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Abstract: As one of the promising paradigms of decentralized machine learning, multi-party learning
has attracted increasing attention, owing to its capability of preventing the privacy of participants
from being directly exposed to adversaries. Multi-party learning enables participants to train their
model locally without uploading private data to a server. However, recent studies have shown that
adversaries may launch a series of attacks on learning models and extract private information about
participants by analyzing the shared parameters. Moreover, existing privacy-preserving multi-party
learning approaches consume higher total privacy budgets, which poses a considerable challenge
to the compromise between privacy guarantees and model utility. To address this issue, this paper
explores an adaptive differentially private multi-party learning framework, which incorporates zero-
concentrated differential privacy technique into multi-party learning to get rid of privacy threats, and
offers sharper quantitative results. We further design a dynamic privacy budget allocating strategy
to alleviate the high accumulation of total privacy budgets and provide better privacy guarantees,
without compromising the model’s utility. We inject more noise into model parameters in the early
stages of model training and gradually reduce the volume of noise as the direction of gradient
descent becomes more accurate. Theoretical analysis and extensive experiments on benchmark
datasets validated that our approach could effectively improve the model’s performance with less
privacy loss.

Keywords: multi-party learning; privacy; differential privacy; privacy budget; noise perturbation

1. Introduction

With the popularization of artificial intelligence (AI), deep learning has brought about
notable achievements in autonomous driving [1,2], image recognition [3–5], medical diag-
nosis [6–8], and much more. Data is the oil for the development of AI, and the training of
AI-based products always requires a large number of representative datasets. In single-
party learning, personal data is collected in a centralized location. Data owners can neither
delete it nor control its purpose of use [9], and untrusted data curators, or malicious external
adversaries, may launch various attacks to eavesdrop on this sensitive information, which
poses a considerable threat to individual privacy. Multi-party learning [10,11] can alleviate
the aforementioned privacy threats by taking advantage of model structure. It enables
all participants to collaboratively build a joint model without exposing their private data.
Each participant trains their models locally and shares a fraction of model parameters
instead of original data to the server for model aggregation. Therefore, multi-party learn-
ing can, to a certain extent, prevent the local data of participants from being exposed to
the server.

Although multi-party learning avoids direct contact between the cloud server and
participants, it is still vulnerable to inference attacks and reconstruction attacks [12–18], es-
pecially if the model parameters are not fully safeguarded. As an example, Phong et al. [14]
demonstrated that uploaded gradients may be leveraged to extract local private data, since
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the ratio of the gradient of weights to that of the bias is approximate to the training input.
Hitaj et al. [15] designed a reconstruction attack model that enabled adversaries to construct
a generative adversarial network [19] that produced similar-looking samples of target data
by using the shared model as a discriminator. Melis et al. [17] showed that the adversary
in multi-party learning scenarios can build active and passive membership inferences to
deduce the inclusion or exclusion of the target sample.

To mitigate privacy threats in multi-party learning, several outstanding solutions
have been developed. Shokri and Shmatikov [9] designed the pioneering differentially
private distributed deep learning model, where participants learn their models locally,
based on private data, and upload a small portion of sanitized gradients to the server
to provide privacy guarantees for training data. Phong et al. [20] demonstrated that
in work [9], local data was still at risk of leaking to an honest-but-curious server. Thus,
they proposed an enhanced approach based on homomorphic encryption to prevent the
gradients from being attacked by an untrusted server. Geyer et al. [21] devised client-side
differentially private federated learning, which incorporates differential privacy into model
aggregation to hide the contribution of the participant. Unlike work [21], Zhao et al. [22]
perturbed the objective function, rather than gradients or model parameters, to avoid
potential privacy leakage. They first converted the objective function into polynomial form
and, then, injected perturbation into the coefficients of the polynomial to achieve privacy
guarantees. Although these methods can achieve privacy preservation, to some extent, they
still have limitations in model performance, communication overhead, and privacy loss.

