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Abstract: For accurate and efficient control performance of electrical drives, precise values of phase
voltages are required. In order to achieve control of the electric drive, the development of mathemat-
ical models of the system and its parts is often approached. Data-driven modeling using artificial
intelligence can often be unprofitable due to the large amount of computing resources required.
To overcome this problem, the idea is to investigate if a genetic programming–symbolic regressor
(GPSR) algorithm could be used to obtain simple symbolic expressions which could estimate the
mean phase voltages (black-box inverter model) and duty cycles (black-box compensation scheme)
with high accuracy using a publicly available dataset. To obtain the best symbolic expressions using
GPSR, a random hyperparameter search method and 5-fold cross-validation were developed. The
best symbolic expressions were chosen based on their estimation performance, which was measured
using the coefficient of determination (R2), mean absolute error (MAE), and root mean squared error
(RMSE). The best symbolic expressions for the estimation of mean phase voltages achieved R2, MAE,
and RMSE values of 0.999, 2.5, and 2.8, respectively. The best symbolic expressions for the estimation
of duty cycles achieved R2, MAE, and RMSE values of 0.9999, 0.0027, and 0.003, respectively. The
originality of this work lies in the application of the GPSR algorithm, which, based on a mathematical
equation it generates, can estimate the value of mean phase voltages and duty cycles in a three-phase
inverter. Using the obtained model, it is possible to estimate the given aforementioned values. Such
high-performing estimation represents an opportunity to replace expensive online equipment with a
cheaper, more precise, and faster approach, such as a GPSR-based model. The presented procedure
shows that the symbolic expression for the accurate estimation of mean phase voltages and duty
cycles can be obtained using the GPSR algorithm.

Keywords: black-box inverter model; black-box compensation scheme; duty cycles; genetic
programming; symbolic regressor; mean phase voltages

1. Introduction

One of the main parts of any alternate current (AC) drive system is certainly the drive
inverter. It is used to transform the direct current (DC) power source to a AC power source,
and at the same time regulate the voltage level and frequency [1]. Alongside application in
AC drives, 3-phase and monophase inverters are used in a variety of other applications,
ranging from electrical power systems [2–4] to induction heating and welding [5,6].

To achieve better quality, dynamic and precise control of devices powered by an
inverter, the precise estimation of the phase voltage value is mandatory. The authors
in Ramkumar et al. [7] applied the genetic algorithm (GA) method to generate optimal
switching angles, thereby eliminating a certain order of harmonic values for the single-
phase unipolar waveform. The essence of the research was to apply the selective harmonic
elimination (SHE) method optimized using GA and to compare it with a more conventional
method, i.e., selective harmonic elimination pulse-width modulation (SHE-PWM). The re-
sults showed that by using 60 generations of GA, for the same number of pulses in half
cycles, the harmonic values can be significantly reduced. The authors in Cheng and Yeh [8]

Electronics 2023, 12, 638. https://doi.org/10.3390/electronics12030638 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030638
https://doi.org/10.3390/electronics12030638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3121-2228
https://orcid.org/0000-0002-0314-243X
https://orcid.org/0000-0002-5964-245X
https://orcid.org/0000-0002-3015-1024
https://doi.org/10.3390/electronics12030638
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030638?type=check_update&version=3


Electronics 2023, 12, 638 2 of 23

developed a fuzzy logic control system for a fully digital AC servo system control. In this
research, the authors presented an intelligent inverter, applied to reduce switch losses
and the value of current harmonics in asynchronous motors. The results of the research
show that the application of the fuzzy logic artificial intelligence (AI) algorithm, which is
cheap and very reliable, gives even better results in terms of switching loss and harmonic
current values compared to conventional systems. The authors in Aziz et al. [9] used AI to
reduce energy consumption and provide a more comfortable ride in an inverter-controlled
electric vehicle. Using a backpropagation neural network (BNN), a reduction of as much as
10% was achieved with a mean error of 5.22% in the test dataset. Modernization and the
development of cyber–physical systems are an inevitable part of the modern era, and these
plants are mostly controlled by inverter-based control systems. The problem arises that
such systems are mostly based on communication structures, which makes them vulnerable
to all kinds of cyber attacks. With this in mind, the authors in Khan et al. [10] developed
an intelligent anomaly identification technique using multi-class support vector machines
(MSVM). By applying the given algorithm, the authors achieved better identification of
cyber-attacks with the best mean absolute percentage error (MAPE) result in the amount
of 0.08% and accuracy up to 80% of recognized attacks. Authors in And̄elić et al. [11]
used complex machine learning (ML) algorithms and methods to estimate mean phase
voltages and duty cycles to solve the problem of a three-phase insulated-gate bipolar tran-
sistor (IGBT) converter with two-level control. Two models were tested: one of them is a
black-box inverter model for estimating mean phase voltages, while the other is a similar
black-box inverter compensation scheme. The given research showed that by using AI, it
is possible to achieve precise results as shown in the article. The values obtained by the
authors are as follows: R2, MAE and RMSE in the amount of 0.9998, 1.03, and 1.54 while
for the black-box inverter compensation scheme 0.9991, 0.0042, and 0.0063, respectively.
The authors in Rajeswaran et al. [12] developed a hybrid AI technique for condition mon-
itoring, failure possibilities determination, and evaluation of induction motors without
sufficient information about the current state of the motor using a neuro-genetic algorithm.
By using the genetic algorithm and BNN, the authors developed a model that performs
the required task with high performance. The authors confirmed the given statement with
the results for short circuit detection between any phase or ground and achieved detection
in a period of fewer than 0.5 s, which is extremely important for preventive response to
potential hazards.

Many scientists and development teams point to the lack of estimation of power
electronics parameters using AI. With this in mind, research development is additionally
subject to the application of AI for these purposes.

When the presented literature overview is observed, it can be noticed that AI algo-
rithms were applied for handling multiple problems related to inverter topologies. Some
of the presented research has used genetic programming (GP) to estimate certain variables
related to the operation of an inverter. However, only a fraction of the research used AI
algorithms to design black-box inverter models to estimate phase voltages and duty cycles.
Furthermore, in the state of the art, there is no research related to genetic programming–
symbolic regressor (GPSR) algorithm utilization for black-box modeling of a drive inverter
to estimate phase voltages and duty cycles.

