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Abstract: Ethylene-Vinyl Acetate (EVA) copolymer was synthesized from ethylene and vinyl acetate
at high temperatures and ultra-high pressures. In this condition, any reactor disturbances, such as
process or mechanical faults, may trigger the run-away decomposition reaction. This paper proposes
a procedure for constructing a conditional health status prediction structure that uses a virtual
health index (HI) to monitor the reactor bearing’s remaining useful life (RUL). The piecewise linear
remaining useful life (PL-RUL) model was constructed by machine learning regression methods
trained on the vibration and distributed control system (DCS) datasets. This process consists of using
Welch’s power spectrum density transformation and machine learning regression methods to fit the
PL-RUL model, following a health status construction process. In this research, we search for and
determine the optimum value for the remaining useful life period (TRUL), a key parameter for the
PL-RUL model for the system, as 70 days. This paper uses four-fold cross-validation to evaluate
seven different regression algorithms and concludes that the Extremely randomized trees (ERTs)
is the best machine learning model for predicting PL-RUL, with an average relative absolute error
(RAE) of 0.307 and a Linearity of 15.064. The Gini importance of the ensemble trees is used to identify
the critical frequency bands and prepare them for additional dimensionality reduction. Compared to
two frequency band selection techniques, the RAE and Linearity prediction results can be further
improved to 0.22 and 8.38.

Keywords: ethylene-vinyl acetate; high-pressure bearing; conditional health status prediction;
extremely randomized trees; piecewise linear remaining useful life; Welch’s power spectrum density
periodogram

1. Introduction

Ethylene-Vinyl Acetate (EVA) is a thermoplastic polymer formed by the copolymer-
ization of ethylene and vinyl acetate (VA). The product specifications can be adjusted by
molecular weight and vinyl acetate content. EVA is a popular material for solar encapsula-
tion films and is widely used in foam materials [1]. EVA resin can be manufactured using
either the autoclave or tubular methods. Compared with the tubular form, the autoclave
method can produce a high degree of long chain branch (LCB) and broad molecular weight
distribution (MWD) and can offer VA concentrations beyond 30%. The autoclave method
operates around 1800 to 2000 atm (atmospheres), with the reaction temperature ranging
between 160 and 200 ◦C. The run-away decomposition conditions depend on reactor pres-
sure [2], temperature, mechanism of ignition, and vinyl acetate ratio [3]. Decomposition
may occur when mechanical faults in the reactor, such as bearing failures or other sources
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of mechanical friction, produce a hot spot [4]. Once decomposition occurs, the reactor will
quickly produce a large amount of methane and hydrogen, increasing the reactor pressure.
When the reactor reaches the warning pressure of the safety rupture disc, it will purge and
rapidly discharge reactants into the environment, causing a series of pollution and even
severe industrial safety hazards.

The decomposition reaction would damage equipment, cause production losses, and
entail fines from the government, and is hazardous for the operators. However, current
autoclave reactor modeling only focuses on predicting MWD [5] and melting index (MI) [6].
Therefore, prediction maintenance of the bearing for the ultra-high pressure autoclave
reactor remains an important issue.

Machine learning is the study of utilizing algorithms and statistical models to make
predictions based on past data, and has been used in a variety of domains. Recent machine
learning research includes optimizing syngas engine operating parameters [7], developing
predictive maintenance support systems [8], predicting drug-drug interaction [9], protein
identification [10] and remaining useful life of lithium-ion batteries [11]. Bearing health
status classification and remaining useful life (RUL) prediction is a popular research field
and there is a comprehensive review [12]. Acceleration time series, transformed frequency
domain, and time-frequency analysis are commonly used to predict bearing health. The
power spectral density (PSD) is shown to outperform the discrete Fourier transform (DFT)
in providing better features in the frequency domain [13], and the Welch method based on
time averaging over short periodograms to calculate the Welch PSD has been provided
in [14]. The Welch PSD can then be used to generate valuable features for health status
classification using multiple machine learning methods such as bagging support vector ma-
chine (SVM) [15] and radial basis function (RBF) neural network [16]. Standard deviation,
kurtosis, variance, peak-to-peak, and other statistical features are common for further pre-
dictions and are calculated from time-series and frequency domain data [17]. The Weibull
distribution is often used to smooth oscillating statistical features over time [18]. Some
also use large machine learning models such as deep convolution neural networks (CNN)
to extract features from wavelet transforms [19]. At the same time, traditional machine
learning models such as SVM are still popular methods for predicting RUL or detecting
failure [20]. More complicated prediction methods, such as recurrent neural networks
(RNN) [21], deep CNN [22], auto-encoder [23], and long short-term memory (LSTM) [24],
have been used to predict RUL. Ensemble techniques can further boost the performance for
bearing health problems [25]. Ensemble decision trees methods such as eXtreme Gradient
Boosting (XGboost), gradient boost, and adaptive boosting can classify bearing health
status [26]. The Gini importance of the ensemble trees, such as random forest [27], and
adaptive boosting [28], can be used to calculate the significance of selected features for later
predictions. Some researchers have demonstrated that ensemble tree methods and SVM
provide greater accuracy than some RNN designs [29].

A defect initiation stage with a small defect is found by modeling the bearing wear
evolution [30]. This characteristic is also found using the geometry of a health indicator
(HI) [31], and the piecewise linear RUL (PL-RUL) model proposed in [32] is often used as a
predicting model to fit the phenomenon.

Even though many studies on bearing health status classification and RUL prediction
are already available, this research is valuable due to the following reasons:

� This research focuses on a complex ultra-high pressure and special lubricating system
with multiple product grade transitions. Moreover, inappropriate operation can lead
to the run-away decomposition of the process, which may cause serious harm to
people and the environment.