Typical privacy-preserving techniques contain secure multi-party computation
(SMC) [23,24], homomorphic encryption (HE) [20,25], differential privacy (DP) [21,26,27],
etc. SMC is a lossless technique that provides strong privacy guarantees at the cost of
significant communication overhead, due to the multiple rounds of interactions. Although
HE directly allows algebraic operations on ciphertext without decryption, it is vulnerable to
privacy threats if participants are assigned the same secret key and collude with each other.
Compared to SMC and HE, differential privacy can not only reduce the communication
burden and computation overhead during the entire training process, but also achieve
provable and stronger privacy preservation. However, it is challenging for differential
privacy to pursue a compromise between privacy preservation and model performance.
Therefore, there is an urgent demand to seek a way to cut down the expenditure of privacy
budgets effectively, while maintaining a model’s utility.

This study developed an adaptive differentially private multi-party learning (ADPML)
framework, which can mitigate privacy leakage effectively without sacrificing model utility.
To defend the honest-but-curious server and participant, simultaneously, we incorporate
the zero-concentrated differential privacy technique into the shared model before uploading
them. Moreover, for the purpose of achieving the compromise between privacy preserva-
tion and model utility, we designed a dynamic privacy budget allocating strategy. Before
model aggregation, we injected more noise into model parameters in the early stages of
model training on the participant-side, and gradually reduced the amount of noise as the
direction of gradient descent became more accurate.

The contributions of this paper are three-fold:

• We propose an adaptive differentially private multi-party learning framework based
on the zero-concentrated differential privacy technique, which yields stronger privacy
guarantees and permits tighter bounds for privacy computations.

• We design a dynamic privacy budget allocating strategy to avoid superfluous injection
of noise and achieve the maximization of model accuracy under a high privacy-
preserving level. This strategy can effectively reduce total privacy budgets and out-
perform fixed noise allocation.

• We experimentally validate the utility of ADPML on two benchmark datasets.
Qualitative and quantitative experiments demonstrated that ADPML had better model
performance, while decreasing privacy loss.
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The remaining part of the paper proceeds in the following way. The preliminaries of
this work are introduced in Section 2. Section 3 deals with an overview of our approach.
The experimental evaluations are discussed in Section 4. At the end, we summarize the
paper in Section 5.

2. Preliminaries
2.1. Multi-Party Learning

As a canonical distributed learning system, multi-party learning allows participants
to learn their model locally without sharing training data with a server. A general multi-
party learning framework is shown in Figure 1, which comprises a cloud server and N
participants. Each participant Pi has its own local dataset Di, where i ∈ {1, 2, . . . , N}.
Formally, the task of multi-party learning is formulated as:

ω∗ = arg min
ω

N

∑
i=1

piFi(ω), (1)

where N is the total number of participants, pi =
|Di |
|D| denotes the relative impact of each

participant, and Fi(ω) expresses the loss function of the i-th participant. The global model

parameter ω can be calculated via model aggregation at the server, i.e., ω =
N
∑

i=1
piωi.

Three basic training steps of multi-party learning are shown as follows:

• The selected participants first conduct local training, based on their private data, and
then upload the trained parameters to the cloud server.

• The cloud server aggregates the parameters uploaded by all active participants, and
then conveys the aggregated parameters to the chosen participants.

• Participants update their models via the aggregated parameters. The iterative training
process continues until the convergence criterion of the updated model is satisfied.
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Figure 1. A system architecture for the multi-party learning training model with an honest-but-
curious server or participant.

