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Abstract: This paper proposes a noble image segment technique to differentiate between large
malignant cells called centroblasts vs. centrocytes. A new approach is introduced, which will provide
additional input to an oncologist to ease the prognosis. Firstly, a H&E-stained image is projected onto
L*a*b* color space to quantify the visual differences. Secondly, this transformed image is segmented
with the help of k-means clustering into its three cytological components (i.e., nuclei, cytoplasm, and
extracellular), followed by pre-processing techniques in the third step, where adaptive thresholding
and the area filling function are applied to give them proper shape for further analysis. Finally, the
demarcation process is applied to pre-processed nuclei based on the local fitting criterion function for
image intensity in the neighborhood of each point. Integration of these local neighborhood centers
leads us to define the global criterion of image segmentation. Unlike active contour models, this
technique is independent of initialization. This paper achieved 92% sensitivity and 88.9% specificity
in comparing manual vs. automated segmentation.

Keywords: image segmentation; follicular lymphoma; local fitting energy; centroblast; k-means

1. Introduction

Cancer is a group of diseases that involve the uncontrollable development of aberrant
cells that have the potential to spread to other body organs. One of many cancer categories,
lymphomas represent a type that begins in white blood cells known as lymphocytes. These
lymphomas are categorized into two groups. The first is Hodgkin’s lymphoma (HL),
which affects the lymphatic system of the immune system, which fights infection. HL
is characterized by an overgrowth of white blood cells called lymphocytes, leading to
enlarged, mostly painless lymph nodes and growths throughout the body. The presence
of REED-STERNBERG cells is confirmed by HL (abnormal lymphocytes that may contain
more than one nucleus). Non-Hodgkins lymphoma (NHL) is the second classification, in
which lymphocytes can grow into tumors (growths) all over the body without damaging the
lymphatic system. REED-STERNBERG is absent from NHL. Since it is hard to research and
analyze every type of cancer under one heading, this work focuses on follicular lymphoma,
the most prevalent subtype of NHL [1–4].
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1.1. An introduction to Follicular Lymphoma: A Subtype of NHL

FL is the most common in the NHL category. It is a slow-growing solid cancer across
the world. FL is a lymphoid system cancer, a type of white blood cell (WBC) caused by the
uncharacteristic growth of lymphocytes.

Clinical trials in the India and US [4,5] found that 1.8 million people have cancer in the
US and 2.6 million in India. NHL represents 4.3% of all new cancer cases, i.e., 0.19 million
people in 2021. Figure 1 suggests that, among all the non-Hodgkins lymphoma, 22% of
the patients come under the FL category, i.e., approximately 43,214 people will suffer from
FL in 2021 in the US and India. India’s number of cancer patients is expected to rise from
26.7 million in 2021 to 29.8 million in 2025. The Northeast and the North had the greatest
incidence last year (2408 cases per 0.1 million) and (2177 per 0.1 million), respectively. Men
presented a greater rate of diagnosis [4–6].
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1.2. Histopathological Analysis of Follicular Lymphoma

Histopathology refers to the microscopic examination of tissue to study the appearance
of the disease. As in most types of cancer, histopathological analysis is vital to characterize
the tumor histology for further treatment planning [1–4,7,8].

The FL prognosis has been conducted manually by visually examining tissue samples
collected from patient biopsy [7–12]. Under a microscope, FL is frequently composed
primarily of small cells called centrocytes and a few bigger centroblasts. Below are a few
criteria that are noted while manually inspecting FL tissue.

• Centrocytes typically have cleaved nuclei and appear with an abnormal,
stretched shape

• Centroblasts are more giant cells that may have round (non-cleaved) or cleaved nuclei.
• The number of centroblasts per high-power field (HPF) may be counted and used to

estimate the severity of the disease.
• CBs frequently have more open chromatin, giving the nucleus a lighter appearance;

they can be counted to estimate how aggressive the disease is.

According to World Health Organization (WHO), CBs are manually counted, and the
average CB per HPF

(
0.159 mm2) are reported for further FL slide classification.