� Past supercritical ultra-high pressure autoclave reactor modeling only focuses on
predicting MWD [5] and MI [6]. Therefore, prediction maintenance of the ultra-high
pressure autoclave reactor bearing remains an important issue.

� Most studies focus on data from small-scale laboratory experiments or a few public
databases [12], such as the NASA CMAPSS dataset [33] and the PHM 2012 prognostic
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challenge [34]. This study focuses on real-world data and increases the diversity of
the dataset in this field.

� Most bearing life predictions are based solely on accelerometer data. The DCS data,
such as motor current, provided in real-world processes, is rarely used. This study
combines datasets from different domains to produce a more holistic as well as
accurate prediction.

� While traditional dataset processing time series data employs dozens of statistical
features to make predictions, these features are frequently challenging to interpret and
lack physical intuition. A more intuitive approach is to find and monitor characteristic
frequencies or frequency bands. For example, compare the time-frequency analysis
with the calculated theoretical values [35], or look into the characteristic frequency
band with high monotonicity over time [36]. In this paper, we utilize machine learning
approaches to select characteristic frequency bands for predicting the remaining useful
life of the bearing.

� Our dataset is sparse and limited (one day, one datum, 426 days, four life cycles).
Complex approaches such as CNN and LSTM are not suitable for this small set of
data. In this study, we emphasize simple methods and the addition of process data
(motor three-phase current).

� This is the first time this dataset has been used in a predictive maintenance analysis
in terms of machine learning and AI. As a result, there is no published work on the
same or similar problem or data to compare. Therefore, to build a solid foundation
for future studies, we reviewed several commonly used regression methods rather
than focusing on ensemble architectures, which might generate better results.

� This study also aids the industry in the implementation of a predictive maintenance
plan, which increases production efficiency while preventing hazardous pollution.
This is very much in line with Sustainable Development Goal (SDG) Target 8.8, which
promotes a safe working environment for those in precarious employment, and SDG
Target 9.4, which encourages industry to upgrade for sustainability.

This study is an industry-sponsored project that makes use of data from an operating
supercritical ultra-high pressure reactor that was provided by an anonymous company.
Because the training dataset is a private asset of the company, disclosing the data is
not possible.

On the other hand, rather than focusing on the systems presented in the paper, we
believe that the value of this study is in developing a general procedure that can be used
to build predictive maintenance models for similar systems. Different systems also have
their own limitations and challenges, which may lead to selection of different models and
parameters. Therefore, we have clearly explained the model-building process step by step
in the Methods section, and we hope the readers can follow the procedure to build their
own models based on their own custom dataset.

2. Process Description and Methods
2.1. Process Description

The autoclave process flow and the reactor configuration diagram are given in Figure 1.
A compressed ethylene monomer stream uses two large reciprocating compressors con-
nected in series to reach the high reaction pressure. The primary compressor can increase
the ethylene feed pressure from 40 atm to approximately 200 atm. The secondary com-
pressor can raise the pressure of the mixture of ethylene, vinyl acetate, and chain modifier
to around 1800 to 2000 atm. The high-pressure mixed stream enters the reactor with an
initiator and modifiers and undergoes free-radical bulk copolymerization with a reaction
temperature between 160 and 200 ◦C. A separator vessel will separate the molten EVA
polymer from the unreacted mixture. Depending on the pressure level, it will recycle to the
first or second compressor after removal. The molten EVA polymer will be removed from
an extruder and then pelleted and bagged.
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tank reactor, including the top axial, top side, middle side, and bottom side. These sensors 
detect vibration motion and record acceleration 2[m/s ]  time series data for subsequent 

Figure 1. Process schematic of the EVA plant and the reactor configuration diagram.

The reactor includes four vibration sensors, and the motor current is recorded in the
DCS historian, shown in Figure 1. The top axial and radial accelerometers are used to
monitor the motor bearing, and the other two radial accelerometers are used to monitor
the middle and bottom bearings. The height of the reactor is around 7 m. The reactor
bearing is encased in the reactor, and the polymer within the reactor serves as a lubricant.
Due to the high pressure, the thickness of the reactor exceeds 10 cm. The thick wall
prevents accelerometers from being mounted closest to bearings and may absorb or reflect
the vibration sensor’s characteristic frequency, making it challenging to analyze the early
signals for any bearing anomaly.

2.2. Method

The process flow of the Condition-Based Maintenance structure of the EVA reactor
is shown in Figure 2. There are four stages in the process flow: (1) data acquisition (high-
lighted in blue), (2) health index (HI) construction (highlighted in yellow), (3) health status
(HS) division (highlighted in green), and (4) bearing reliability prediction (highlighted
in gray).
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2.3. Data Acquisition

At this stage, four accelerometers are installed on four different parts of the stirred
tank reactor, including the top axial, top side, middle side, and bottom side. These sensors
detect vibration motion and record acceleration [m/s2] time series data for subsequent
analysis. The collected time-series data is sampled every day and lasts 3.2 s at a sampling
rate of 2560 Hz. In this study, we performed cross-validation across four events totaling
426 days. Each sensor’s time-series data size is 8192 sample points per day, for a total of
3490k. These four sensors have a total data size of 13,959 k. The motor current is obtained
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using DCS historian. In this research, two types of dataset are used, the acceleration (A)
dataset and acceleration plus the motor current (A/C) dataset.