2.2. Differential Privacy

As a promising privacy notion, differential privacy [28–30] is extensively applied in
data release [31] and data analysis [32]. It overcomes the weakness of traditional privacy-
preserving techniques [33–36] and offers rigorous and provable privacy guarantees for
statistics analysis. Differential privacy can make sure that the private information of each
individual is incapable of being inferred, even if the adversary possesses sufficient auxiliary
information. We define differential privacy as follows:
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Definition 1. ((ε, δ)-DP). Given two adjacent datasets D, D′ ∈ D differing on, at most, one
record, a randomized algorithm A : D → R satisfies (ε, δ)-DP if, for any set of outputs, O ⊆ R,
we have:

Pr[A(D) ∈ O] ≤ exp(ε)Pr
[
A
(

D′
)
∈ O

]
+ δ, (2)

where privacy budget ε represents the privacy guarantee level that algorithm A provides.
A smaller ε brings a stronger privacy-preserving level, and vice-versa. In addition, the parameter δ
represents a relaxation factor, which relaxes the requirement of differential privacy. If δ = 0, the
randomized algorithm A achieves pure differential privacy (ε-DP). And when δ > 0, A realizes
an approximate differential privacy ((ε, δ)-DP). In contrast to approximate differential privacy,
although pure differential privacy provides a more solid privacy guarantee, it may be too strict to
permit any meaningful consequence to be published.

Gaussian mechanism [30] is a fundamental operator to estimate privacy level for
numerical results. To guarantee (ε, δ)-DP, random noise generated from the Gaussian
distribution is injected into the output of any query function f (D) given the dataset D.
The volume of noise is decided by l2 sensitivity, which denotes the maximum change on
the output of query function f (D) when the record of any individual is changed.

Definition 2. (l2 Sensitivity). Given two adjacent datasets D, D′ ∈ D differing on, at most, one
record, a query function is denoted by f : D → Rd. The l2 sensitivity of query function f is defined
as:

∆2 f = max
D,D′

∥∥ f (D)− f
(

D′
)∥∥

2. (3)

Definition 3. (Gaussian Mechanism). Given a dataset D ∈ D, let f : D → Rd be a query
function with l2 sensitivity of ∆2 f . For ε ∈ (0, 1), the random algorithm A(D) = f (D) +
N
(
0, σ2), with

σ ≥ ∆2 f
ε

√
2 ln(1.25/δ) (4)

satisfies (ε, δ)-DP, where N
(
0, σ2) represents the Gaussian distribution with mean 0 and

covariance σ2.

2.3. Zero-Concentrated Differential Privacy

Zero-concentrated differential privacy (zCDP) [37] is a new relaxation version of
differential privacy, which can not only provide a stricter privacy definition, but also allow
a tighter, yet simpler, privacy analysis for fundamental tasks. Compared to ε-DP and (ε, δ)-
DP, zCDP offers a stronger group privacy guarantee and permits tighter bounds for privacy
computations. Consider a random variable called privacy loss that depends on the random
perturbation injected into the algorithm, then, for any set of outputs O ⊆ Range(A), the
privacy loss random variable Z is given by:

Z = log
Pr[A(D) = O]

Pr[A(D′) = O]
. (5)

ρ-zCDP entails a bound on the moment generating function of the privacy loss.
The definition of ρ-zCDP is described below.

Definition 4. ((ρ-zCDP)). Given two adjacent datasets D, D′ ∈ D differing on, at most, one
record, a randomized algorithm A : D → R guarantees ρ-zCDP if, for all α ∈ (1, ∞), we have

eDα(A(D)‖A(D′)) = E
[
e(α−1)Z

]
≤ e(α−1)αρ, (6)

where Dα(A(D)‖A(D′)) is the α-Rényi divergence between the distribution of A(D) and A(D′).
In addition, we also used the following proposition about zCDP throughout this paper.
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Proposition 1. If a randomized algorithmA provides ρ-zCDP, thenA is
(

ρ + 2
√

ρ log(1/δ), δ
)

-
differentially private for any δ > 0.

Proposition 2. Given a query function f : D → Rd, the Gaussian mechanism which returns
f (D) + N

(
0, σ2) satisfies (∆2 f )2

/(
2σ2)-zCDP.