If the count of CBs is less than 6 (i.e., 0–5), then histology is the grade I. If this number
ranges from 6 to 15 per HPF, then FL histology is classified into grade II. Otherwise (count
is more than 15), FL histology is classified into grade III, as shown in Figure 2 [3,6,7].
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Currently, the prognosis of FL is determined manually using visual inspection of tissue
samples acquired from patient biopsy [7,8,13]. This visual grading is time-consuming and
can lead to incorrect conclusions due to inter and intra-reader variability, different staining
procedures, and highly inhomogeneous images. A computer-assisted segmentation pro-
cedure for digitized histology is required for disease prognostics, allowing oncologists to
anticipate which patients are prone to disease, disease outcome, and survival prospects.
Developing a grading system that can segment many objects, deal with overlapping nuclei,
and provide a better supplementary architecture of the tissue sample is necessary. The
nuclear architecture of these lymphomas is essential in classifying the disease into different
categories [10,11,14,15]. So, in this paper, a four steps methodology is presented. In the first
step, the H&E-stained image is projected onto L*a*b* color space. This space-transformed
stained image is the human eye’s perceptual level and allows us to quantify the visual dif-
ferences. In the second step, this transformed image is segmented with the help of k-means
clustering into its three cytological components (i.e., nuclei, cytoplasm, and extracellular).
In the third step, pre-processing techniques based on adaptive thresholding and area-filling
function are applied to give them proper shape for further analysis. Finally, in the fourth
step, the demarcation process is applied to pre-processed nuclei based on the local fitting
criterion function for image intensity in a neighborhood of each point. Integration of these
local neighborhood centers leads us to define the global criterion of image segmentation.
Later, a comparative analysis is performed based on past research. In this paper, unlike the
previous contour-based segmentation algorithm, the methodology is independent of the
initialization.

The above-enumerated objectives have been accomplished using a well-elaborated
experimental setup followed by a color-based image segmentation algorithm. In the
proposed research work, 467 images (Whole slide and cellular level) are used for the
experiment performed to meet the objectives. Seventy-seven distinguished researchers
have already cited 216 images from the American Society of Haematology (ASH). The
number of images considered for grades I, II, and III is 148, 145, and 174, respectively. All
the segmentation features are drawn from H&E-Stained FL images using MATLAB R2020a
software (version 2020a) with windows 11 Home Single Language (version 21H2) and
64-bit operating system, with AMD Ryzen 5 3500U processor.

The following is a breakdown of the paper’s structure: A review of segmentation
techniques and their application to follicular histology is presented in Section 2. In Section 3,
an overview of the proposed approach is presented, followed by a description of four
different steps. In Section 4, the result of the proposed model is presented. In Section 5, a
discussion and comparison with the previous research are discussed in detail, followed by
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a proof of robustness from initialization. Finally, a healthy mathematical dialogue is placed
to verify the robustness of the proposed segmentation approaches. Section 6 brings the
paper to a close and discusses the future scope.

2. Literature Review

Image segmentation is extracting an image’s region of interest (ROI). The ROI and
real-world objects may be strongly correlated. Image analysis is vital since segmentation
outcomes affect feature extraction and classification. The medical field uses segmentation
to separate desirable biological entities from the background. A generic segmentation task
includes separating background tissue, a tumor from different tissue types, or separating
cellular components, e.g., nuclei from background tissue from histopathological images.
Table 1 highlights various segmentation approaches widely accepted and previously de-
ployed in the case of follicular histology.

Table 1. Systematic review for segmenting FL histology.

Reference Year of
Publication Dataset Used Region of Interest Segmentation Approaches

[16] 2007 Training Set: 3627
Testing Set: 1813 FL images

Isolation of
follicular regions

Mean brightness value as a
thresholding technique

[17] 2008 17 Whole slide FL image CB and non-CB cells
classification

Thresholding to isolate RBC and
background followed by

K-means clustering

[18] 2008 30 IHC Stained Images &
11 H&E-Stained FL images

From IHC-Stained-
Follicular region and

H&E-Stained centroblast

For detecting follicular region
GLCM with S channel from HSV

colour model and for CB
detection extracted features

reduced by PCA and allocation
of K-means

[19] 2008 18 cases of MCL, 20 cases
of CCL, and 9 FL Overlapping cell nuclei

Last2edges algorithm followed
by gradient vector flow

algorithm to identify contours.
Application of canny

edge detector.

[20] 2009 17 whole slide images of FL Isolation of Centroblasts Thresholding, along with
applications of K-means

[9] 2010 100 ROI of FL sample Isolation of Centroblasts
Gaussian mixer model

parameterized with
expectation maximization.

[21] 2010 100 ROI of FL sample Isolation of Centroblasts Applications of mean shift
elimination technique

[22] 2010 40 IHC stained FL images Follicular region Active contour Model

[23] 2011 15 IHC stained FL images Follicular region
Region-based image

segmentation using curve
evolution techniques.