2.4. HI Construction

The Health Index (HI) construction approach combines four acceleration time-series
data with physical meanings into a virtual health index using frequency analysis and
various machine learning regression methods. The HI construction stage is subdivided into
three phases. First, we use Welch’s method to convert each sensor’s time series data into a
power spectral density (PSD) periodogram. Second, we use the PL-RUL model to create a
bearing life training dataset. Finally, we test various regressors on the training dataset and
choose the best-fit regressor setup.

2.4.1. Welch’s Method

As shown in Figure 3, the time-domain data of the top axial sensor on day 0 was
collected within 3.2 s with a sampling frequency of 2560 Hz, and 8192 acceleration values
were collected with the unit of g (9.80665 m/s2). This illustrative time-domain data is
highly oscillating; it may thus be challenging to find useful characteristic features for this
system. On the other hand, the PSD periodograms show the power amplitude of a given
frequency band in a range of given frequencies, which aids in constructing characteristic
frequency patterns. The PSD is calculated using Welch’s method [14], as illustrated in
Figure 4, which shows the PSD periodogram computed using the traditional method and
Welch’s method with a window size of 512 per segment, smooth, and containing the trend
of the original method.
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Calculating PSD periodograms using Welch’s method is a standard procedure for
converting time-domain data to frequency-domain data. This method calculates the power
average PSD of the signal and has three advantages over the discrete Fourier transform.
First, PSD normalizes the results for the different durations and sampling rates, making
the results comparable across time-series data with different sampling rates and durations.
As a result, Welch’s method can accept source data with varying sampling frequency and
duration while producing results with the same dimension, which is impossible with
traditional PSD calculation procedures. This feature makes our procedure more adaptable
in practice. For example, we can change sensors with different sampling frequencies or
adjust sampling duration without reconstructing our conditional-based structure. Second,
by smoothing the highly oscillating frequency domain data while retaining the original
method’s trend, this method balances the fluctuation and resolution of the periodogram,
as shown in Figure 4. Finally, the output dimension is reduced, and the reduced ratio
can be tuned. Most of the results reduced the size by 16-fold if not otherwise specified.
The following describes the calculation for the power spectral density periodogram using
Welch’s method.

Suppose Ts[t] is a discrete sequence of the acceleration time-domain data with a length
Ntotal collected by the sensor s, where t = 0, 1, . . . , Ntotal − 1. The time series data is a
function of time that conveys information on the vibration acceleration with unit equals
(i.e., 9.80665 m/s2) and a sampling frequency S f = 2560 Hz. Define zero-padded time
series referenced at are f = 10−6 m/s2 as Ts[t] stated in the Equation (1). Zero-padding is
to generalize Ts[t] from range [0, Ntotal − 1] to all integer numbers, and aref referenced at
10−6 m/s2 is commonly used for acceleration data.

Ts[t] =

{
9.80665·Ts [t]

are f t = 0, 1, . . . , Ntotal − 1

0 otherwise
(1)

After defining Ts[t], we split it into M overlapping segments. We detrend the data
to remove extremely low-frequency components in each segment, and a window func-
tion is applied to prevent leakage. Following, we define segmented, constant detrended,
windowed, and zero-padded time series as xs,m[n], shown by the Equation (2):

xs,m[n] = wN [n]

Ts[n + mRN]−

N−1
∑

i=0
Ts[i + mRN]

N

 (2)

where n is the index in each segment, and n = 0, 1, . . . , N − 1; m is the segment index,
and m = 0, 1, . . . , M− 1; N is the size of each segment, and M = dNtotal/((1− R)N)e−1
is the number of segments. This process extracts unwanted noise from the signal [37].
Furthermore, wN is the Hanning window function of length N, shown in the Equation (3):

wN [n] = 0.5
(

1− cos
(

2πn
N − 1

))
(3)

Further, R is the inter-segment overlapping ratio and equals 0.5 and 1 for Welch’s and
Bartlett’s methods, respectively.

Suppose Ps,m[ωk] is the periodogram of the mth block shown in Equation (4) or
Equation (5), which is the absolute square of the Fast Fourier Transform (FFT) results
corrected by the window energy correction factor A = ∑N−1

n=0 w2[n], and a one-sided factor
of 2 is applied to Equation (5). If the window function is box-window, A = ∑N−1

n=0 1 = N,
which equals the Parseval’s Theorem correction factor. k is the frequency index, which are
the integers from 0 to bN/2c.
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If the value of M is odd for k = 0, bN/2c, or the value of M is even for k = 0, where
m = 0, 1, . . . , M − 1, then:

Ps,m[ωk] =
1
A
∣∣FFTN,k(xs,m[n])

∣∣2 =
1
A

∣∣∣∣∣N−1

∑
n=0

xs,m[n]e−
j2πnk

N

∣∣∣∣∣
2

(4)

For other values of k, where m = 0, 1, . . . , M − 1, then:

Ps,m[ωk] =
2
A
∣∣FFTN,k(xs,m[n])

∣∣2 =
2
A

∣∣∣∣∣N−1

∑
n=0

xs,m[n]e−
j2πnk

N

∣∣∣∣∣
2

(5)

The below-stated Equation (6) can convert the frequency index k to the actual frequency ωk.

ωk = k
(

S f
N

)
(6)

Welch’s power spectral density periodogram is expressed by Ss[ωk], the average of
the M power spectral density periodograms. This is stated in Equation (7) below for k = 0,
1, . . . , [N/2].

Ss[ωk] =
1
M

1
S f

M−1

∑
m=0

Ps,m[ωk] (7)

The vibration acceleration level Ls[ωk] with k = 0, 1, . . . , [N/2], and are f = 10−6 m/s2

for the sensor s is stated in Equation (8).

