Machine Learning Techniques for Non-Terrestrial Networks
Abstract
:1. Introduction
- The integration of terrestrial networks (TNs) and NTNs; deploying two (or more) separated networks will increase the service availability.
- The adoption of a unique terminal for both NTN and TN communications; people connect to TNs most, whilst they rarely connect to NTNs. In case it is necessary to switch between the terrestrial equipment and the NTN enabled equipment, this will discourage the NTN diffusion.
- Overcoming of the NTN limits in terms of throughput availability and delays. Even with narrow-beams, very high-altitude satellites (i.e., MEO and GEO) cover a large area limiting the available throughput for a single user. Moreover, large distances (from 8000 km to 36,000 km) causes inadequate user experience, not only for video and real-time applications, such as gaming, but also for voice service, experiencing latencies from about 200 ms up to 800 ms (including processing) [2].
- Presentation of the innovative services that novel NTN may provide. They are provided in terms of the most suited NTE and required data rate as well as being linked with the 5G categories.
- Description of the NTN architecture envisaged in the 3GPP Release 17 and in the forthcoming Release 18. Involved NTEs and functionalities within 5G system are detailed in terms of architectures and protocol stacks over the 5G network. It is also proposed how multi-connectivity (both in hybrid terrestrial/non-terrestrial and non-terrestrial/non-terrestrial modes) and the deployment of multi-access edge computing (MEC) should be implemented in NTN.
- Adoption of the most suited ML techniques in order to guarantee the novel services in NTN by supporting their requirements. Proposed ML techniques are also provided in order to enhance the UE connectivity or to optimize the system performance in NTN. Furthermore, some insights are also reported in order to properly investigate the adoption of the ML techniques in selected situations typical of NTN.
2. Related Works
3. General Aspects of NTN
4. Non-Terrestrial Network Architectures
4.1. Services for NTN
4.2. NTN Architectures
4.2.1. Transparent NTN Architecture
4.2.2. Regenerative NTN Architecture
4.2.3. On-Board Distributed Unit NTN Architecture
4.3. Impact of NR in NTN
4.4. Multi-Connectivity
5. Machine Learning General Aspects
5.1. Machine Learning Methods Taxonomy
5.1.1. Supervised Learning
5.1.2. Unsupervised Learning
5.1.3. Reinforcement Learning
5.2. Data Collection
6. Machine Learning Techniques in NTN
6.1. ML for NTN Service
6.2. ML for Protocol Stack Layers
6.2.1. Physical Layer
6.2.2. Link and Medium Access Control Layers
6.2.3. Network Layer
6.2.4. Application Layer
7. Conclusions and Open Research Issues
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Analysis Mason’s Research Prediction for 2023. Available online: https://www.analysysmason.com/contentassets/bd58910f9777465aae2543a9220bf2f7/analysys_mason_research_predictions_2023_dec2022.pdf (accessed on 5 January 2023).
- 5G Americas. 5G & Non-Terrestrial Networks. February 2022. Available online: https://www.5gamericas.org/5g-and-non-terrestrial-networks/ (accessed on 24 January 2023).
- Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access 2019, 7, 137184–137206. [Google Scholar] [CrossRef]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.F.M.; Duncan, J.C.M.; Spano, D.; Chatzinotas, S.; Kisseleff, S.; et al. Satellite communications in the new space era: A survey and future challenges. IEEE Commun. Surv. Tutorials 2021, 23, 70–109. [Google Scholar] [CrossRef]
- Geraci, G.; Garcia-Rodriguez, A.; Azari, M.M.; Lozano, A.; Mezzavilla, M.; Chatzinotas, S.; Chen, Y.; Rangan, S.; Di Renzo, M. What will the future of UAV cellular communications be? A flight from 5G to 6G. IEEE Commun. Surv. Tutorials 2022, 24, 1304–1335. [Google Scholar] [CrossRef]
- Araniti, G.; Iera, A.; Pizzi, S.; Rinaldi, F. Toward 6G Non-Terrestrial Networks. IEEE Netw. 2022, 36, 113–120. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G. IEEE Commun. Surv. Tutorials 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Burleigh, S.C.; De Cola, T.; Morosi, S.; Jayousi, S.; Cianca, E.; Fuchs, C. From connectivity to advanced Internet services: A comprehensive review of small satellites communications and networks. Wirel. Commun. Mob. Comput. 2019, 2019, 6243505. [Google Scholar] [CrossRef]