[24] 2011 10 FL images Cellular nuclei

Thresholding followed by local
Fourier transformation and

application of K-means
and KNN

[25] 2012 17 FL images Identification of
centroblast k-means of clustering
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Table 1. Cont.

Reference Year of
Publication Dataset Used Region of Interest Segmentation Approaches

[10] 2012 12 IHC and H&E- stained
FL images Follicular region

Otsu thresholding and
intersection between R plane

and B plane binary mask

[26] 2013 110 FL images Follicular region Application of
contour algorithms

[27] 2014 12 FL images Identification of
centroblast

Otsu thresholding and LDA to
segments nuclei followed by

thresholding technique to
remove RBCs

[28] 2014 300 cells of FL Centroblast identification Otsu thresholding

[29] 2014 20 FL slide stained with
CD20 and H&E

Cytoplasmic element
classification

Segmentation by touching cell
splitting using GMM

classification by the neuro-fuzzy
inference system

[30] 2016 28 images of FL stained
with PAX5 and H&E Centroblast k-means clustering and graph

cut segmentation procedure

[31] 2017 H&E-Stained image Segmentation of CD3+ &
CD3-T cells

Entropy-based
histogram thresholding

[32] 2019 H&E-Stained image Differentiate between FL
and follicular hyperplasia

Deep learning-based
feature extraction

[33] 2020 H&E-Stained image Differentiate between FL
and follicular hyperplasia

CNN-based
segmentation approaches

[34] 2020 H&E-Stained image Differentiate between FL
and follicular hyperplasia

Deep learning-based
feature extraction

Various segmentation methodologies have been proposed to extract these quality
parameters and keep visual differences based on textural heterogeneity [15,35–37] and the
morphological structure [10,20,27] of each cytological component (nuclei, cytoplasm, extra-
cellular component, RBC, and background). These morphological and textural parameters
are extracted with various segmentation approaches, e.g., thresholding technique [16], Otsu
thresholding [10,28], Otsu thresholding followed by LDA [27], thresholding followed by
k-means [17,20,24,25], k-means with graph cut method [30], textural parameter followed by
PCA and k-means [18], L2E along with canny edge and Hough transformation [19,38–41],
gaussian mixer model and expectation maximization [9], mean shift elimination [21], con-
tour models [21,23,42–49], color-coded map based [29], watershed [37,50], piecewise [51]
entropy-based histogram [31], level-set [52], and transfer learning approaches for feature
extraction [32–34] have been introduced to segment histopathological images. Many works
have been performed in image segmentation, available in survey resources. However,
there is still no universally accepted algorithm to segment the images as it is influenced by
many aspects, such as the image’s texture, image content, and the inhomogeneity of images.
In the next section, this paper proposes a noble approach to isolate various cytological
components from H&E-stained FL tissue samples.

3. Proposed Methodology

Unsupervised segmentation divides the images into distinct cytological components
to collect these data. Normally, there are five main components in H&E-stained FL images:
the nucleus, cytoplasm, background, red blood cells, and extracellular material. The entire
methodology is divided into four major steps. In the first step, H&E-stain is projected
over L*a*b* color space, and then k-means clustering is used to isolate different cytological
components in the second step. In the third step, pre-processing techniques of adaptive
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thresholding and area filling function are applied to give them proper shape. Finally,
proper demarcation of each nucleus is performed. Figure 3 shows the flow of the proposed
methodology to isolate different cytological components.
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3.1. Projection of H&E-Stained Image over L*a*b* Color Space

Firstly, each of these components is expressed as a different color. Since the difference
between two colors in the L*a*b* color space is perceptually uniform, the Euclidean distance
can be employed as a measurement during the segmentation process. As a result of
their relatively consistent patterns, RBCs and background regions can be distinguished by
thresholding the intensity values in the RGB color space. RBCs and background are not
comparatively useful when classifying FL histology, so our concentration is on identifying
the rest cytological components. The remaining structures must divide into three clusters
representing nuclei, cytoplasm, and extracellular material. The flow diagram to isolate
different cytological components is explained in Figure 4. The image is projected onto this
paper’s a*b*, L*a*, and L*b* spatial domains. Results for step 1 are placed in Section 4.1.
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The L*a*b* (CIELab) space comprises three layers: the brightness layer L* and the
chromaticity layers a* and b*, which show where the color falls along the red-green and
blue-yellow axes, respectively. The converting formula first determines the tri-stimulus
coefficients as follows:

X = 0.4303R + 0.3416G + 0.1784BY = 0.2219R + 0.7068G + 0.0713BZ = 0.0202R + 0.1296G + 0.9393B (1)

The calculation of the CIELab color model is as follows;

L∗ = 116
{

h
(

Y
Ys

)}
− 16a∗ = 500

{
h
(

X
Xs

)}
− h
(

Y
Ys

)
b∗ = 200

{
h
(

Y
Ys

)}
− h
(

Z
Zs

)
(2)

where the usual stimulus coefficients are Xs, Ys, and Zs. In the next step, images extracted
from L*a*b* spaces are fed into a k-means clustering algorithm.