The motivation for this research is to develop an AI model that will be able to compete
with its performance, if not replace the current estimation methods with equal reliability
and precision. Unlike online methods that estimate model parameters whenever new data
are available during the operation of the physical system, this approach only uses data
that have been measured over a certain period and stored, for example, in one simple
program file. The main advantage of the GPSR application, in this case, is the creation
of symbolic expressions for inverter modeling. By using such an approach, significantly
computationally less complex models can be designed [13]. These computationally less
complex models can be easily integrated into control systems since they require very low
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computational resources when compared to other ML algorithms, such as deep neural
networks (DNNs).

According to the presented research gap, the following questions can be asked:

• Is it possible to use GPSR to design symbolic expressions for drive inverter modeling?
• Is it possible to model the inverter based on targeted variables of the black-box inverter

model and black-box compensation scheme?
• Which GP parameters must be used to achieve the highest estimation and generaliza-

tion performance results, determined by using the 5-fold cross-validation principle?

The main novelty of this paper lies in the application of the GPSR algorithm for the
design of symbolic expressions for drive inverter modeling. Based on previous research,
there is a visible lack of methods for estimating inverter parameters, which represents a
great financial loss because precise and expensive sensors and computational equipment
must be purchased. For this reason, the GPSR AI algorithm is applied, which, with its prop-
erties and performance, successfully estimates the parameters of the inverter. Additionally,
it is important to mention that, unlike most other AI- and ML-based modeling techniques,
the use of GPSR provides a numerical expression that can be easily implemented as part
of a control system. This information is of high importance because by applying this
method and procedures defined in this paper, a high-quality AI algorithm can be achieved
that will estimate the parameters of the inverter with minimal error. Furthermore, it is
important to define that this algorithm is not limited to this type of problem, i.e., with
minor modification and adding new data to the proposed algorithm, the same results can
be achieved for another type of problem.

The outline of this paper is divided into the following sections: Materials and Methods,
Results, and Discussion and Conclusions. In Materials and Methods, the description of
the control system is provided as well as the dataset description and statistical analysis,
genetic programming–symbolic regression algorithm, research methodology, and computa-
tional resources used. In the Results and Discussion section, the results of the conducted
investigation are presented as well as discussed. Finally, in the Conclusion section, the con-
clusions are given based on the hypotheses defined here in the Introduction section, based
on presented results, given the discussion in the Results and Discussion section.

2. Materials and Methods

As previously stated, in this section, the control system is described as well as
the dataset description, genetic programming–symbolic regressor, research methodology,
and computational resources.

2.1. Description of the Control System

For the control of a 3-phase induction motor, a control system based on the 3-phase
inverter is proposed. Such a control system consists of a 3-phase inverter supplied by
a stable DC voltage from the DC link. The duty cycles of the inverter are determined
according to the output signal provided by the control system. The control system can
be designed as a digital control system implemented on a digital signal processor (DSP)
or other digital controllers. In this particular research, the induction motor LUST ASH-
22-20K13-000 is used. The used 3-phase inverter is based on the SEMIKRON Semiteach
IGBT module. By using a 3-phase inverter, different motor control strategies can be applied.
The same hardware configuration can be used for both scalar and vector control. To control
both the torque and speed of the induction motor, different frequencies and voltages are
produced through the 3-phase inverter. The used inverter consists of 6 insulated gate
bipolar transistors (IGBTs), two per phase.

The schematic representation of the control system used for scalar control of the
presented induction motor is presented in Figure 1. In this case, a configuration with one
PI controller for angular speed is used [14].
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Figure 1. Schematics of the control system.

On the other hand, the schematic representation of the control system used for vector
control of the presented induction motor is presented in Figure 2.

Figure 2. Schematics of the control system.

A schematic representation of the used inverter topology is presented in Figure 3.

Figure 3. Schematics for used 3-phase inverter.



Electronics 2023, 12, 638 5 of 23

2.2. Dataset Description

In this research, the publicly available dataset [15] was used. The used dataset is
collected by measuring signals of a 3-phase inverter used in the induction motor drive
system. The used drive system consists of the induction motor LUST ASH-22-20K13-000
with nominal power 1.5 kW, nominal speed 3000 min−1, and rated phase current of 3.9 A.
For the control of the induction motor, a 3-phase IGBT inverter SEMIKRON Semiteach
IGBT is used. The inverter is fed with a 560 V DC link with a rated output current of 30 A.

This research is carried out in two stages. The first stage is the black-box inverter
model estimation, while the second is the black-box inverter compensation scheme. Both
stages consist of similar identical parameters, namely: duty cycles (D), phase currents
(I), direct current link voltage (Udc), and mean phase voltages (U). However, both stages
have different input and output parameters. Before clarifying and defining the division
into input and output parameters and which parameters belong to which stage, it is
necessary to define the subscripts that are next to each variable. Each variable consists
of at least two subscripts: k is the sampling step label, while a, b, and c are labels for one
of the three possible phases. The maximum previous samples reach three samples less,
i.e., k− 3 sample, which means that the previous three samples are taken to form the current
parameter. For example, Ic,k is the phase current parameter on phase c for the k sampling
step. Given that signals are generally interpreted as continuous values, and this dataset
is a sequence of several small recorded sequences, previous signal values are needed for
training the inverter model and inverter compensation scheme. In other words, they must
be included as an addition to the signal in the dataset for each generation step.

With the previously given data, it is possible to define the parameters that go into
each stage of training. What was done and the input and output parameters are shown in
Table 1 below.