Ls[ωk] = log10(Ss[ωk]
)

(8)

The Welch method significantly reduced the PSD periodogram’s size from 4096 to 257
(N/2 + 1, where N is set as 512), and the periodogram is less oscillatory while maintaining
its trend.

2.4.2. Piecewise Linear Remaining Useful Life (PL-RUL)

The remaining useful life (RUL) is the useful life left of the bearing at a particular
operation period. It is represented in a linear line with a slope equal to −1. In this study,
the remaining useful life (RUL(t)) is defined as the time from the current time (t) until the
end of use of the bearing (tEoU). This approach assumes the bearing’s health status on the
last day is the same, which is slightly off the mark but a reasonable assumption. Another
challenge is predicting the RUL at an early stage. In the early stage, the RUL in different
events gives varying results due to different operation periods, but the bearings are new
and not yet seriously degraded. This makes the prediction of the RUL difficult. Therefore,
we adopt the modified form of the RUL model known as the piecewise linear RUL model
(PL− RUL(t)) [32], whose life diagram is shown in Figure 5. This model comprises two
straight lines: a horizontal line with a height equals TRUL before the first predicting time
(tFPT) and a linear RUL line with a slope of −1 between tFPT and tEoU. The following
Equation (9) describes the PL-RUL model:

PL− RUL(t) =

{
TRUL for 0 ≤ t ≤ tFPT

TRUL − (t− tFPT) for tFPT < t ≤ tEoU
(9)

The horizontal line indicates that we have given up predicting the precise lifespan in
the early stage but have identified the status as “healthy.” We resume prediction when the
expected number of days is less than the remaining useful life period (TRUL), which is also
the model tuning parameter and has a relationship of TRUL = tEoU − tFPT. This approach
is reasonable because it is difficult to predict in the early stages when the degradation
is negligible.



Electronics 2023, 12, 580 8 of 20

Electronics 2023, 12, 580 8 of 22 
 

 

The Welch method significantly reduced the PSD periodogram’s size from 4096 to 
257 (N/2 + 1, where N is set as 512), and the periodogram is less oscillatory while main-
taining its trend. 

2.4.2. Piecewise Linear Remaining Useful Life (PL-RUL) 
The remaining useful life (RUL) is the useful life left of the bearing at a particular 

operation period. It is represented in a linear line with a slope equal to −1. In this study, 
the remaining useful life ( RUL( )t ) is defined as the time from the current time ( t ) until 
the end of use of the bearing ( E oUt ). This approach assumes the bearing’s health status on 
the last day is the same, which is slightly off the mark but a reasonable assumption. An-
other challenge is predicting the RUL at an early stage. In the early stage, the RUL in dif-
ferent events gives varying results due to different operation periods, but the bearings are 
new and not yet seriously degraded. This makes the prediction of the RUL difficult. There-
fore, we adopt the modified form of the RUL model known as the piecewise linear RUL 
model ( PL-RUL( )t ) [32], whose life diagram is shown in Figure 5. This model comprises 
two straight lines: a horizontal line with a height equals RULT  before the first predicting 
time ( FPTt ) and a linear RUL line with a slope of -1 between FPTt  and E oUt . The following 
Equation (9) describes the PL-RUL model: 

 ≤ ≤=  − − < ≤
RUL FPT

RUL FPT FPT EoU

for 0
PL-RUL( )

( ) for 
T t t

t
T t t t t t

 (9)

 
Figure 5. Piecewise linear remaining useful life diagram, where RULT  is the tuning parameter called 
the remaining useful life period, FPTt  is the first predicting time when the first RUL predicting oc-

curs and E oUt  is the end of use time for bearing. 

The horizontal line indicates that we have given up predicting the precise lifespan in 
the early stage but have identified the status as “healthy.” We resume prediction when 
the expected number of days is less than the remaining useful life period ( RULT ), which is 
also the model tuning parameter and has a relationship of = −RUL EoU FPTT t t . This approach 
is reasonable because it is difficult to predict in the early stages when the degradation is 
negligible.  

2.4.3. Regression 
In our case, each sensor has 257 frequency bands. Four sensors add up to 1,028 nodes 

in the input. The selected regressor takes 1028 inputs, representing the PSD level deter-
mined by Welch’s method. It is trained on the bearing piecewise RUL of that specific day 
to minimize the mean square error. 

This is the first time this dataset has been used in a predictive maintenance analysis 
in terms of machine learning and AI. Moreover, similar ultra-high pressure systems have 

Figure 5. Piecewise linear remaining useful life diagram, where TRUL is the tuning parameter called
the remaining useful life period, tFPT is the first predicting time when the first RUL predicting occurs
and tEoU is the end of use time for bearing.

2.4.3. Regression

In our case, each sensor has 257 frequency bands. Four sensors add up to 1028 nodes in
the input. The selected regressor takes 1028 inputs, representing the PSD level determined
by Welch’s method. It is trained on the bearing piecewise RUL of that specific day to
minimize the mean square error.

This is the first time this dataset has been used in a predictive maintenance analysis in
terms of machine learning and AI. Moreover, similar ultra-high pressure systems have not
been investigated yet. Although all machine learning models can predict the remaining
useful life of the bearing to a certain degree, their performance varies. As a result, we are
motivated to seek out the most appropriate and effective methods and offer guidance to
future researchers as well as practitioners.

Seven commonly used regressors were tested using Scikit-learn [38], including linear
regression, support vector regression, extremely randomized trees regression [39], random
forest regression [40], Adaboost regression [41], Gradient boost regression [42], and eXtreme
Gradient Boosting (XGboosts) regression [43]. Extremely randomized trees (ERTs) has
piecewise linear geometry [39] and is believed to perform better for piecewise linear
functions. This method is similar to bagging trees; it uses extremely randomized trees
instead of decision trees, randomly selecting a single attribute and cut-point at each node.