3.2. K-Means Clustering Based Segmentation

Any image is divided into k groups using the popular k-means clustering algorithm.
The process of clustering involves putting data points with similar feature vectors together
in one cluster and putting data points with diverse feature vectors into other clusters.
Let feature vector derived from c clustered data be D = {di|i = 1, 2, 3 . . . . . . , c}. The
generalized algorithm initiates k cluster centroids C =

{
cj
∣∣j = 1, 2, 3 . . . .k

}
by randomly

selecting k features vector form C. The feature vectors are then divided into k clusters using
a chosen measure for distance, such as the Euclidean distance (Equation (3)), so that

Edis =
∣∣∣∣di − cj

∣∣∣∣ (3)

The feature vectors are then regrouped using the newly computed cluster centroids,
originally calculated based on the group members. The clustering process ends when all
cluster centroids begin toward convergence.

K-mean clustering helps to isolate nuclei (with blue), cytoplasm (cyan), and extracel-
lular material (in yellow color) using the Euclidean distance matrix obtained from L*a*b*
color space.

Choose 3 cluster centres to coincide with k randomly chosen patterns inside the
hypervolume containing the patterns set (C). Steps to implement k-means are defined
below;

1- Assign each pattern to the closest cluster center, i.e., Ci, i = 1, 2, 3.
2- Recompute the cluster centers using cluster memberships. (U)

Ui, j =

{
1, ||xi − Ci||2 ≤

∣∣∣∣xj − Ck
∣∣∣∣2, f or each k 6= i

0, otherwise

3- If convergence criteria are not met, go to step 2 with new cluster centers by the
following equation, i.e.,

Ci =
i

Gi
∑

k, xkεGi

Xk

where |Gi| is the size and the value of |Gi| =
n
∑

j=1
Ui.j.

Then, these clustered cytological components pass from the adaptive thresholding
and filling function to provide the proper shape of the segmented region of interest.

3.3. Adaptive and Thresholding Function

Adaptive thresholding and filling functions are applied to smooth the isolated ob-
jects. It separates a segmented image into fractional regions or fractional images. It then
determines two threshold values for each fractional image, resulting in varying adaptive
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threshold values, followed by the bwareaopen applied to suppress small objects. Finally, in
the last step, the procedure for the boundarization of each nucleus takes place.

3.4. Procedure for Boundarization of Each Nucleus

First, consider a segmented image of nuclei I as a function I : Ω→ R and repre-
sented through Equation (4):

I = Iinput(x) ∗ Bbias + Nnoise(x) (4)

Here, Iinput represents an actual inputted image, Bbias is the biased field that will
account for inhomogeneity in the image and Nnoise is a gaussian noise having zero mean
value, and x denotes pixel intensity ε R. There are two minor assumptions about Bbias and
Iinput is as follows:

• Pixel intensity will remain constant next to the point as the assumption is a biased
field Bbias is slowly varying.

• The H&E-stained FL image (Iinput) has approximately N separate regions Ω1, Ω2 . . . Ωn
with constant values C1, C2 . . . Cn respectively. So, based on these assumptions and

Equation (4), isolating the regions
{

Ωi

∣∣∣∣ n
i = 1

}
, having constant

{
Ci

∣∣∣∣ n
i = 1

}
and the

bias field (Bbias) for inputted FL histology.

All three parameters are identified and described below.
Special local energy is defined in the local area based on the intensity that neces-

sitates locating the circular neighborhood in the premises of radius r with the aid of
Equation (4) and assumptions. Any other point in the premises of Ωi say x must meet
the following constraint ϕy ∼= {x : x− y ≤ r}, with each point y ∈ Ωi as the centre. With
the help of this property, it is conclusive that slowly changing Bbias (y), all x values in the
circular neighbourhood of ϕy have values that are near to Bbias(y). With this, the intensity
value Bbias(x) ∗ Iinput(x) in the subregion (ϕy) is close to the constant Bbias(y) ∗ Ci. With
this piece of information, Equation (4) is written as Equation (5):

I = Bbias(y) ∗ Ci + Nnoise(x) (5)

This has led us to formulate the necessary energy at the controllable scale. This
energy helps us to classify inputted images into N clusters with centers mi ≈ Bbias(y) ∗ Ci,
i = 1, 2, 3 . . . n. Now local intensities are classified using the k-mean clustering technique, as
well as a new term K (y− x), which acts as a kernel. If x /∈ ϕy is the value of K(y− x) = 0,
then this term should be inserted, i.e., points that do not fall under the premises of constraint
ϕy ∼= {x : x− y ≤ r} when building the cluster are excluded. This kernel is crucial in
formulating local energy, as seen in Equation (6).