3. Methodology
3.1. Overview

In daily routine, it is a universal situation that an unreliable server and participants
appear in distributed training environments. Consider a realistic scenario where several
small-sized companies train a joint model cooperatively through a rented cloud server,
rather than training their model locally, to obtain more accurate results for a prediction
task. The rented server may be curious about private information belonging to participants,
or the small-sized companies involved in the training process may also intend to have a
look at private data that belongs to other participants. Thus, the existence of the unreliable
server and participants results in a non-ignorable problem of privacy leakage during the
joint training process.

In ADPML, we assumed the server was honest-but-curious, that is, the server abides
by the protocol with all participants; however, it may attempt to deduce the training data,
or private features, of participants, based on the convenience that the server can fully
access local shared parameters. In addition, we supposed that participants were honest-
but-curious. In other words, the participants were interested in the privacy of others, and
they might conspire with each other to recover the privacy of the victim. According to the
above assumptions, our goal was to protect the privacy of participants from being stolen
by adversaries throughout the training process.

The system architecture of our adaptive differentially private multi-party learning
framework is illustrated in Figure 2. We assumed there are N participants and a cloud server.
Each participant simultaneously conducts local training on the basis of their private training
data, and the learned local models have the same architecture and identical learning goals.
The cloud server may be administered by an honest-but-curious curator, and it performs
model aggregation over parameters uploaded by participants. This training process aims to
learn a model that incurs lower communication overhead and alleviates the privacy threats
of local private training data.

Cloud Server: Share the latest value of updated parametersCloud Server: Share the latest value of updated parameters

Dynamic Privacy Budget 

Allocating Strategy
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Local Dataset 1Local Dataset 1Local Dataset 1

Local TrainingLocal Training

Noisy Parameters Noisy Parameters 
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1Local Parameters 
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1 2 N

 

Figure 2. The system architecture of adaptive differentially private multi-party learning framework.

In our model, the server first shares the initial global parameter with participants.
Then, in the t-th aggregation, the K participants learn their local model in an adaptive
differentially private manner. To be specific, active participants learn parameters based
on local training data. After local training is finished, each active participant injects
perturbation into the trained parameters and shares the perturbed parameters with the
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cloud server. Then, the server aggregates the perturbed local parameters, updates the
global parameters, and distributes the aggregated parameters to each active participant
for the local model update. The training procedure terminates when the aggregation time
reaches the preset termination conditions. The main notations used throughout the paper
are exhibited in Table 1.

Table 1. Notations.

Notations Explanation

A Randomized algorithm
D, D′ Adjacent datasets

ε Privacy budget
δ Relaxation factor

∆2 f l2 Sensitivity
ρ The privacy loss related to zCDP

ρcurrent The privacy loss in the current epoch
N The number of all participants

K The number of chosen participants
(1 ≤ K ≤ N)

T The number of communication rounds

t The index of the current t-th communication
round

ω
The vector of model parameters after

aggregating
Fi(ω) Local loss function of the i-th participant

ωi
The vector of model parameters for the i-th

participant
ω̃i Noisy model parameters for the i-th participant
C Clipping threshold for bounding ω
β Privacy loss increase rate

3.2. Dynamic Privacy Budget Allocating

Traditional differentially private deep learning approaches prefer to inject a fixed vol-
ume of noise into parameters to provide privacy guarantees for sensitive data, which
may not be suitable for real scenarios and poses a challenge to the compromise be-
tween model utility and privacy preservation. In practice, existing equivalent noise ad-
dition methods ignore the characteristics of deep learning models. In the early phase
of model optimization, parameters are initialized randomly, and gradient values are
large, so there is a lot of potential space for model optimization. At this time, the model
can still achieve better parameter updates even if gradients are not measured exactly.
Consequently, it is appropriate to perform rough parameter updates in the early training
stages. However, as the model parameters gradually approach the optimum, the direction
of gradient descent becomes more precise, and there is an urgent demand to accurately
measure the volume of added noise. Thus, dynamic privacy budget allocating is more
appropriate than fixed noise addition [38].

