We ran
35 simulations to analyze the performance and recorded the average result of each metric.
The results were analyzed in terms of varying message generation intervals and the varying
number of mobile devices. The parameters used in simulation experiments are described
in Table 2. Network throughput, packet drop rate, overhead, reliability, delay, and node
level energy consumption are evaluated for performance evaluation. We also perform
experimental testing for delay and packet reception in terms of varying times.

Table 2. Simulation parameters.

Parameters Values

Mobile devices 100–500

Network diameter 500 m × 500 m

Deployment Random

Path loss model Free space

Transmission range 3 m

Number of sinks 3

Number of simulations 35

Packet size 100 bytes

Message generation interval 1s to 5s

Initial energy 2j

Fog nodes 10

Malicious nodes 20

In this section, we also describe the security analysis of our proposed algorithm against
threats. Our proposed algorithm is based on cryptography principles and offers a secure
method to support data reliability and authentication. Each time, peer devices need to
initiate the connection CON for forwarding the IoT data. This connection is valid for a
particular period, and afterward, it needs to be re-initiated by the peer devices if they
further require data transmission. Each device is assigned a unique identification Dev_ID
and in case any node is identified as having a duplicate identity, then both nodes are
declared as malicious. The record of the malicious nodes is sent to neighboring nodes
and the affected routes are reformulated. The connection is secured using the session key
which is further encrypted using public and private keys. Before forwarding the data on
the link, the sessional needs to be verified. The proposed algorithm is based on hybrid
cryptography techniques and makes use of encryption methods by exploring the message
units and session keys.
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In terms of network throughput, we compared the effectiveness of the proposed
algorithm with existing solutions. The proposed protocol has observed that it increases
the number of packets transmitted by an average of 11% and 14%, in comparison with
FBSSR and GDTMS, as shown in Figure 4a,b. During experiments, it was noticed that as
the mobility of devices increases, the congestion also increases and ultimately slows the
delivery performance over the communication links. However, the improvement of the
proposed algorithm compared to other work is due to the splitting of the network load
among the optimal cluster heads. The proposed algorithm also provides an intelligent
energy-efficient approach to cope with balancing communication costs on mobile devices.
It offers a systematic approach to handling route management in case of route damages
by evaluating the link performance. If any link has an increased data loss rate, then such
paths are removed from the existing routing tables and updated with alternate and optimal
routes. We contrasted the performance of the proposed algorithm with related work in
terms of packet drop rate.
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According to Figure 5a,b, it was found that the proposed algorithm reduces the
ratio for packet dropping by an average of 10% and 13%, respectively. This is due to the
integration of fog nodes with mobile devices, which enhances the route maintenance phase
and increases the stability of the chosen route. Moreover, by exploring the delay time
over the particular link, the proposed algorithm efficiently determines the faulty links and
marks them infeasible in the neighboring table. The forwarder nodes are continuously
re-evaluated in their status based on the network metrics, and if they identified themselves
as not sufficient to be a part of the routing phase, then they declare their status with
the neighbors. The lightweight authentication process also increases the security against
malicious devices and decreases the level of packets capturing and dropping.

The performance comparison of the proposed algorithm and existing in terms of
overhead is shown in Figure 6a,b. Under varying mobile devices and message generation
intervals, it can be demonstrated that the proposed algorithm significantly improves the
overhead by an average of 9% and 12% as compared to other work. This is because the
proposed algorithm effectively manages the energy resources among mobile devices, and
utilizes the support of fog nodes. The fog node reduces the transmission distance of the
forwarders to transmit the environment data toward the sink node. The proposed algorithm
also re-evaluates the routing states when the delay time over the communication link is
greater than a certain threshold. Accordingly, it identified the congested routes from the
available list and selected the alternative option for the transmission of the data. The
security solution also decreases the non-authentic data flowing on the links and avoids
malicious devices from flooding the false packets.
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The performance comparison of the proposed protocol with related studies in terms
of reliability is illustrated in Figure 7a,b. With varying devices and data generation rates,
it was observed that the proposed algorithm offers a high degree of reliability in network
communication. We tested the reliability of the proposed algorithm and other solutions by
deploying the malicious nodes, and it was noticed that the proposed algorithm increases
the reliability by an average of 10% and 11%, respectively. This is due to the incorporation
of a lightweight security scheme to verify the devices for involvement in the process of
data forwarding. Moreover, keys are randomly generated, and by exploring the hybrid
cryptographic principles, the proposed algorithm established the secured session by utiliz-
ing private and public keys. Once the node is declared authentic, the data routing phase is
initiated for the particular node, with the combination of trusted and optimal forwarders.
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Figure 8a,b illustrates the performance of the proposed protocol with other work in
terms of varying times. We conducted two experiments under varying times for delay and
the number of received packets. In both experiments, the proposed solution provides signif-
icant improvement by an average of 14% and 16%. It is due to the consideration of resource
consumption while taking forwarding decisions. Furthermore, the link performance is
evaluated periodically and upon identification of any fault in the existing communication
channel, the proposed solution readjusts the routing paths. However, the security strategy
of the proposed protocol offers the reduction of congestion flooding by malicious nodes.
Accordingly, the routes are available for sending the data toward the sink node in a timely
and precise manner.
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In Figure 9a,b, we demonstrate the performance analysis of the proposed algorithm
and existing solution in terms of energy consumption. The experiments are conducted
under varying message generation intervals, and varying mobile devices. Based on the
results, it was observed that with time, the energy resource dropped down. However,
the proposed algorithm still gives a lower rate of energy consumption of an average of
15% and 16% compared to other existing work. This is because of the lower transmission
distance, in terms of hops, while forwarding the data toward the sink node. Moreover,
the nodes are balancing their load over the routing path and efficiently exploring the QoS
parameters. The delay time is intelligently managed for carrying the real-time data, and
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decreases the ratio of routing requests repeatedly. It reduces the energy load on the devices
and accordingly offers an energy-aware solution.
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5. Conclusions

This work explores fog computing to propose a technique for energy-efficient mobile
routing. The proposed algorithm provides data forwarding by exploring reliable search
techniques and shortening the data transmission time. Moreover, the proposed algorithm
provides the balancing of energy consumption among the devices, with the support of
optimal criteria. The mobile device not only decreases the latency with the combination
of fog nodes, but it also offers a lightweight authentication scheme for the node verifier.
Another contribution of the proposed algorithm is protecting the data in the presence of
attacks. The performance results demonstrate the significant outcomes of the proposed
algorithm against existing work; however, it was observed that still, the proposed algorithm
produces additional overhead and communication costs when the number of mobile
devices increases. Furthermore, methods need to be designed for more efficient routing
with the combination of deep learning models. In our future work, we aim to combine the
intelligence and processing power of software-defined networks to cope with the efficient
management of nodes and network resources. In addition, improved and lightweight
intrusion detection systems require by exploring machine learning.
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