- Niephaus, C.; Kretschmer, M.; Ghinea, G. QoS provisioning in converged satellite and terrestrial networks: A survey of the state-ofthe-art. IEEE Commun. Surv. Tutorials 2016, 18, 2415–2441. [Google Scholar] [CrossRef]
- Giordani, M.; Zorzi, M. Satellite Communication at Millimeter Waves: A Key Enabler of the 6G Era. In Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 383–388. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Wang, D.; Traspadini, A.; Giordani, M.; Alouini, M.-S.; Zorzi, M. On the Performance of Non-Terrestrial Networks to Support the Internet of Things. In Proceedings of the 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 30 October–2 November 2022. [Google Scholar]
- Tsuji, H.; Miura, A.; Carrasco-Casado, A.; Toyoshima, M. R&D for Satellite Communications and Non-terrestrial Networks toward Beyond-5G in Japan. In Proceedings of the 2022 27th Asia Pacific Conference on Communications (APCC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 178–181. [Google Scholar] [CrossRef]
- Ahmed, N.; Kanhere, S.S.; Jha, S. On the importance of link characterization for aerial wireless sensor networks. IEEE Commun. Mag. 2016, 54, 52–57. [Google Scholar] [CrossRef]
- Koulali, S.; Sabir, E.; Taleb, T.; Azizi, M. A green strategic activity scheduling for UAV networks: A sub-modular game perspective. IEEE Commun. Mag. 2016, 54, 58–64. [Google Scholar] [CrossRef]
- Choi, D.H.; Kim, S.H.; Sung, D.K. Energy-Efficient Maneuvering and Communication of a Single UAV-Based Relay. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2320–2327. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhou, C.; Zhang, Y. Physical-layer security in space information networks: A survey. IEEE Internet Things J. 2020, 7, 33–52. [Google Scholar] [CrossRef]
- Al-Hraishawi, H.; Chougrani, H.; Kisseleff, S.; Lagunas, E.; Chatzinotas, S. A Survey on Non-Geostationary Satellite Systems: The Communication Perspective. IEEE Commun. Surv. Tutorials 2022. [Google Scholar] [CrossRef]
- Rinaldi, F.; Maattanen, H.-L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in 5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200. [Google Scholar] [CrossRef]
- Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Montoya, J.F.M.; Pollin, S.; Haqiqatnejad, A.; Mostaani, A.; et al. Evolution of Non-Terrestrial Networks from 5G to 6G: A Survey. IEEE Commun. Surv. Tutorials 2022. [Google Scholar] [CrossRef]
- Rekkas, V.P.; Sotiroudis, S.; Sarigiannidis, P.; Wan, S.; Karagiannidis, G.K.; Goudos, S.K. Machine Learning in Beyond 5G/6G Networks—State-of-the-Art and Future Trends. Electronics 2021, 10, 2786. [Google Scholar] [CrossRef]
- Muscinelli, E.; Shinde, S.S.; Tarchi, D. Overview of Distributed Machine Learning Techniques for 6G Networks. Algorithms 2022, 15, 210. [Google Scholar] [CrossRef]
- Bartsiokas, I.A.; Gkonis, P.K.; Kaklamani, D.I.; Venieris, I.S. ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey. IEEE Access 2022, 10, 83507–83528. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, M.; Pang, Z. Satellite Based Computing Networks with Federated Learning. arXiv 2021, arXiv:2111.10586. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Potirakis, S.M.; Kanatas, A.G. AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications. IoT 2020, 1, 21–48. [Google Scholar] [CrossRef]
- 3GPP. Solutions for NR to Support Non-Terrestrial Networks (NTN) (Release 16). TR 38.821 V16.1.0 Release 16 May 2021. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3525 (accessed on 24 January 2023).
- 3GPP. Study on New Radio (NR) to Support Non-terrestrial Networks (Release 15). TR 38.811 v15.4.0, September 2020. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234 (accessed on 24 January 2023).
- ITU. MT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Report ITU-R, M.2083-0. September 2015. Available online: http://www.itu.int/publ/R-REC/en (accessed on 24 January 2023).
- ITU. Vision, Requirements and Evaluation Guidelines for Satellite Radio Interface(s) of IMT-2020. Report ITU-R, M.2514-0. September 2022. Available online: https://www.itu.int/pub/R-REP-M.2514-2022 (accessed on 24 January 2023).