Ey =
n

∑
i=1

∫
ϕy

K(y− x)|I(x)−mi|2dx (6)

The choice of the kernel is very flexible. This paper uses a gaussian kernel as described
in Equation (7),

k(x, y) = e−
(x2+y2)

2∗σ2 (7)

where σ is a scaling parameter, and the value of σ is chosen as four by the hit and trial
method. Until now, the discussion is on locally formulated energy that is not affected by
cluster energy. Equation (8) shows how to integrate the Ey term with respect to d(y) to
make this energy global.

EFinal =
∫  n

∑
i=1

∫
ϕy

K(y− x)|I(x)−mi|2dx

dy (8)
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Because the proposed energy is dispersed among the regions
{

Ωi

∣∣∣∣ n
i = 1

}
, finding an

overall energy minimization solution becomes extremely tough. As a result, we split the
above energy in terms of Chan-Vese’s [46] level set formulation in Equation (8) and rewrite
Equation (8) as Equation (9);

EFinal =
∫  2

∑
i=1

∫
ϕy

K(y− x)|I(x)− B(y)Ci|2 ∗Mi(Φ(x)) d(x)
}

d(y) (9)

Here, M1(Φ) = h(Φ) & M2(Φ) = 1− h(Φ) are two classification values of the function
Mi(Φ(x)) for two-level set formulation. In terms of (Φ, C, B), this EFinal can be decreased.
We can acquire image Segmentation given by Φ, C, B. by minimizing this energy. This is
an iterative procedure that is accomplished by minimizing EFinal with respect to Φ, C,
and b respectively.

A. Minimizing energy with respect to Φ

Using the steepest gradient decent method to reduce the energy term (in Equation (9))

while keeping C and B constant [44,53,54], Gateaux derivatives
∂(E f inal)

∂(Φ)
of energy EFinal are

calculated using Equation (10);

∂(Φ)

∂(t)
= −δ(Φ)(e1 − e2) + υ.δ(Φ).div

(
∇Φ
|∇Φ|

)
+ µ.div

(
dp(|∇Φ|)∇Φ

)
(10)

where e1 and e2 are described in Equation (11):

ei =
∫

K(y− x)|I(x)−mi|2d(y) (11)

where div (.) is the divergence operator,∇ gradient operator, and dp is defined is as follows:

dp(s) ,
p′(s)

s .
Equation (10), as described above, is to be solved for demarking the nuclei. The

first term in the equation −δ(Φ)(e1 − e2) is a data term because it is derived from data
fitting energy; this term is responsible for driving spline towards the object boundary. The
second term υ.δ(Φ). div

(
∇Φ
|∇Φ|

)
has a smoothing effect on the zero-level contours, which is

necessary to maintain the regularity of the contour. This term also keeps a record of the
arc length. The third term µ. div

(
dp(|∇Φ|)∇Φ

)
is called a regularization term because it

maintains the regularity of the spline.

B. Minimizing energy with respect to C

While minimizing the constant, terms C1 and C2 in C are updated as follows, keeping
Φ & B constant as shown in Equation (12):

Ci =

∫
(B ∗ K)Iυidy∫
(B2 ∗ K)υidy

, (i = 1, 2, . . . , n) (12)

where υi = Mi(Φ) K is defined as a kernel in Equation (6), and the ∗ is a convolution
function.

C. Minimizing energy with respect to B

While Φ and C are preserved as constants, the minimization of energy with respect to
B is as described in Equation (13):

B =

(
I.I(1)input

)
∗ K

I(2)input ∗ K
(13)
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where I(1)input =
n
∑

i=1
Ciυi and I(2)input =

n
∑

i=1
Ci2υi. According to Equations (12) and (13), the

value of constant C = (c1, c2, c3 . . . cn) and the representative biased field B is updated.
This way, the energy is reduced, and the demarcated image is obtained. This demarcated
image provides a different perceptive to the analysis of each cytological component of the
image. In the next section, the obtained segmented image is discussed.