As mentioned above, our regression model takes in more than 1000 input variables,
making it difficult to train and interpret. Therefore, selecting key variables and reducing
the number of variables can help build smaller but more precise, stable, and interpretable
models. One of the methods to select variables is to calculate the Gini importance of each
feature in the ensemble trees. The method assists in determining which features (frequency
bands) are potentially important in predicting the health index and provides knowledge or
vision to on-site engineers. The Gini importance for specific features is calculated using
Scikit-learn [38], and the process is as follows: First, compute the regression mean square
errors (MSE) of each node, which is the node’s mean square error. Second, compute the
decreased MSE for each node. This also means that the MSE of adding a node is reduced.
Finally, the MSE of each node is normalized to a sum of 1, and the Gini importance for a
specific feature is the sum of the nodes using the features to make decisions.

The predicted results of the regressor are the bearing’s PL-RUL. To ensure that each
event has the same data size, we randomly oversample 350 data points in each of the
4 events.

2.4.4. Reliability Regression Results Evaluation

The prediction results must be evaluated to determine which set of hyper-parameters,
regression algorithms, and target function selection is best. Mean squared error (MSE) is a
popular measurement tool. However, MSE inherently magnifies the error for large values.
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As a result, we used relative absolute error (RAE) to solve the problem. The following
Equation (10) describes how the RAE is defined:

RAE =

n
∑

i=1
|pi − ai|

n
∑

i=1
|a− ai|

(10)

where ai and a represent the actual targets and their average, pi represents the predicted target.
Another evaluation parameter we use is Linearity, defined as the predicted linear

RUL line’s mean squared error to its linear fit. The parameter evaluates the linear trend
of the RUL line. A high degree of oscillation in the prediction may cause false alarms and
confusion for the on-site engineers; therefore, we also value the consistency of the trend.

2.5. Health Status (HS) Division

The Health Status could be easily created by applying a suitable threshold to the
regression results to predict the virtual health index (HI), which is further classified into
different states. However, this approach is too sensitive to be used on-site. A time-relevant
approach is added to improve system reliability, and the status of Normal, Warning, and
Danger is described. The deterioration of the state happens only when the estimated
reliability surpasses the threshold three times in a row. A monotonic decreasing function
for the health status trend is also obtained by the design of this health status division
method. It becomes an essential feature for predicting health status, which deteriorates
over time.

2.6. Bearing Reliability Prediction

Bearing reliability prediction is similar to the HI construction and health status division
processes. Welch’s approach is used to determine the PSD level using data collected by
four sensors for 3.2 s at a sampling rate of 2560 Hz. The PSD level values and process
data are fed into a trained machine learning regressor to predict a reliability value. Finally,
the reliability and two previous values are compared to the threshold to determine if the
bearing status is normal, warning, or dangerous.

2.7. Limitation

The prediction obtained from this study should be carefully reviewed, and we have
listed the study’s limitations:

� This study’s sample size is small compared to other regularly used datasets. This
study’s system is an ultra-high-pressure reactor containing polymers with a broad
distribution of molecular weight. This characteristic shows that the bearing functions
in a variety of conditions and the method of failure are likely to vary. The dataset may
not account for all potential failure mechanisms. Consequently, if a new failure mode
occurs, it may be necessary to retrain the machine learning model.

� The sampling interval for this study is once per day. Therefore, it is difficult for
the model to respond to short-term events such as grade transitions. In addition,
short-term events may contaminate the training dataset, causing the results to deviate
from the correct long-term trend.

3. Results and Discussion
3.1. Training Using Acceleration and Motor Datasets

In this study, the cross-validation method for four events shown in Table 1 is used. In
the ith cross-validation trial, we test the ith event and train using 350 oversampling on each
of the other three events. For instance, in trial 1, we randomly choose 350 samples from
each of events 2, 3, and 4 to train on before validating them in event 1.
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Table 1. Events for cross-validation.

Event Operation Days Days with Data

1 126 105
2 131 99
3 116 103
4 119 119

The study uses two datasets: the acceleration (A) dataset and the acceleration plus
motor current (A/C) dataset. Figures 6 and 7 depict the prediction results using 4-fold cross-
validation trained by ERTs based on two different datasets. The color of each prediction
point represents the health status (green for normal, orange for warning, and red for
danger). The warning and danger status threshold is manually given to be 40 and 20 days.
The two models’ predictions have similar relative absolute loss values (A: 0.301, A/C: 0.307)
and Linearity (A: 16.715, A/C: 15.064). It is challenging for the model to utilize the motor
datasets, which are 340 times smaller than the acceleration datasets.
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Figure 6. 4-Fold cross-validation results with TRUL = 70 days for trials 1 to 4 using A/C dataset,
using Extremely randomized trees optimal Linearity setting (n_estimators = 100, max_depth = None,
min_samples_leaf = 2, min_samples_split = 10).

The results show that our prediction curve fits well. The predictions transition
smoothly from normal to warning and warning to danger. However, we found that
the stated curve can predict neither values larger than 70 days nor fewer than 10 days. The
nature of the decision tree regression explains the upper bound of 70 days. The regression
tree predicts based on average results. Because no training sample is larger than 70 days,
no prediction result will be greater than 70 days. The lower bound of 10 days may imply
that the breakdown behavior varies depending on the case. The predicted results remained
at 10 days because no testing event’s breakdown behavior is highly correlated to other
training events.