Table 1. Input and output parameters for both research models (da: duty cycle phase A; db: duty
cycle phase B; dc: duty cycle phase C; ia: current phase A ; ib: current phase B; ic: current phase C; ua:
voltage phase A; ub: voltage phase B; uc: voltage phase C; udc: DC-link voltage)

Black-Box Inverter Model Black-Box Inverter Compensation Scheme

Inputs Outputs Inputs Outputs

da,k−3, db,k−3, dc,k−3, da,k−2, db,k−2
dc,k−2, ia,k−1, ib,k−1, ic,k−1, ia,k

ib,k, ic,k, udc,k−1, udc,k

ūa,k−1, ūb,k−1, ūc,k−1

ūa,k−1, ūb,k−1, ūc,k−1, da,k−3
db,k−3, dc,k−3, ia,k−3, ib,k−3, ic,k−3

ia,k−2, ib,k−2, ic,k−2, udc,k−3
udc,k−2

da,k−2, db,k−2, dc,k−2

The statistical data analysis shown in Table 2 is one of the important steps before
embarking on the training process. Minimum (Min), maximum (Max), mean and standard
deviation (Std) for the dataset size of 234,500 sampling steps are shown. Min indicates the
minimum numerical value of the given parameter, the same applies to Max, Mean, and Std.
The reason for this is an insight into the state and interrelationships of the data, which
shows the complexity of the dataset itself. Furthermore, in addition to the defined symbols
and their ratios between Min, Max, Mean and Std values, GP variables have been added
that facilitate the subsequent definition of the results. In other words, a list of variables
behind the GPSR equation (shown and defined in Section 3) is provided.
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Table 2. The list of input and output variables that were used in GP for the black-box inverter model
and black-box compensation scheme. The symbolic representation of input and output variables in
GP was given as well as the results of statistical analysis (minimum, maximum, mean and standard
deviation values) for each variable.

Symbol GP Variable Min Max Mean Std

Bl
ac

k-
Bo

x
In

ve
rt

er
M

od
el

Duty
cycles

at k− 3

Da,k−3 X0 0 1 0.5 0.21

Db,k−3 X1 0 1 0.50026 0.21

Dc,k−3 X2 0 1 0.5 0.21

Duty
cycles

at k− 2

Da,k−2 X3 0 1 0.5 0.21

Db,k−2 X4 0 1 0.5 0.21

Dc,k−2 X5 0 1 0.5 0.21

Phase
currents

k− 1

Ia,k−1 X6 −7.3 7.47 0.0005 2.19

Ib,k−1 X7 −6.32 6.66 −0.007 2.15

Ic,k−1 X8 −7.113 7.437 −0.008 2.21

Phase
currents

at k

Ia,k X9 −7.47 7.47 0.0005 2.19

Ib,k X10 −6.32 6.668 −0.007 2.15

Ic,k X11 −7.1123 7.437 −0.008 2.21

DC-link
voltage
at k− 1

Udc,k−1 X12 548.013 575.55 567.13 4.99

DC-link
voltage

at k
Udc,k X13 548.013 575.55 567.13 4.99

Mean
Phase

Voltages at
k− 1

Ua,k−1 yua −2.28 573.33 283.41 114.64

Ub,k−1 yub −2.087 573.2 283.46 114.29

Uc,k−1 yuc −2.31 573.17 283.74 114.6

Bl
ac

k-
bo

x
in

ve
rt

er
co

m
pe

ns
at

io
n

sc
he

m
e

Mean
Phase

voltage at
k− 1

Ua,k−1 X0 −2.288 573.33 283.41 114.6

Ub,k−1 X1 −2.088 573.2 283.46 114.2

Uc,k−1 X2 −2.31 573.17 283.74 114.6

Phase
current

k− 3

Ia,k−3 X3 −7.3 7.47 0.0005 2.19

Ib,k−3 X4 −6.32 6.668 −0.007 2.15

Ic,k−3 X5 −7.11 7.437 −0.008 2.21

Phase
current

k− 2

Ia,k−2 X6 −7.3 7.47 0.0005 2.19

Ib,k−2 X7 −6.32 6.668 −0.007 2.15

Ic,k−2 X8 −7.113 7.437 −0.008 2.21

DC-link
voltage

k− 3
Udc,k−3 X9 548.013 575.55 567.13 4.99

DC-link
voltage

k− 2
Udc,k−2 X10 548.013 575.55 567.13 4.99

Duty
cycles
k− 2

Da,k−2 yda 0 1 0.5 0.21

Db,k−2 ydb 0 1 0.5 0.21

Dc,k−2 ydc 0 1 0.5 0.21



Electronics 2023, 12, 638 7 of 23

Besides the initial statistical analysis, it is important to investigate the correlation
between input and output dataset variables before the implementation of AI algorithms.
In this investigation, Pearson’s correlation analysis was used. As a unit of correlation
measure during Pearson’s correlation analysis, Pearson’s correlation coefficient (ρ) was
used. ρ between two variables (X and Y) can be defined as:

ρX,Y =
cov(X, Y)
σ(X)σ(Y)

, (1)

where σ(X) and σ(Y) represent standard deviations od variables X and Y. Furthermore,
cov(X, Y) represent covariance between X and Y, defined as:

cov(X, Y) = E((X− X)(Y−Y)), (2)

where X and Y represent the mean values of variables X and Y. Furthermore, in this case,
E represents the expectation.

The correlation value between the input and output variables can be in the −1.0 to
1.0 range. The value of −1.0 indicates that if the value of the input variable increases, the
value of the output variable will decrease and vice versa. In case the value is equal to
1.0, then if the input variable value increases, the value of the output variable will also
increase. The worst possible correlation value is 0, which means that if the value of the
input variables increases or decreases, it will not influence the output variable. The results
of Pearson’s correlation analysis for all dataset variables are shown in Figure A1.

As seen from Figure A1 the variables nk, Udc,k, Udc,k−1, Udc,k−2, and Udc,k−3 are mu-
tually highly correlated. However, they do not correlate with other dataset variables.
From Figure A1, it can be noticed that there is a high correlation between variables. Gener-
ally, in ML, it is favorable to have multiple highly correlated variables. However, if only one
input variable is highly correlated, the GP will generate a symbolic expression containing
only the highly correlated variable; others will be neglected. In the case of the black-box
inverter model, the correlation between input variables and the target variables (mean
phase voltages at k− 1) should be investigated in more detail. The correlation heatmap for
black-box inverter model variables is shown in Figure A2.

As seen in Figure A2, there is a high correlation between input variables and the
output variables (Ua,k−1, Ub,k−1, Uc,k−1). For example, the mean phase voltage Ua,k−1 is
highly correlated to Ib,k, Ib,k−1, Da,k−2, and Da,k−3. It should be noted that Udc,k and Udc,k−1
have only high correlations with themselves and each other and no correlation to other
variables in this model. In the case of the black-box compensation scheme, the results of
Pearson’s correlation analysis are shown in the form of a heatmap in Figure A3.