4. Results

This section presents the results of each step discussed in the previous section. Later, a
comparative analysis is presented based on the segmentation results (Previous research vs.
proposed methodology).

4.1. Result of Representation of FL Image on L*a*b* Color Space

Although CIELAB’s (L*a*b*) color axes are less consistent, they nevertheless remain
effective for anticipating small color variations, and thus very useful for those images
which have inhomogeneous intensities. Since the L*a*b* color space is a three-dimensional
real number space, it supports an infinite number of color representations. The L*a*b* color
space separates image luminosity and color. This color space makes it simpler to divide the
regions according to hue, regardless of lightness. Additionally, the color space is more in
line with how the human eye perceives the image’s various white, blue-purple, and pink
portions.

Figure 5 converts the RGB image to CIE L*a*b* transformation using Equation (2). The
three-dimensional CIELAB space covers the complete spectrum of human color vision.
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Figure 5. CIE L*a*b* transformation from RGB image.

All necessary color information is included in both the a∗ and b∗ layers. To catego-
rize the colors in the a∗b∗ space, different color-based segmentation approaches can be
employed. In Figure 6, projections of alternative two coordinators are shown. In the first
image, a combination of a∗b∗ is shown, in the next image a combination of a∗L∗, and in the
last image of Figure 6, the combination of L∗b∗ is shown.
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4.2. Result of k-Means Clustering Algorithm

This transformed image passes through the k-means clustering procedure. This
clustering procedure extracts three major cytological components: one in all nuclei, another
in the cytoplasm, and the last in the extracellular components. In Figure 7, images (a), (d),
and (i) are the 3-input image randomly taken from the database belonging to grades I, II,
and III, respectively. In images (b), (f), and (j) representation of different hue levels of each
cytological element are represented. Isolation of only nuclei is presented in images(c), (g),
and (k). These images are hued with dark blue, while images(d), (h), and (l) represent three
different clustered images.
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In the next step, with the help of another critical parameter, the cytoplasm is extracted
from the given input images, as shown in Figure 8. Images (a) and (d) are input images,
(c) and (f) are the images of cytoplasm with different hues, and images (b) and (e) present
the binarization of images (c) and (f) via the adaptive thresholding procedure. These
morphological features vector is essential and will help pathologists to classify histology
into respective grades.
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Figure 8. Isolating cytoplasm from H&E-Stained image.

A region-based level set formulation is introduced to define the boundary of the
extracted nuclei. The result of this method is displayed in the next step.

4.3. Procedure for Boundarization of Each Nucleus

This approach defines a local fitting criterion function for image intensity in a neigh-
borhood of each point by assuming that pixel intensity will remain constant next to the
point. Integration of these local neighborhood centers leads us to define the global criterion
of image segmentation. To perform this experiment, values of certain parameters are
described in Table 2. In Table 2, five different values of the coefficient of arc (1,0.5, 0.01,
0.001, and 0.0001) are chosen, and five different scale parameters (1, 2, 4, 6, 8). Table 2 shows
the value of the coefficient of arc length can demark properly when the value is greater than
0.01, while the scale parameter starts showing better results when the value is exceeded by
4. So, in this paper, the coefficient of the arc length term is defined as 0.001 ∗ A2, where
A = 255, scale parameter that specifies the neighborhood size (σ = 4), outer iteration value
is set to 100, which will keep track spline nearer to object, and the value of inner iteration is
20. Such inner iteration will help to level set evolution.
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Table 2. Simulation of parameters.

Coefficient of
Arc Length

Term→

Scale
Parameter→ 1 0.5 0.01 0.001 0.0001
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In Figure 9, images (a), (d), and (g) are input images, and images (b), (e), and (h) are
segmented images after the k-means clustering, thresholding function, and area-filling
function. Images (c), (f), and (i) are the final images after the demarcation of each nucleus
with red colour.