We have trained the models under the same parameters ten times to obtain the
variance between models. The results of the RAE standard deviation of the above two ERTs
models are both 0.006, and the Linearity standard deviations are 1.277 (A/C) and 0.967
(A). The values of the variance are low, indicating the model can be successfully trained
recursively, and because of the random nature of the ERTs model, we believed there was
little over-fitting concern.
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Figure 7. 4-Fold cross-validation results with TRUL = 70 days for trials 1 to 4 using A dataset, using
Extremely randomized trees optimal Linearity setting (n_estimators = 100, max_dept h = None,
min_samples_leaf = 2, min_samples_split = 10).

3.2. Training Using Different Regression Methods

To fit the piecewise RUL function, seven regression methods were investigated, and the
comparison and hyperparameter tuning are shown in Table 2. Four-fold cross-validation
for each trial is performed on the AC dataset, as described in the Methods section, where
RAE and Linearity were calculated for each test case and averaged for further evaluation.
For each method, we performed the grid search on hyperparameters to get the best results
in terms of lower RAE and Linearity. The results show that the XGBoost Regression method
achieves the lowest average RAE, while the ERTs method has the lowest Linearity. Figure 8
shows the XGBoost prediction results with the A/C dataset using the XGBoost regressor.
In this four-fold cross-validation, the color of each prediction point represents the health
status (green for normal, orange for warning, and red for danger). The warning and danger
status thresholds are manually given to be 40 and 20 days.

Table 2. Comparison of seven regression methods using cross-validation with TRUL = 70 days
trained on A/C dataset. The best averaged RAE and Linearity results and the parameters are
obtained through grid search for each algorithm, and the grid search range is also specified in
the table.

Algorithm Hyper Parameter
Grid Search Range

Best RAE Value Best Linearity Value

Extremely randomized Trees

n_estimators = [10, 50, 100] 10 100
max_depth = [10, 30, None] 30 10
min_sample_leaf = [1, 2, 4] 4 2

min_sample_split = [2, 5, 10] 2 10
Average RAE, Linearity 0.279, 30.798 0.307, 15.064

XGboost

min_child_weight = [1, 5, 10] 10 10
Gamma = [0.5, 1.5, 5] 1.5 5

n_estimators = [10, 50, 100] 50 10
colsample_bytree = [0.6, 0.8, 1] 0.6 0.8

max_depth = [3, 4, 5] 4 5
Average RAE, Linearity 0.272, 24.381 0.376, 16.240

Algorithm Hyper Parameter
Grid Search Range

Best RAE Value Best Linearity Value

Random Forest

n_estimators = [10, 50, 100] 10 10
max_depth = [10, 30, None] 30 30
min_samples_leaf = [1, 2, 4] 2 1

min_samples_split = [2, 5, 10] 5 10
Average RAE, Linearity 0.334, 43.742 0.342, 34.016
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Table 2. Cont.

Adaboost

n_estimators = [10, 50, 100] 50 10
learning rate = [0.1, 1, 10] 0.1 10

estimator =
[DecisionTree(depth = 1),

ExtraTree(depth = 1)]
ExtraTree DecisionTree

Average RAE, Linearity 0.409, 74.461 0.925, 0

Gradient boost

n_estimators = [10, 50, 100] 100 10
max_depth = [10, 30, None] 30 10
min_samples_leaf = [1, 2, 4] 4 4

min_samples_split = [2, 5, 10] 10 2
Average RAE, Linearity 0.364, 29.316 0.577, 15.098

SVM

C = [0.01, 0.1, 1, 10] 0.01 0.1
gamma = [0.001, 0.01, 0.1, 1] 0.001 0.1

kernel = [rbf, linear] linear rbf
Average RAE, Linearity 0.404, 19.179 0.975, 0

Linear regression Average RAE, Linearity 0.381, 27.557 0.381, 27.557

Electronics 2023, 12, 580 13 of 22 
 

 

min_samples_split = [2, 5, 10] 10 2 
Average RAE, Linearity 0.364, 29.316 0.577, 15.098 

SVM 

C = [0.01, 0.1, 1, 10] 0.01 0.1 
gamma = [0.001, 0.01, 0.1, 1] 0.001 0.1 

kernel = [rbf, linear] linear rbf 
Average RAE, Linearity 0.404, 19.179 0.975, 0 

Linear regression Average RAE, Linearity 0.381, 27.557 0.381, 27.557 

 
Figure 8. 4-fold cross-validation results with =RUL 70T  days for trials 1 to 4 using A/C dataset and 
XGBoosting regressor with optimal regressor settings (min_child_weight = 10, gamma = 1.5, n_esti-
mators = 50, colsample_bytree = 0.6, max_depth = 4). 

Although XGBoost seems more effective at minimizing RAE loss and has the lowest 
RAE value of 0.272, it has a significant drawback. The XGBoost prediction is staircase-like, 
and the piecewise RUL is either predicted to drop abruptly in a short period or to remain 
constant over an extended length of time. The XGBoost prediction is less linear at the lin-
ear RUL phase when compared to ERTs, which can be demonstrated by comparing the 
Linearity (mean squared error of the slope phase to its linear fit). The ERTs’ average Lin-
earity is the lowest of all, which is 15.064, while XGboost is 24.381. In practice, a low Lin-
earity index is critical for the predicted results. The on-site engineers may need clarifica-
tion if the expected days show a significant fluctuation or sudden decrease. Other ensem-
ble trees regression methods such as Gradient boost, Adaboost, and Random forest exhibit 
similar stair-case-like phenomena. Only the best Linearity ERTs can achieve both low RAE 
and Linearity. 