In the case of the black-box compensation scheme as listed in Table 2, the target
variables are duty cycles at k− 2. These target variables have an extremely high correlation
(0.99) with mean phase voltages at k− 1 (Ua,k−1, Ub,k−1, and Uc,k−1).

2.3. Genetic Programming–Symbolic Regression

Genetic programming–symbolic regression (GPSR) is an evolutionary algorithm that
begins its execution by building a naive population that is unfit for a particular task and
through the application of genetic operations for a prespecified number of generations
makes them fit for a particular task [16,17]. GPSR is not a classic evolutionary algorithm
since it has some similarities to classic supervised ML algorithms. For its successful
execution, the GP requires the dataset with defined input and output (target) variables.

In GP, the population members are represented as tree structures. To construct the
population members, the list of mathematical functions, input variables and range of
constant values must be defined. The mathematical functions that will be used in this
research are addition, subtraction, multiplication, division, natural logarithm, sine, cosine,
tangent, minimum value, maximum value, square root, and absolute value. The constant
values in GP are defined with a hyperparameter constant range and as the name states, the
range of constant values is defined. As stated previously, the input and output variables
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are defined when the GP is applied to a specific dataset. Using the list of mathematical
functions, a range of constant values, and input/output variables, the GP is developed
as tree structures. The example of the initial population member in tree form is shown in
Figure 4.

Figure 4. The example of symbolic expression add(sqrt(X1), max(X0, X2)) in tree form.

As seen in Figure 4, the root node is the root node “add”. At level 1, two mathe-
matical functions are placed, i.e., “sqrt” and “max”. At level 2, only input variables are
located, X0, X1, and X2. So the symbolic expression example has a tree depth equal to 2.
Besides the symbolic expression depth in tree form, the size of the symbolic expression
is measured in terms of length, i.e., the number of elements (functions, constants, and
variables) that the symbolic expression contains. So the symbolic expression example
add(sqrt(X1), max(X0, X2)) has a length of 6 (3 functions and 3 input variables).

There are three commonly used methods for building an initial population in GP and
these are full, grow, and ramped half-and-half methods. In this research, the method for
creating the initial population ramped half-and-half method is used, which creates the
initial population using full and grow methods. The term ramped refers to the depth of
population tree structures to create some diversity between population members. To ensure
diversity in population, the initial depth i.e., the depth of population member trees, is set
in range.

Here it should be noted that the size of the population member or symbolic expression
is measured in length or, in other words, the number of elements in the symbolic expression.

When the initial population is created, the population members have to be evaluated,
i.e., the input variables of the training dataset are provided to calculate the output. Af-
ter evaluation, the output of each population member is compared to the real one (from
the dataset) to calculate the mean absolute error. In each generation, MAE of the best
population member is shown as well as the average MAE value. After population mem-
bers have been evaluated, the random selection of population members is performed.
Selected members are used in tournament selection that, based on a comparison between
population members, generates the winner of the tournament selection. On the winner
of each tournament selection, one of four genetic operations is performed, i.e., crossover,
subtree mutation, hoist, and point mutation. For crossover operation, two tournament
winners are required. On the first tournament winner, the random subtree is selected,
and on the second as well. Then the random subtree from the second is used and replaces
the randomly selected subtree of the first tournament winner to produce the offspring of
the next generation. The subtree mutation requires only one tournament winner, and the
random subtree is selected, which is replaced with a randomly generated subtree using
randomly chosen functions, constants, and variables. The hoist mutation randomly selects
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a subtree on the winner of tournament selection and on that tree randomly selects a node.
Then this node is hoisted on a place of the subtree root node to create offspring of the next
generation. The point mutation randomly selects nodes on the winner of the tournament
selection. The constants are replaced with randomly selected constants and variables with
other variables. Functions are also replaced with other functions; however, the arity of the
original function must be equal to the new function.

The stopping criteria and the maximum number of generations are two termination
criteria that can be used to stop the execution of GP. The stopping criteria are the lowest
predefined value of the fitness function, and if the value is reached by one of the population
members during GP execution, it would terminate the GP execution. However, in this
paper, the idea was to stop the execution when a maximum number of generations is
reached to lower the fitness function value as much as possible. So the stopping criteria
were set to a very low value. The parsimony coefficient is one of the most important
GP hyperparameters, and it is responsible for the prevention of the bloat phenomenon.
In cases where the correlation between dataset variables is low or nonexistent, the GP will
try to build the relationship between variables by increasing the size of the population
members to lower the fitness function value. However, if the value of the fitness function
is not lowered and the size of the population members grows rapidly from generation to
generation, then the bloat phenomenon occurs. This phenomenon can have a negative
effect on the GP execution time, i.e., it can prolong the execution and it can cause resource
exhaust error. This coefficient tries to lower the increases of the fitness function valueof
large population members during the GP tournament selection and in this way, makes
large population members less favorable for winning the tournament selection process.
This is the most sensitive parameter, i.e., a large value can choke the population, which can
lead to poor estimation accuracy of obtained symbolic expression, while a small value can
cause the bloat phenomenon.

2.4. Research Methodology

To construct the highest-performing symbolic expression for the estimation of phase
voltages and duty cycles, per each phase a GP procedure with a random hyperparameter
search was performed. The random search is executed for multiple iterations until termi-
nation criteria are met. A graphical representation of the GPSR process with a random
parameter search for one case is presented in Figure 5.

𝑈𝑎

Random Genetic programming 
parameter search

Best symbolic
expression

Input  and 
output data

Figure 5. The dataflow of GP with random parameter search for the case of Ua estimation.

The ranges of each GPSR hyperparameter used in this research throughout all GPSR
execution are listed in Table 3.

It should be noted that the range of each hyperparameter listed in Table 3 is defined
through the initial tuning of each GPSR hyperparameter. The population size hyperpa-
rameter was set to the 100–500 range since a larger population causes longer execution
times, while too low (below 100) can cause bad performance, i.e., faster executions with
low estimation accuracy of obtained symbolic expression. The number of generations was
set to the 100–200 range since in this range, GPSR produces the symbolic expression for the
estimation of mean phase voltages and duty cycles with pretty high accuracy. It should
be noted that this hyperparameter was the main termination criterion for GPSR execution
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since the predefined value of the stopping criteria (lowest value of the fitness function) was
never reached by any of the population members.