- Tan, T.K.; Weerakkody, R.; Mrak, M.; Ramzan, N.; Baroncini, V.; Ohm, J.-R.; Sullivan, G.J. Video Quality Evaluation Methodology and Verification Testing of HEVC Compression Performance. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 76–90. [Google Scholar] [CrossRef]
- 3GPP. Study on New Radio Access Technology: Radio Access Architecture and Interfaces. 3GPP TR 38.801 V14.0.0, Release 14 March 2017. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3056 (accessed on 24 January 2023).
- 3GPP. NR and NG-RAN Overall Description Stage 2. TS 38.300 V17.2.0 Release 17 September 2022. Available online: https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/16.02.00_60/ts_138300v160200p.pdf (accessed on 24 January 2023).
- 3GPP. Multi-Connectivity, Stage 2. 3GPP TS 37.340 V17.2.0, Release 17 September 2022. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3198 (accessed on 24 January 2023).
- Azari, M.M.; Arani, A.H.; Rosas, F. Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Guo, X.; Qu, Z. A Game-Theoretic Approach to Computation Offloading in Satellite Edge Computing. IEEE Access 2020, 8, 12510–12520. [Google Scholar] [CrossRef]
- Evang, J.M.; Ahmed, A.H.; Elmokashfi, A.; Bryhni, H. Crosslayer network outage classification using machine learning. In Proceedings of the Workshop on Applied Networking Research (ANRW ’22); Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Boutiba, K.; Bagaa, M.; Ksentini, A. Radio Link Failure Prediction in 5G Networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, L.; Yao, H.; Wang, J.; Jiang, C.; Benslimane, A.; Liu, Y. Multi-UAV-Enabled Load-Balance Mobile-Edge Computing for IoT Networks. IEEE Internet Things J. 2020, 7, 6898–6908. [Google Scholar] [CrossRef]
- Munaye, Y.Y.; Lin, H.-P.; Adege, A.B.; Tarekegn, G.B. UAV Positioning for Throughput Maximization Using Deep Learning Approaches. Sensors 2019, 19, 2775. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-C.; Feng, H.; Molisch, A.F. Dynamic Caching Content Replacement in Base Station Assisted Wireless D2D Caching Networks. IEEE Access 2020, 8, 33909–33925. [Google Scholar] [CrossRef]
- ETSI. Multi-Access Edge Computing (MEC) MEC 5G Integration. ETSI GR MEC 031 V2.1.1, October 2020. Available online: https://www.etsi.org/deliver/etsi_gr/MEC/001_099/031/02.01.01_60/gr_MEC031v020101p.pdf (accessed on 24 January 2023).
- Ciccarella, G.; Giuliano, R.; Mazzenga, F.; Vatalaro, F.; Vizzarri, A. Edge cloud computing in telecommunications: Case studies on performance improvement and TCO saving. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 113–120. [Google Scholar]
- ETSI MEC ISG. Mobile Edge Computing (MEC); Framework and Reference Architecture. ETSI, DGS MEC 003, April 2016. Available online: http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf (accessed on 5 January 2023).
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Yao, Y.-D. Modulation classification using convolutional Neural Network based deep learning model. In Proceedings of the 2017 26th Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA, 7–8 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Sotiroudis, S.P.; Siakavara, K.; Sahalos, J.N. A Neural Network Approach to the Prediction of the Propagation Path-loss for Mobile Communications Systems in Urban Environments. Piers Online 2007, 3, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, X.; Shi, Q.; Hong, M.; Fu, X.; Sidiropoulos, N.D. Learning to optimize: Training deep neural networks for wireless resource management. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tang, J.; Xu, Z.; Wang, Y.; Xue, G.; Zhang, X.; Yang, D. Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach. In Proceedings of the IEEE INFOCOM 2017–IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Kato, N.; Fadlullah, Z.M.; Mao, B.; Tang, F.; Akashi, O.; Inoue, T.; Mizutani, K. The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective. IEEE Wirel. Commun. 2017, 24, 146–153. [Google Scholar] [CrossRef]
- Lotfollahi, M.; Zade, R.S.H.; Siavoshani, M.J.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification using deep learning. arXiv 2017, arXiv:1709.02656. [Google Scholar] [CrossRef]