Therefore, we injected more noise into parameters at the beginning of model training,
and gradually decreased the volume of noise as model parameters gradually became closer
to the optimum. This was because, at the beginning of model optimization, the direction of
most updated parameters remained unchanged, even if relatively large noise was injected.
Even though the direction of some parameter updates changed, it can be amended during
the next iteration. Then, as model parameters gradually approached the optimum, the
volume of added noise should be decreased for further model optimization, since the
optimizer needs to refine the optimal area in the later stage of model training, and a small
amount of noise has an impact on the direction of gradient decent.

In ADPML, we first introduced the maximum privacy loss ρmax and the minimum
privacy loss ρmin. To reduce the accumulation of total privacy budgets, we gradually
increased the minimum privacy loss ρmin to the maximum privacy loss ρmax, according to
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the current epoch and a predefined privacy loss increase rate β during the early stages of
model optimization. The growth pattern of privacy loss was defined as:

ρcurrent = (1 + βt)ρmin, (7)

where t is the current epoch, and β controls the growth rate of privacy loss. The dynamic
privacy loss would be maintained at a certain level in the later period, i.e., the predefined
maximum privacy loss ρmax, and would not increase anymore. This was because a slight
alteration in model parameters would lead to a huge change in the model output during the
later training stages, and it would be difficult for the model to converge to a local optimum
if we introduced excessive noise to the parameters.

According to Proposition 2, we calculated the noisy parameters in light of the Gaussian

mechanism, with variance (∆2 f )2

2ρ as:

ω̃
(t)
i = ω

(t)
i +N

(
0,

2C2

|Di|2ρ

)
, (8)

where C is a parameter clipping constant for bounding ωi. Taking advantage of this
dynamic privacy budget allocating, we measured the current parameters by:

ω̃
(t)
i =


ω
(t)
i +N

(
0, 2C2

|Di |2ρcurrent

)
, ρcurrent < ρmax

ω
(t)
i +N

(
0, 2C2

|Di |2ρmax

)
, ρcurrent ≥ ρmax

(9)

to reduce the superfluous injection of noise and decrease the excessive accumulation of
total privacy budgets.

Algorithm 1 outlines ADPML with a dynamic privacy budget allocating strategy.
From the perspective of participants, each of them independently trains their local models
on their private datasets and shares the noisy parameters of the local model with the cloud
server after employing differential privacy to achieve privacy guarantees. To be specific, the
algorithm has two main components for participants, i.e., parameter clipping and adaptive
noise injection.

• Parameter clipping. We calculated the noisy parameter ω̃
(t+1)
i via the Gaussian mecha-

nism with variance σ2. σ2 relied on the maximum effect an element can have on ω
(t+1)
i ,

which was determined by ∆2 f . Therefore, for the purpose of providing a boundary to the
impact on ω

(t+1)
i , we computed local parameters ω

(t+1)
i = arg min

ωi
Fi(ωi) and divided

local parameters ω
(t+1)
i by max

(
1,

∥∥∥ω
(t+1)
i

∥∥∥
C

)
, given a predefined clipping threshold

C. Thus, the sensitivity of parameters ∆2 f was bound by C.
• Adaptive noise injection. In order to reduce the total privacy budgets, while main-

taining the model performance, we adaptively redistributed privacy loss for adjusting
noise scale, based on the dynamic privacy budget allocating strategy. We first trans-
formed (ε, δ)-DP to ρ-zCDP through Proposition 1 and defined a privacy loss increase
rate β. Then, we gradually increased the privacy loss to the maximum ρmax, based on
β, with the direction of the gradient descent becoming more accurate.