Table 3. The range of GPSR hyperparameters used in this research.

Hyperparameter Name Upper Bound Lower Bound

Population size 100 500

Number of generations 100 200

Tournament size 10 50

Init depth (3–7) (8–15)

Crossover coefficient 0.001 1

Subtree mutation 0.001 1

Hoist Mutation 0.001 1

Point Mutation 0.001 1

Stopping criteria 0 1× 10−6

Maximum samples 0.99 1

Constant range −10,000 10,000

Parsimony coefficient
(mean phase voltages)

1× 10−3 1× 10−1

Parsimony coefficient
(duty cycles)

1× 10−10 1× 10−4

The tournament size was arbitrarily set to the 10–50 range. The depth of population
members in tree form was set to the 3–15 range. Since this hyperparameter is defined with
two values (lower and upper), the idea was to ensure the larger diversity in the initial
population as possible without drastically prolonging execution times.

The crossover and the other three mutation operations were set to a very generic range
(0.001–1) to see which one of these genetic operators will be dominating the evolution
process. It is generally suggested in GP that the sum of all genetic operators is equal to 1;
otherwise, some tournament selection winners might enter the next generation unchanged.
However, in the initial investigation, it was shown that presetting one of the genetic
operations equal to 0.9 (or higher) and the sum of all genetic operations equal to 1 can result
in longer GPSR execution times. So, the range between 0.001 and 1 in the hyperparameter
search method proved to be the best for this investigation.

The maximum number of samples range, i.e., the training dataset size used to evaluate
each population member, was set to 0.99 to 1. Lowering the value of the max samples
probably would not have any effect since the dataset has a large number of samples.

The constant range hyperparameter range was set to −10, 000–10, 000 to ensure that
the random hyperparameter search method would randomly select the large constant range,
which in GPSR would be used for the initial population and later for mutation operations.

One of the most sensitive hyperparameters in the entire investigation conducted in
this paper is the parsimony coefficient. The range which was later used in the random
hyperparameter search method had to be carefully studied since very small values (for
example 1× 10−15) could cause memory overflow, while large values (for example 1, 2,
10, etc.) could cause poor estimation performance for the obtained symbolic expressions.
In other words, small parsimony coefficients do not penalize large population members,
and they continue to grow from generation to generation without any benefit to the fit-
ness function value. The high value of the parsimony coefficient is choking the evolution
process by hardly penalizing the fitness function of larger programs, in this way making
them less favorable for the tournament selection process. This coefficient had to be dif-
ferently configured for mean phase voltages investigation and differently for duty cycles
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investigation. In the case of mean phase voltages investigation, the range of parsimony
coefficient was set to the 10−3–10−1 range. In the case of duty cycles investigation, the range
was set to the 10−10–10−5 range since larger values were preventing the growth of the
population members.

To evaluate the estimation performance results of the constructed symbolic expressions,
three different metrics were used. All three metrics are based on the comparison of real and
estimated output data. The first evaluation metric used is the R2 score or the coefficient of
determination [18]. Two other used metrics are MAE [19] and RMSE [20].

To evaluate generalization performances of the constructed symbolic expressions,
5-fold cross-validation is used. The entire dataset is divided into five equally large folds.
Five different cases are examined. In each case, four folds are used to form a training
dataset, while the remaining one is used for model testing. In each case, a different fold is
used for model testing. The process is repeated five times until all combinations have been
observed. A graphical representation of a 5-fold cross-validation is presented in Figure 6.

Case 1

Case 2

Case 3

Case 4

Case 5

Training Testing

Figure 6. Graphical representation of 5-fold cross-validation procedure.

To evaluate both estimation and generalization procedures, mean values of used
metrics and their standard deviations are used. Mean values and standard deviations are
determined by using results achieved during the cross-validation procedure. For the case of
R2, the aim is to achieve R2 closer to 1. For the case of MAE and RMSE the aim is to achieve
the lowest possible value. On the other hand, the symbolic expressions with the lowest
standard deviation can be considered the best-performing models from a generalization
standpoint. Such a conclusion can be derived regardless of the metric used.

Finally, the entire procedure of GPSR with the random hyperparameter search method
and 5-fold cross validation is shown in the following Figure 7.

The process shown in Figure 7 can be described in the following steps:

• The process begins with a random selection of GPSR hyperparameters;
• Then these hyperparameters are used in GPSR with 5-fold cross-validation execution,

where 5 different symbolic expressions are obtained (one for each execution);
• Then each symbolic expression is evaluated on training and validation dataset to

determine the mean and standard deviation values of R2, MAE, and RMSE metrics.
• If the mean value of R2 is higher than 0.99, the process continues to the final training

with the same hyperparameters used in 5-fold cross validation. If not, the process
starts from the beginning by selecting random hyperparameters.

• In the case of GPSR final training with the same hyperparameters, the GPSR is trained
on the training part of the dataset (70% of the original dataset).

• After the symbolic expression is obtained, it is evaluated on training and testing parts
of the original dataset to calculate the mean and standard deviation values of R2,
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MAE, and RMSE. If the value of R2 is larger than 0.99, the values of MAE and RMSE
are lower than 5 and if the standard deviations of the aforementioned metrics are
lower than 10−1, then the process is successfully terminated.

It should be noted that in the following section, the best symbolic expression obtained
for each output variable was obtained at the final GPSR stage after 5-fold cross validation
was successfully passed.

Figure 7. The flowchart of GPSR with random hyperparameter search and 5-fold cross validation.

2.5. Computational Resources

All investigations were conducted on the computer with an Intel I7-4470 CPU and
16 GB of DDR3 RAM. All codes were written in Python programming language (version
3.9.13). The GPSR was used from the gplearn library (version 0.4.2), and the evaluation
metric was used from the scikit-learn library (version 1.2.0). The random hyperparameter
search and 5-fold cross-validation method were written from scratch using a built-in
random library.

3. Results and Discussion

In this section, the results achieved for both phase voltages and duty cycle estimation
are presented and discussed.

3.1. Estimation of Phase Voltages

For each phase, the GPSR hyperparameters used to achieve the symbolic expression
with the highest estimation performances are shown in Table 4. From the presented hyper-
parameters, it can be seen that for the case of all three phases, the best hyperparameters are
positioned roughly on the middle value in the possible value interval.