3.3. Parameter RULT  Selection 

Every system has its characteristic remaining useful life period ( RULT ). An analysis 
was performed to search from small to large RULT  to determine the best-fit value in this 
study. The following procedures were applied to find the best value. Initially, choose a 
value of RULT  and construct the PL-RUL function. In the next step, the dataset is run 
through 4-fold cross-validation, and RAEs are recorded. Finally, another RULT  value is 
selected. We repeated these stepsto search the space for the smallest RAE fit. Figure 9 
illustrates the outcome of the process. 

Figure 8. 4-fold cross-validation results with TRUL = 70 days for trials 1 to 4 using A/C dataset
and XGBoosting regressor with optimal regressor settings (min_child_weight = 10, gamma = 1.5,
n_estimators = 50, colsample_bytree = 0.6, max_depth = 4).

Although XGBoost seems more effective at minimizing RAE loss and has the lowest
RAE value of 0.272, it has a significant drawback. The XGBoost prediction is staircase-like,
and the piecewise RUL is either predicted to drop abruptly in a short period or to remain
constant over an extended length of time. The XGBoost prediction is less linear at the
linear RUL phase when compared to ERTs, which can be demonstrated by comparing
the Linearity (mean squared error of the slope phase to its linear fit). The ERTs’ average
Linearity is the lowest of all, which is 15.064, while XGboost is 24.381. In practice, a
low Linearity index is critical for the predicted results. The on-site engineers may need
clarification if the expected days show a significant fluctuation or sudden decrease. Other
ensemble trees regression methods such as Gradient boost, Adaboost, and Random forest
exhibit similar stair-case-like phenomena. Only the best Linearity ERTs can achieve both
low RAE and Linearity.

3.3. Parameter TRUL Selection

Every system has its characteristic remaining useful life period (TRUL). An analysis
was performed to search from small to large TRUL to determine the best-fit value in this
study. The following procedures were applied to find the best value. Initially, choose
a value of TRUL and construct the PL-RUL function. In the next step, the dataset is run
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through 4-fold cross-validation, and RAEs are recorded. Finally, another TRUL value is
selected. We repeated these stepsto search the space for the smallest RAE fit. Figure 9
illustrates the outcome of the process.
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Figure 9. Optimal TRUL search from 10 days to 120 days evaluated using RAE. Each data point
represents the RAE of an ERTs with 10 estimators trained on A/C combined dataset.

All four trials have a local minimum, indicating that an optimum TRUL exists for the
piecewise linear RUL function. In the 4 different trials, however, the optimum values of
TRUL range from the 40s to the 80s, making it difficult to conclude the optimum value of
TRUL from the best-fit viewpoint. Due to ERTs’ random construction, the result trends
likewise varied significantly. In response to the abovementioned considerations, RAEs
from the four trials are averaged, and the average curve trend reaches a minimum at about
70 days, which results in choosing 70 days as the TRUL value in this study.

3.4. Gini Importance

Model interpretation is an important part of today’s machine learning research. Se-
lecting features that influence the models’ predictions and providing a connection to the
system’s physical meaning can help us select features for developing small and more
precise regression models.

The importance of features for prediction is calculated using the Gini importance,
which aids in model interpretation. However, impurity-based feature importance can be
misleading for high cardinality features and features that indirectly aid regression. We built
the ERTs 20 times and then took the average to solve this problem. Figure 10 represents the
4-fold cross-validation results, which display the rotating frequency of the motor as the left
orange peak, Reactor Bottom Bearing 20 Hz, which is also the peak the on-site engineers
inspected. Additionally, it is vital to note that ERTs prediction based on many features
compared to other ensemble trees regression techniques that only choose a few, as shown
in Figure 11. ERTs, unlike other regression techniques, has a linear prediction behavior
rather than a staircase one.

3.5. Feature Selection of Gini Importance

The model in this study uses acceleration and motor current data to predict reactor
health. In this case, Gini importance is used to reduce the size of the predicting model
to analyze if it is helpful in prediction. Two methods are proposed for feature selection.
Method 1 begins with training on an A/C dataset. After training, the ten most important
features are chosen and combined with the motor current dataset to retrain. Finally,
prediction outcomes are examined, which result in a similar RAE (Method 1: 0.291, Original:
0.307), but the averaged Linearity has greatly decreased (Method 1: 11.7, Original: 15.1).
Figure 12 depicts the prediction results, where the color of each prediction point represents
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the health status (green for normal, orange for warning, and red for danger). The warning
and danger status thresholds are manually given to be 40 and 20 days.
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optimal RAE settings, with TRUL = 70 days.

According to the above results, the high Gini importance features differ slightly
between trials. We hypothesize that the features chosen are closely dependent on the
training dataset. However, because the study aims to find universal features that can be
used on any dataset in the system, a more complex method for selecting the critical features
is proposed. To perform cross-validation, we train on three events and test on the fourth,
as was previously mentioned. For Method 2, the training dataset is further split into three
subsets, and separately trained. We then train a new model using the features that appear



Electronics 2023, 12, 580 15 of 20

more than once in the top thirty Gini importance features of the training of the three subsets.
Finally, the results are tested using the testing dataset. The two distinct feature selection
processes are shown in Figure 13.
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Figure 13. Two different methods for feature selection using an example of Trial 4.