NTE | Altitude | Footprint Size | RTT | |
---|---|---|---|---|
GEO | 35,786 km | 200–3500 km | 40,581 km | 541.46 ms (service and feeder links) |
270.73 ms (service link only) | ||||
MEO | 7000–25,000 km | 100–1000 km | 16,000 km ( = 8000 km) | 213 ms (8000 km) (service and feeder links) |
107 ms (8000 km) (service link only) | ||||
LEO | 300–1500 km | 100–1000 km | 1932 km ( = 600 km) | 25.77 ms (600 km), 41.77 ms (1200 km) (service and feeder links) |
3131 km ( = 1200 km) | 12.89 ms (600 km), 20.89 ms (1200 km) (service link only) | |||
HAPS | 8–50 km | 5–200 km | 115 km ( = 20 km) | 15.53 ms (20 km) (service and feeder links) |
0.77 ms (20 km) (service link only) | ||||
UAV | 1–10 km | 1–50 km | 30 km ( = 5 km) | <67 s (service and feeder link), <33 s (service link) |
Requirement | Value | |
---|---|---|
Peak data rate | 70 Mbit/s (in downlink), | 2 Mbit/s (in uplink) |
User experienced data rate | 1 Mbit/s (in downlink), | 100 kbit/s (in uplink) |
Area traffic capacity | 8 kbit/s/km (in downlink), | 1.5 kbit/s/km (in uplink) |
Latency | 10 ms (user plane), | 40 ms (control plane) |
Latency for SRI in high-altitude satellites | 650 ms (user plane), | 1150 ms (control plane) |
Connection density | 500 devices per km | |
Reliability | 0.999 | |
Mobility | 250 km/h (car), 500 km/h | (train), 1200 km/h (airplane) |
Mobility interruption time | 50 ms |
NTN Service | 5G Category | Suited NTEs | Required Data Rate |
---|---|---|---|
Mobility cell connectivity | eMMB | HAPS, LEO | 50 Mbit/s/person |
Unserved/Under-served and isolated areas: | |||
| eMMB | HAPS, LEO | 50 Mbit/s/person |
| mMTC | HAPS, LEO | 0.1–100 kbit/s/sensor |
| mMTC | UAV, HAPS, LEO | 1–10 Mbit/s per local hot spot |
Throughput increase | eMMB | UAV, (HAPS) | 100–200 Mbit/s/hot spot |
Secondary link for backup | uRLLC * | HAPS, LEO | 0.01–1 Mbit/s |
Disaster relief | eMMB, uRLLC * | UAV, HAPS | 10–500 Mbit/s |
Broadcasting/ Multicasting: | |||
| eMMB | LEO, (HAPS) | e.g., video 4K |
| mMTC | LEO, HAPS | 10 kbit/s |
NTN Service | ML Applications | Target NTE |
---|---|---|
Mobility cell connectivity | 3D Positioning, Trajectory planning, handover rate minimization | HAPS, LEO |
Unserved/Under-served and isolated areas | 3D Positioning, Trajectory planning, Energy management, Multi-user MEC offloading | UAV, HAPS, LEO |
Throughput increase | Content caching, selection of the Tx elements in Multi-connectivity | UAV, HAPS |
Secondary link for backup | Network failures classification, Radio link outage prediction, load balancing | HAPS, LEO |
Disaster relief | UAV position optimization, Object detection and tracking, MEC offloading | UAV, HAPS |
Broadcasting/Multicasting | Content caching fetching/eviction strategy, MEC offloading | LEO, HAPS |
NTN Layer | ML Applications | Target NTE |
---|---|---|
Physical Layer | Constellation modulation schemes detection, pathloss prediction | UAV, HAPS, LEO |
Link and Medium Access Control Layers | Resource allocation, beams dynamic footprint size adjustment, dynamic spectrum allocation between NTEs, traffic prediction, NTE selection based on network congestion | UAV, HAPS, LEO |
Network Layer | ML powered routing protocol | UAV, HAPS |
Application Layer | Traffic classification, RTT estimation for throughput improvement | HAPS, LEO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliano, R.; Innocenti, E. Machine Learning Techniques for Non-Terrestrial Networks. Electronics 2023, 12, 652. https://doi.org/10.3390/electronics12030652
Giuliano R, Innocenti E. Machine Learning Techniques for Non-Terrestrial Networks. Electronics. 2023; 12(3):652. https://doi.org/10.3390/electronics12030652
Chicago/Turabian StyleGiuliano, Romeo, and Eros Innocenti. 2023. "Machine Learning Techniques for Non-Terrestrial Networks" Electronics 12, no. 3: 652. https://doi.org/10.3390/electronics12030652
APA StyleGiuliano, R., & Innocenti, E. (2023). Machine Learning Techniques for Non-Terrestrial Networks. Electronics, 12(3), 652. https://doi.org/10.3390/electronics12030652