From Table 4, it can be noticed that in the Phase A case, the hoist mutation was
dominating the genetic operation, while for phase B and phase C, the subtree mutation
was the dominating genetic operation. The stopping criteria were prespecified to a very
low value (low MAE), and since they were never met by any of the population members,
the GPSR stopped the execution after the predefined maximum number of generations was
reached. Due to the small parsimony coefficient values, all three symbolic expressions for
the estimation of mean phase voltages are large, and their lengths are equal to 107, 180,
and 300, respectively. This means that the equations consist of 107, 180, and 300 elements,
respectively. If the presented hyperparameters are used for GP execution, for phase A,
the symbolic expression
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Ua,k−1 = | − X0 + X4 + | − X0 + |X1 + | − X0 + X11 + X8 + |X8 + ||X2 + X8
+ | − X0 + X2 + X6X8 + 2X8 + log(X8 − sin(X1))− sin(X1)| − sin(X1)|
+ log(cos(X0 + 0.602698)) + log(cos(X0 +

√
tan(cos(X0))))− sin(X1)

− sin(sin(sin(X1)))| − sin(sin(X1X13))|+ log(X12)− 2 sin(X1)||
+ log(

√
log(X8))|+ min(cos(X11), X8 − sin(X1))|+ X4

(3)

is constructed. The presented equation is derived from the generated symbolic expression
obtained during the execution of GP. Equation (3) consists of X0, X1, X2, X4, X6, X8, X11,
X12, and X13 input variables. Looking at Table 2, these input variables are duty cycles at
k− 3, Db,k−2, Ia,k−1, Ic,k−1, Ic,k, Udc,k−1, and Udc,k, and are required to calculate the mean
phase voltage Ua,k−1. From Figure A2, it can be seen that all required variables do not have
a high correlation with the target variable. The lowest correlation values with the target
variable have variables Udc,k−1, and Udc,k. In this case, the correlation is equal to 0.02 for
both variables.

Table 4. The GPSR hyperparameters used for the definition of the symbolic expressions for phase
voltage estimation.

Phase A Phase B Phase C

Population size 343 313 254

Number of generations 143 166 188

Tournament selection size 19 10 23

Initial depth (3, 9) (3, 8) (3, 10)

Crossover coefficient 0.12793209 0.046102316 0.069413606

Subtree mutation coefficient 0.282640797 0.637264456 0.746384432

Hoist mutation coefficient 0.396828111 0.105422777 0.02853356

Point mutation coefficient 0.029499366 0.205518506 0.155416003

Stopping criteria 0.000318147 0.000915282 0.000625943

Maximal number of samples 0.958912563 0.902661416 0.906783421

Constant range (−5221.42, 6286.92) (−5539.63, 2462.81) (−5206.02, 6947.92)

Parsimony coefficient 0.000715945 0.000944609 0.000823575

Furthermore, if the hyperparameters from the second column are used, the symbolic
expression

Ub,k−1 = |
(
|X6 − 98.255| −

(
max(X6 − X10, |max(−2894.13|max(−0.984674, X6)|

−
(

max(|max(|X12|,− log(
√

X2)−
(

max(| log(X1) + max(X2, X8, X2
4 cos(X0)

− |X2−2400.|
log(max(|X10X2|,

√
cos(sin(0.130677 cos(cos(X2))))))

)|, tan(X9))
)/

(
log(max(

√
cos(|X10X2|), log(X10X8)))

)
+
√

min(X5, X7))

+ tan(min(−3063.55, X2))|, tan(tan(X4
X9
)))
)/(

log(max(cos(|X10X2|), log(max(X6

− 1803.73, |X10X2|))))
)

, tan(cos(X6))) + 6.80533|)
)/(

log(max(|X10X2|,√
cos(|X10X2|)))

))/(√
tan( log(log(X11)min(X10,X6))

|X7|−
max(|X12 |,|X5+X7 |)

log(max(0.999329,|X10X2 |))
)
)
|

(4)

is determined for phase B. Equation (4) requires all input variables except for the X13 or
DC-link voltage at k (Udc,k) variable. The variable correlates with the target variable equal
to 0.02. The expression is derived by using variation methods during GP execution. Finally,
if the hyperparameters from the last are used during GP execution, the symbolic expression
for the third phase
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Uc,k−1 = X12(max(1, max(X4, max(
√

X8, max(1, max(X0, max(log(X11), max(X0,
max(X13X7, max(X11X4

X9
, max(X0, max(X4, max(X3, max(X4, max(2X10,

max(X0, |X7|) + X2X8) + max(X3 − X5, |X0| − 3691.71)) + max(X1X3, X1
− X5)) + max(X3,−X11 + X3 − 3691.71)) + max(X1 − X5, min(X2,

√
X7 csc(X12) cos(log(

√
X4))
√

sin(X9)max(X8−4545.7,log(X13))

min(X2,1.04192X1X3X5)
+ sin(X0)))

+ max(−1.59748X8, sin(X1 + X3) + X1 − X5) + X2) + max( X0
X12

, X0X11 − X2 − X5

+ X9) + sin(X3))− sin(X5 + X9)− sin(X9 − cos(log(6222.08)))) + min(X10, X2),
min(X13, X9)) + min(X10, X3)− sin( X10

min(6679.81,X7)
+ X5)) + max(X10 − X5,

log(X12))) + max( X0
X12

, min(X1, X4)− X5) + sin(X10 − X5)) + sin(X10 − X5)

+ sin(X11 − X5 − X8)) + max(X10 − X5, cos(log(6895.26)))) + max(X1 − X5,

min(log(X6),
√
|X6|
√
| log(X13)|

√
log(X0)max(0.684451,X8−4545.7)

tan(X13)min(X2, 1.04192X1X5X7
X6

)

+ min(X13, X4)))− sin(− sin(X11) + X13 + X4)) + max(X6 − 3691.71, X1
− sin(X5 + X9)))

(5)

is defined. Equation (5) requires all input variables to calculate the output, and it is obtained
at the end of GP execution. If the achieved mean R2 values and their standard deviations
are compared for each phase, it can be noticed that the highest R2 is achieved for the second
phase. Furthermore, the second phase is characterized by the lowest R2, pointing toward
the conclusion that Ub has the highest generalization performance results. For phases A and
C, high regression and generalization performance results are also achieved, as presented
in Figure 8.