The predicted results utilizing features selected from Method 2 using the acceleration
and motor dataset are shown in Figure 14. The color of each prediction point represents the
health status (green for normal, orange for warning, and red for danger). The warning and
danger status thresholds are manually given to be 40 and 20 days. The predicted results
have an average RAE of 0.229, which is significantly less than 0.291 compared to Method 1
and is even better than the XGBoost regressor (A/C: 0.272), reaching the lowest RAE. The
averaged Linearity is 11.6, which is similar to Method 1 results.
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Figure 14. 4-fold cross-validation results with TRUL = 70 days for trials 1 to 4, Trained on fea-
tures selected using Method 2 on A/C dataset using ERTs regressor. This result has the lowest
averaged RAE.

The predicted results utilizing features selected from Method 2 using the acceleration
dataset are shown in Figure 15, and the color of each prediction point represents the health
status (green for normal, orange for warning, and red for danger). The warning and danger
status thresholds are manually given to be 40 and 20 days. The predicted results have an
average RAE of 0.253, which is slightly higher than 0.229 (A/C, Method 2). However, the
average Linearity is 8.38, the smallest of all the results.
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The response to the addition of the motor current dataset is intriguing. There is no
significant difference in the results of the original method and feature selection Method
1 when adding the motor current dataset. However, when using Method 2, there are
differences. Lower RAE can be achieved by adding motor currents, whereas lower Linearity
can be achieved by removing motor currents. The decision tree regression process can
explain this finding. The motor currents cut the decision tree in the motor currents dataset,
so high-viscosity and low-viscosity conditions are dealt with separately. Better prediction
and a lower RAE are the outcomes of these results. However, because fewer samples exist
in each subcase, the prediction has a higher variance, resulting in higher Linearity. The
Linearity could decrease if a larger dataset were provided.

4. Conclusions

This paper proposes a procedure for constructing a conditional health status prediction
structure using a virtual health index, piecewise linear remaining useful life (PL-RUL),
generated by machine learning regression methods trained on the acceleration and motor
three-phased current (A/C) dataset for a supercritical ultra-high pressure chemical reactor
bearing. The procedure remarks and findings of this research include:

� The Welch’s power spectrum density periodogram level is used to stifle strongly
oscillating data and reduce the training data size by 16 times.

� We have successfully predicted the PL-RUL and health status using the Welch’s power
spectrum density periodogram level and ERTs, which gives RAE and Linearity of
0.307 and 15.064, respectively.

� The analysis of the optimum selection of 70 days shows that our system has an
optimum value, and PL-RUL is a better fit than RUL.

� We have performed grid search for hyperparameters tuning for seven commonly used
regression algorithms. We discovered that ensemble trees algorithms have a smaller
RAE than linear regression.

� Many ensemble trees algorithms, except for ERTs, have non-ideal staircase-like pre-
diction behavior. We discovered that those with staircase-like behavior relied heavily
on a few characteristic frequencies after investigating the Gini importance for each
method. In contrast, the ERTs method has a large number of characteristic frequencies
and hence exhibits linear behavior, making it a more suitable algorithm for this task.

� Two feature selection methods were proposed to improve prediction results. Method
1 can help improve the Linearity of the results from 15.1 to 11.7, whereas Method 2
can lower RAE from 0.307 to 0.229 in the acceleration and current combined (A/C)
dataset and the Linearity from 15.1 to 8.4 in the acceleration (A) dataset.

� We have compared prediction with and without processing data (motor three-phase
current) and discovered little difference between the two conditions before feature
selection. However, following feature selection using Method 2, the prediction based
on acceleration and motor current datasets has a lower RAE than the one without
processing data. Still, the Linearity is higher, likely due to a lack of training samples.

We hope this paper would be a starting point for more researchers to notice and focus
on applying machine learning predictive maintenance works for these ultra-high pressure
systems. These works could greatly improve the efficiency of the reactor and reduce
potential pollution and industrial safety hazards, driving us to a more sustainable future.
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Notation

ai Actual target for index i
a Actual targets average
A Window energy correction factor
i Index of operating time
k Frequency band index
Ls[ωk] Acceleration level of frequency band ωk for sensor s, dB
m Segments index
M Total segments
n Segmented, constant detrended, windowed, and zero-padded time

series index
N Segment size
Ntotal Data length
pi The predicted target for the index i
Ps,m[ωk] Periodogram of the mth block for sensor s
R Inter-segment overlapping ratio
s Sensor index
Ss[ωk] Welch’s power spectral density periodogram of the frequency band

ωk for the sensor s
S f Sampling frequency, Hz
t Current time, day
tEoU End of use time of the bearing, day
tFPT First predicting time, day
TRUL Remaining useful life period, day
Ts[t] The discrete sequence of the acceleration time-domain data for the sensor

s with index t
Ts[t] Zero-padded time series
wN Hanning window function of length N
xs,m[n] The mth segments of constant detrended, windowed, and zero-padded time

series with index n for sensor s
ωk Frequency band with index k, Hz

Abbreviations

A Acceleration dataset
A/C Accelerration plus motor current dataset
atm Atmosphere
CNN Convolution neural networks
DCS Distributed control system
DFT Discrete Fourier transform
ERTs Extremely randomized trees
EVA Ethylene-Vinyl Acetate
FFT Fast Fourier Transform
FNN Feed-forward neural network
KNN K Nearest Neighbor
LCB Long chain branch
LSTM Long short-term memory
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MI Melting index
MSE Mean square errors
MWD Molecular weight distribution
PL-RUL Piecewise linear remaining useful life
PSD Power spectral density
RAE Relative absolute error
RBF Radial basis function
RF Random Forest
RNN Recurrent neural networks
RUL Remaining useful life
SDGs Sustainable Development Goals
SVM Support vector machine
VA Vinyl acetate
XGboost eXtreme Gradient Boosting
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