5. Discussion and Comparison with the Previous State of Arts

This paper comprises three images from the paper of A. Madabhushi et al. [44]. The
GAC model, the method presented by A. Madabhushi et al. [44], and the suggested local
energy formulation model are all compared qualitatively. Figure 10 shows the results for
three images, demonstrating the model’s superiority in nucleus segmentation. We use the
proposed model for segmenting the gland lumen and lymphocyte’s single white blood
cell with a single round nucleus in the histopathological images used in this investigation.
The nuclei segmentation results in Figure 10 exemplify the power of our local energy
formulation model in detection, segmentation, and overlap resolution. Our local energy
formulation model accurately segmented cells and cancer nuclei in histopathological
images in Figure 10 (512 × 512 patches). Figure 10 highlights the model’s robustness by
providing boundaries near the nuclear boundary and preventing spurious edges due to
the form restriction. Compared to the GAC and the model by A. Madabhushi et al. [44], it
also shows that our model can segment numerous overlapping objects. Table 3 explains
the quantitative evaluation based on past research. In this table, the object of interest is
either the classification between centroblast cells vs. non-centroblast cells or classifying
different cytoplasmic elements. Some papers do not perform quantitative evaluation, while
others applied a maximum of 90.35% accuracy while segmenting cytoplasmic elements.
This paper proposed k-means-based, locally formulated energy to segment nuclei and
cytoplasmic regions with 92% sensitivity.

Table 3. Quantitative evaluation of past research.

Ref. Type of Staining & Dataset Object of Interest Evaluation Result

[16] detection of follicles by IHC &
classification of CB by H&E

classification between CB and
non-CB cells

no performance evaluation
is done

[18]
IHC stain for follicles detection

followed by H&E stained
for CB cells

classification between CB and
non-CB cells classification accuracy of 90.7%

[9] H&E-Staining & 100 ROI images CB & non-CB cells classification Qualitative very high
false-positive appealed
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Table 3. Cont.

Ref. Type of Staining & Dataset Object of Interest Evaluation Result

[21] H&E-Staining100 ROI of
FL images CB & non-CB cells classification Maximum accuracy of

80.7% achieved

[22] 436 images of Neoplastic Follicles CB & non-CB cells classification 82.57% precision while
segmenting

[25] H&E Stained 17 FL images Detection of nuclei and other
cytological components 87% accuracy in classification

[27] H&E Staining images 0f
180 FL samples Centroblast detection 82.58% CB were

successfully detected

[29] H&E-Stained images Cytoplasmic element
classification 90.35% detection rate achieved

Proposed k-means
based locally

formulated energy
467 H&E-Stained Images Extraction of Cytoplasmic

element 92% sensitivity
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5.1. Quantitative Evaluation of the Proposed Segmentation Technique

The quantitative evaluation of the segmented nucleus and cytoplasm region is evalu-
ated based on sensitivity, η, and specificity, δ.

In Figure 11, definitions of true positive (TP), true negative (TN), false positive (FP),
and false negative are illustrated. The definition of sensitivity (η) and specificity (δ) is
defined below:

η =
True Positive

True Positive + False Negative
(14)

δ =
True Negative

Ture Negative + False Positive
(15)
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Figure 11. Defining the evaluation standard: True negative, False Positive, True positive in automated
vs. manual segmentation.

The quantitative evaluation of the proposed algorithm is conducted over 1283 nuclei
extracted from 200 FL images and shown in Figure 12. The comparison is based on manual
(graded data from pathology) vs. automated computerized segmentation techniques.
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Figure 12. Image (a) is extracted region of interest by manual segmentation data set, image (b) is the
outcome after proposed k-means clustering approaches, and image (c) is the outcome of the proposed
algorithm.

Each ROI has been altered to be the same size as what pathologists would see in a
high-power field of 0.159 mm2. In Table 4, a summarization of the detected outcome is
placed. Based on TP, FP, FN, and TN, two classes of the given slide can be analyzed.
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Table 4. Analysis of CB detection based on the proposed detection algorithm.

Name of Image Manual Segmentation Automated Segmentation

Number of CBs Number of Non-CBs TP FP FN TN

FL1 5 3 5 1 0 2
FL2 6 11 6 1 1 9
FL3 4 4 3 1 1 3
FL4 1 12 1 1 0 11
FL5 8 4 8 0 0 7

The two classes are displayed in Table 4. In the first column, input images are placed.
The second column result of manual segmentation (number of centroblasts/number of
non-centroblast) and the result of automated segmentation are placed in the last section.
Table 5 describes the confusion matrix to elaborate on the accuracy of the proposed model
based on two classes.

Table 5. Confusion matrix to elaborate accuracy of the proposed methodology.

Centroblast Non-Centroblast

Centroblast True Positive False Positive
Non-centroblast False Negative True Negative

This paper achieved a sensitivity (η) of 92% while the specificity (δ) is 88.9% recorded.