Ua, k 1 Ub, k 1 Uc, k 1
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Figure 8. Mean R2 scores and their standard deviations achieved on the prediction of phase voltages.

If the error rates are compared, a similar conclusion can be derived. In this case, phase
B is characterized by the lowest error rates. At the same time, phase B has the lowest
σ(MAE) and σ(RMSE) values. Such a result is pointing toward the conclusion that the
symbolic expression for Ub has the highest generalization performance results. Similar
to the case of R2, the expressions for the other two phases still have high estimation and
generalization performance results, as can be seen in Figures 9 and 10.
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Figure 9. Mean MAE scores and their standard deviations achieved on the prediction of phase
voltages.
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Figure 10. Mean RMSE scores and their standard deviations achieved on the prediction of phase
voltages.

3.2. Estimation of Duty Cycles

When GP is used for the construction of symbolic expressions for the estimation of
duty cycles per each phase, the highest estimation and generalization performance results
are achieved if the GP hyperparameters presented in Table 5 are used. As it is in the case
of voltage estimation, the highest performing symbolic expressions are achieved if the
hyperparameters from the middle of the hyperparameter interval are used.

From Table 5 it can be seen that the population size hyperparameter value was the
largest in the Phase A case. The dominating genetic operation for Phase A was subtree
mutation, for Phase B, it was hoist mutation, and for Phase C, it was subtree mutation.
The parsimony coefficient, as planned, has an extremely low value when compared to the
parsimony coefficient values used in the mean phase voltages case. The main reason for
choosing extremely low values in the duty cycles case is that some variables have extremely
high (0.99–1) correlations to the targeted variables. This can have a negative effect during
GPSR execution since it can prevent the evolution process of the population members due
to a strong correlation between specific variables.
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Table 5. The genetic programming parameters used for the definition of the symbolic expressions
for duty cycles estimation.

Phase A Phase B Phase C

Population
size 498 258 299

Number of
generations 167 171 121

Tournament
selection size 28 47 44

Initial depth (6, 15) (7, 9) (3, 9)

Crossover
coefficient 0.216988623 0.07 0.05

Subtree mutation
coefficient 0.29 0.22879136 0.72

Hoist mutation
coefficient 0.143122346 0.334293786 0.048

Point mutation
coefficient 0.270236321 0.047146706 0.085

Stopping criteria 9.49× 10−7 3.24× 10−7 9.28× 10−7

Maximal number
of samples 0.990992282 0.994145103 0.999404119

Constant range (−9955.02, 2292.48) (−8145.73, 1432.6) (−7631.24, 5066.85)

Parsimony coefficient 9.92× 10−8 8.37× 10−8 3.56× 10−5

The parsimony coefficient in this case had a low influence and generated relatively
large symbolic expressions. The size of first two symbolic expressions Da,k−2, and Db,k−2
(in terms of length) are 29 and 250. The smallest symbolic expression was obtained in
the case of Dc,k−2, where the initial form contains 17 elements, and after simplifying the
expression, the symbolic expression consists of 10 elements.

If the given hyper-parameters are used for GPSR execution, for phase A, the symbolic
expression

Da,k−2 =
max(X8, max(X4, max(X0, X4) + 2X3 − 2X5) + X3 − X4 − X5)− 2X4 − X7

X9
(6)

is constructed. Equation (6) consists of all input variables except for X2, and from Table 2,
it can be seen that this variable is mean phase voltage Uc,k−1n. Looking at Figure A3, this
variable does not have an extremely high correlation to the target variable. The correlation
is equal to −0.45. Furthermore, if the hyper-parameters from the second column are used,
the symbolic expression

Db,k−2 = |
(

X4

)/(
log(cos(

(
min(| log(X4)− log(min(

√
X4, |X4|, 2X4 min(X0, X4)))|,

max(−3326.55, |X4|)) + min(X2
4 , max(−3326.55, X5X9 max(0,|X4|)

min( X5
X9

,sin(cos(log(X6)))−X3)
))

+ log(min(|X4|, 2X4 min(X0, X4), sin(sin(| tan(X10)|)))) + X10 + 12X5 + 10X6

) 1
2
))

+ min(|max(−7344.9, X6)− X2
4 |, max(−3326.55, X5X9 max(0,|X4|)

min(0, X5
X9

)
))

+ min(| log(X4)− X4X5|, max(−3326.55, X5X9 max(0,|X4|)
min(0,X5)

))

+ log(cos(
√
−X0 − 5696.18)) + X10 − X4X5 + 16X5 + 13X6

)
|

(7)
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is determined for phase B. Equation (7) consists of all input variables except for X2, X7
and X8. From Table 2, it can be noticed that these variables are Uc,k−1, Ib,k−2, and Ic,k−2.
From Figure A3, these three variables have correlation values with target variables equal
to −0.32, 0.41, and −0.8, respectively. So, these variables have a high correlation with
the target variable, although it is interesting that they were not included in the symbolic
expression. Finally, if the hyper-parameters from the last are used during GPSR execution,
the symbolic expression for the third phase:

Dc,k−2 = |X2 − X3 + 5X5

X10
| (8)

is defined. Equation (8) consists of four input variables, X2, X3, X5, and X10. From Table 2,
it can be seen that these variables are Uc,k−1, Ia,k−3, Ic,k−3, and Udc,k−2, respectively. From
Figure A3, it can be seen that these variables have a high correlation with the target variable
except for Udc,k−2, which has a value of 0.02.

If the performance results of the presented symbolic expressions are observed, it can
be noticed that the lowest R2 values are achieved on the estimation of the duty cycle for
phase B. At the same time, the same symbolic expression has the lowest generalization
performance. Such a conclusion can be derived from the highest standard deviation. It
is interesting to notice that the maximal R2 score achieved with Db is significantly lower
than in the case of other symbolic expressions, even those for voltage estimation. If the
estimation and generalization performance results of Da and Dc are observed, significantly
higher results are achieved, as presented in Figure 11.
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Figure 11. Mean R2 scores and their standard deviations achieved on the prediction of duty cycles.

A similar relationship can be noticed if the achieved mean error rates and their stan-
dard deviations are compared. It can be noticed that Db has achieved significantly higher
error rates. Furthermore, the same symbolic expression has achieved higher sigma(MAE)
and σ(RMSE), pointing toward lower generalization performance results. Symbolic ex-
pressions for phases A and C are characterized by lower error rates, as presented in
Figures 12 and 13.

From the presented results, it can be seen that by using GPSR, symbolic expressions
characterized by high estimation and generalization performance results can be designed.
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Figure 12. Mean MAE scores and their standard deviations achieved on the prediction of duty cycles.
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Figure 13. Mean RMSE scores and their standard deviations achieved on the prediction of duty cycles.

3.3. Comparison between Symbolic Regression and Other Modeling Methods

To conclude whether the method applies to a problem, it is necessary to compare
the proposed method with other similar methods. This was performed using a tabular
representation, presented in Table 6. Three approaches were chosen: the proposed GPSR
method, ML methods, and deterministic methods. ML methods in the last few years and
even decades have been solutions for complex problems, whether it is a classification,
regression, or any other kind of problem, depending on the desired solution. Deterministic
methods provide an exact solution based on defined rules, and it is important to take this
into account as a potential solution. Additionally, five criteria were selected that must be
met to select the appropriate algorithm:

• Model complexity: Refers to the structure of the model itself, and how many pa-
rameters it contains, for example, models such as multilayer perceptron (MLP) or
convolutional neural network (CNN) are black-box models, that is, the user is not
aware of what is happening at a certain moment during training and cannot influence
it before the results are calculated. Only the input and output are known.

• Model performance: Indicates what the user wants, which is what kind of performance
a particular algorithm showed, that is, how high-quality the obtained results are.

• Model execution time: Refers to the time of execution or obtaining results from the
moment of starting the model estimation process.

• Modeling procedure complexity: The complexity when creating an algorithm to
perform a certain task.

• Modeling computational complexity: The hardware requirement, i.e., how many
resources each model uses to perform the task.
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Table 6. The cost comparison of GPRS modeling, ML modeling, and deterministic modeling.

GPSR Modeling ML Modeling Deterministic
Modeling

Model
complexity Low High Medium

Model
performances High High High

Model execution
time Low High Medium

Modeling procedure
complexity Low Low Medium

Modeling computational
complexity High High Low

In addition to GPSR, ML methods and conventional deterministic methods were taken
into account. ML methods are quite complex methods and are mainly used as black-box
models. Deterministic modeling methods are of medium difficulty. Various mathematical
equations describe relationships and potential future values that can be predicted for
a given issue, but there are cases that deterministic methods are rejected because the
deviation from the real value has too much oscillation. Contrary to the two competitors,
the complexity of GPSR is extremely low, the entire structure of the algorithm is visible,
and it is much easier to influence the algorithm itself than other compared methods. As far
as model performance is concerned, all three approaches can achieve top results, and one
against the others does not pose a challenge. Model execution time is one of the key factors
for choosing a method to solve a certain problem. In this case, GPSR gives the fastest
result from the beginning of the estimation initialization to its completion, compared to
ML and deterministic methods. The reason for this is that with GPSR, the final result
is a single equation that describes the system almost perfectly, which was confirmed by
the results of this research. Regarding the complexity of the procedure, GPSR and ML
models have a low complexity rate for algorithm preparation. The reason for this is that for
most ML algorithms, there are already publicly available programming libraries that are
easy to implement. In the end, it remains to compare the computational complexity of all
three approaches. It can be seen that deterministic models have the least computational
complexity, while GPSR and ML models, it is high. The reason for this is the complexity of
the dataset and the desired performance of the model. For the output results to be reliable
and accurate, more demanding hyperparameters must be defined, which results in higher
hardware requirements for the execution of the task.

4. Conclusions

In this paper, an approach for drive inverter modeling based on GPSR utilization is
presented. Such an approach can offer a stable estimation performance by maintaining
simple and low-memory models based on symbolic expressions. According to the results
and the research hypothesis, the following can be stated:

• It is possible to utilize GP to design symbolic expressions for drive inverter modeling.
• The expressions have high performance for both black-box model and black-box

compensation scheme targets.
• By using hyper-parameters selected with a random selection process, high estimation

and generalization performance results are achieved.
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The advantages of this approach are as follows:

• The obtained symbolic expressions are simple and easier to use than complex, trained
AI/ML models.

• The symbolic expressions do not require all input variables to calculate the desired out-
put. So further investigation using this approach could result in symbolic expression
with fewer input variables.

• The process of training the GPSR even with 5-fold cross validation is on average
60 min. It can be stated that the presented execution time is not too long to obtain
quality and robust symbolic expressions with high estimation accuracy.

The disadvantages of this approach are as follows:

• Initial tuning and defining hyperparameter ranges of the GPSR algorithm is a painstak-
ing process that has to be carefully planned and executed. If this stage is done properly,
then the GPSR with random hyperparameter search and the 5-fold cross-validation
method should run smoothly. However, the process of fine-tuning to define hyper-
parameter ranges is a time-consuming process since each hyperparameter has to be
defined and the GPSR must be executed to see the hyperparameter’s influence on the
performance of the GPSR algorithm.

• The extremely high correlation between some dataset variables has presented a prob-
lem during the investigation since these highly correlated variables prevented the
evolution process of GPSR.

• The tuning of the parsimony coefficient is the most sensitive process since the small
variation of this value could cause a negative effect on GPSR algorithm execution
(higher execution times, and lower accuracy of obtained symbolic expressions).

Future work will be based on the implementation of developed symbolic expressions
into more complex ensemble models. Alongside the implementation of more complex
regression methods, the authors will examine the performance of the proposed method
on other inverter models. Furthermore, the physical drive system and inverter will be
designed and implemented to experimentally verify the performance of the proposed
method. The developed drive system and inverter will be used to collect a new dataset
that will be used to create the new estimation models. Alongside new data collection,
the possibility of the inclusion of new input variables will be examined.
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Appendix A

Figure A1. The results of Pearson’s correlation analysis for all dataset variables.

Figure A2. The Pearson’s correlation heatmap for variables in black-box inverter model.
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Figure A3. The Pearson’s correlation heatmap of dataset variables used in black-box compensation
scheme model.
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