5.2. Independent from the Contour Initialization

Previously deployed region-based contour algorithms are dependent on the initial-
ization of the contour [37,43,45–49], which implies that flowing energy goes downcast for
those nuclei that are placed far from the initialization. Therefore, Section 4 explains the
goal of creating an algorithm free from initialization. Initially, the first row displays the
inputted image of follicular lymphoma. Four out of the twelve initializations of the contour
are shown in Figure 13 for a qualitative evaluation of the system’s performance.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 20 
 

 

  

  
Figure 13. Follicular imagery, independent from contour initialization. 

6. Conclusions and Future Scope 
This study presents a new segmentation procedure for segmenting the different cy-

tological components. The first step, the H&E-stained follicular histology image, is pro-
jected onto L*a*b* color space. This space-transformed stained image is the human eye’s 
perceptual level and allows us to quantify the visual differences. In the second step, this 
transformed image is segmented with the help of k-means clustering into its three cyto-
logical components. In the third step, pre-processing techniques based on adaptive thresh-
olding and area-filling function are applied to give them proper shape for further analysis. 
Finally, in the fourth step, the demarcation process is applied to the pre-processed nucleus 
based on the local fitting criterion function for image intensity in the neighborhood of each 
point. This technique is independent of the initialization. This segmentation method em-
ploys a process known as local intensity fitting, which is utilized to recognize the unique 
shapes in the images precisely. This paper can achieve 92% sensitivity and 88.9% specific-
ity to compare manual and automated segmentation. 

Furthermore, the algorithm can distinguish between overlapped nuclei because ob-
ject landmarks must be found across numerous objects for initial alignment. Thus, the 
relevant issue does not limit our model. The capacity to segregate lymphocytes in FL his-
topathological images automatically and accurately could be useful. This research does 
not classify follicular tissue. Rather, it divides it into cytological components. By separat-
ing all of the cytological components in the image, this method sets a new standard in 
digitalized histopathology. The algorithm analyses the complete tissue segment for diag-
nosing and grading the diseased, giving oncologists an additional representation to im-
prove diagnostic accuracy at the outset. Furthermore, removing the need for initialization 
makes this approach more resilient and general. 

Author Contributions: Conceptualization, P.S.; methodology, P.S. and A.G.; writing—original draft 
preparation, P.S.; validation, S.K.S. and M.R.; formal analysis, M.A.B.; writing—review and editing, 
S.K.S. and M.R.; supervision, A.G. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This article received no external funding. 

Data Availability Statement: Data in this research paper will be shared upon request to the corre-
sponding author. 

Conflicts of Interest:  The authors declare no conflict of interest. 

References 

Figure 13. Follicular imagery, independent from contour initialization.

The second row displays four different locations of initialization over a biased region,
and the third row contains an outline of the entire slide’s nucleus. The system achieves
nearly the same result for the biased region and highlighted nucleus despite the substantial
variation in contour initialization.
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6. Conclusions and Future Scope

This study presents a new segmentation procedure for segmenting the different cyto-
logical components. The first step, the H&E-stained follicular histology image, is projected
onto L*a*b* color space. This space-transformed stained image is the human eye’s per-
ceptual level and allows us to quantify the visual differences. In the second step, this
transformed image is segmented with the help of k-means clustering into its three cy-
tological components. In the third step, pre-processing techniques based on adaptive
thresholding and area-filling function are applied to give them proper shape for further
analysis. Finally, in the fourth step, the demarcation process is applied to the pre-processed
nucleus based on the local fitting criterion function for image intensity in the neighborhood
of each point. This technique is independent of the initialization. This segmentation method
employs a process known as local intensity fitting, which is utilized to recognize the unique
shapes in the images precisely. This paper can achieve 92% sensitivity and 88.9% specificity
to compare manual and automated segmentation.

Furthermore, the algorithm can distinguish between overlapped nuclei because object
landmarks must be found across numerous objects for initial alignment. Thus, the relevant
issue does not limit our model. The capacity to segregate lymphocytes in FL histopatholog-
ical images automatically and accurately could be useful. This research does not classify
follicular tissue. Rather, it divides it into cytological components. By separating all of
the cytological components in the image, this method sets a new standard in digitalized
histopathology. The algorithm analyses the complete tissue segment for diagnosing and
grading the diseased, giving oncologists an additional representation to improve diagnos-
tic accuracy at the outset. Furthermore, removing the need for initialization makes this
approach more resilient and general.

Author Contributions: Conceptualization, P.S.; methodology, P.S. and A.G.; writing—original draft
preparation, P.S.; validation, S.K.S. and M.R.; formal analysis, M.A.B.; writing—review and editing,
S.K.S. and M.R.; supervision, A.G. All authors have read and agreed to the published version of the
manuscript.
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