From the cloud server point of view, after active participants accomplished local
training and shared their sanitized model update with the cloud server to achieve model
aggregation, the cloud server updated the global parameter, based on the uploaded noisy
parameters by means of:

ω(t+1) =
1
K

K

∑
i=1

ω̃
(t+1)
i . (10)
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Algorithm 1 Adaptive Differentially Private Multi-Party Learning (ADPML).

Input: Number of participants joining in each communication round K, rounds of com-
munication T, privacy budget εmin and εmax, relaxation factor δ, clipping threshold C,
privacy loss increase rate β.

Output: The model parameter ωT .
1: Initialize ω

(0)
i = ω(0), and t = 0.

2: while t < T do
3: Local training process:
4: while i ∈ K do
5: Update local parameters ω

(t+1)
i = arg min

ωi
Fi

(
ωi, ω

(t)
i

)
.

6: Clip local parameters ω
(t+1)
i = ω

(t+1)
i

/
max

(
1,

∥∥∥ω
(t+1)
i

∥∥∥
C

)
.

7: Calculate the current privacy loss ρcurrent ← (1 + βt)ρmin. // Compared to
(ε, δ)-DP, we achieved the transformation of privacy budgets by using Proposition 1.

8: if ρcurrent ≥ ρmax then

9: Add noise and upload parameters ω̃
(t)
i = ω

(t)
i +N

(
0, 2C2

|Di |2ρmax

)
.

10: else

11: Add adaptive noise and upload parameters ω̃
(t)
i = ω

(t)
i +N

(
0, 2C2

|Di |2ρcurrent

)
.

12: end if
13: end while
14: Model aggregation process:
15: Update the global parameters ω(t+1) = ∑

i∈K
piω̃

(t+1)
i .

16: The cloud server broadcasts global parameters.
17: Local testing process:
18: while Pi ∈ {P1, P2, · · · , PN} do
19: Test the aggregating parameters ω(t+1) using local dataset.
20: end while
21: t = t + 1.
22: end while

3.3. Sensitivity and Privacy Analysis

From the upload perspective, given neighbor datasets Di, D′i ∈ D for the i-th partici-
pant, the local training process of each participant can be depicted as:

ωi(Di) = arg min
ω

Fi(Di, ω)

=
1
|Di|

|Di |

∑
j=1

arg min
ω

Fi
(

Di,j, ω
)
.

(11)

Consequently, the sensitivity of the local training process of the i-th participant can be
obtained by:

∆ωi(Di) =

∥∥∥∥∥∥ 1
|Di |

|Di |
∑
j=1

arg min
ω

Fi
(

Di,j , ω
)
− 1
|D′ i |

|D′ i |
∑
j=1

arg min
ω

Fi
(

D′ i,j , ω
)∥∥∥∥∥∥

≤

∥∥∥∥∥∥ 1
|Di |

|Di |
∑
j=1

arg min
ω

Fi
(

Di,j , ω
)∥∥∥∥∥∥+

∥∥∥∥∥∥ 1
|D′ i |

|D′ i |
∑
j=1

arg min
ω

Fi
(

D′ i,j , ω
)∥∥∥∥∥∥

≤ 2 max
Di ,D′ i

∥∥∥∥∥∥ 1
|Di |

|Di |
∑
j=1

arg min
ω

Fi
(

Di,j , ω
)∥∥∥∥∥∥

≤ 2
|Di |

C,

(12)



Electronics 2023, 12, 658 9 of 17

where Di,j is the j-th record in the dataset Di. According to the Parallel Composition
Theorem [30] of differential privacy, the global sensitivity during the upload process can be
defined, based on the above result, which is expressed as:

∆ωi = max{∆ωi(Di)}, f or ∀i ∈ N. (13)

From the download perspective, the aggregated parameters are given by:

ω =
N

∑
i=1

piωi = p1ω1 + · · ·+ piωi + · · ·+ pNωN , (14)

where ω is the aggregated parameters at the cloud server. The sensitivity for Di after model
aggregation is denoted as:

∆ω = max
Di ,D′ i

∥∥ω(Di)−ω
(

D′ i
)∥∥. (15)

Then, based on Equations (11) and (15), we have:

ω(Di) = p1ω1(D1) + · · ·+ piωi(Di) + · · ·+ pNωN(DN), (16)

and
ω
(

D′ i
)
= p1ω1(D1) + · · ·+ piωi

(
D′ i
)
+ · · ·+ pNωN(DN). (17)

Thus, we denote the sensitivity as:

∆ω = max
Di ,D′ i

∥∥piωi(Di)− piωi
(

D′ i
)∥∥

= pi max
Di ,D′ i

∥∥ωi(Di)−ωi
(

D′ i
)∥∥

=
2Cpi
|Di|

.

(18)

In summary, the global sensitivity after model aggregation is given by:

∆ω = max{∆ω(Di)}. (19)

Focusing on attacks from the honest-but-curious server, these servers may be full of cu-
riosity about private training data and attempt to deduce private information of participants.
However, the server cannot come into contact with the private information of each partici-
pant directly since all uploaded parameters from each participant are perturbed adaptively
by incorporating differential privacy into the computation procedure. Therefore, we achieve
solid privacy preservation to resist privacy threats from an honest-but-curious server.
Concerning attacks from the honest-but-curious participant, who is interested in the local
training data of others, or is even colluding with another participant to recover private
information of a victim, it is still not easy for adversaries to deduce the private infor-
mation of the victim. This is because each participant conducts their local training and
shares noisy parameters independently, and each participant has no influence on the
other. The aggregation of parameters is on the basis of the perturbed parameters, so
the curious participant has no opportunity to directly access the original parameters.
Consequently, the ADPML framework can also mitigate privacy concerns regarding honest-
but-curious participants, while enhancing privacy guarantees during the model training.
Moreover, we derived the proof of the privacy level of Algorithm 1.

Theorem 1. Algorithm 1 satisfied (ε, δ)-DP.
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Proof. Given the number of aggregation times T, and the number of aggregation a required
to reach ρmax. Algorithm 1 guaranteedρ-zCDP with

ρtotal = ρ0 + ρ1 + . . . + ρT−1

= [ρmin + (1 + β)ρmin + . . . + (1 + (a− 1)β)ρmin] + (T − a)ρmax

=
aρmin[2 + β(a− 1)]

2
+ (T − a)ρmax.

(20)

Furthermore, Algorithm 1 satisfied (ε, δ)-DP, where

ε=ρ + 2
√

ρ log(1/δ). (21)

4. Experiments

In this part, we first introduce the experimental setup, including datasets, model archi-
tectures, and comparison algorithms. Then, we evaluate the performance of ADPML
in terms of privacy level, number of participants, and relaxation factor, respectively.
Experiments were also performed on the economization proportion of total privacy budgets
for different privacy loss increase rates β to further indicate the effectiveness of the ADPML
framework.

4.1. Experimental Setup

We manifested the performance of our ADPML framework based on two benchmark
datasets, which are shown as follows.

• MNIST [39] is a benchmark dataset that is related to handwritten grey-level images of
digits from 0 to 9. MNIST contains 70,000 grey-level images including 60,000 training
examples and 10,000 test examples, and each example is a 28× 28 image.

• CIFAR-10 [40] comprises 60,000 RGB color images with ten categories, such as cars,
cats, dogs, ships, and so on. There are 50,000 training examples and 10,000 test
examples in CIFAR-10, and each example has size 32× 32 with three channels.

Our experiments were conducted on two different deep learning architectures for
MNIST and CIFAR-10 datasets, respectively, which are shown in Figure 3. For the MNIST
dataset, the network architecture contained 2 convolutional layers, the first layer with
32 channels and the second one with 64 channels. The convolutional layers used 5× 5
convolutions with stride 1, each followed by 2× 2 max pooling. The fully connected layer
had 512 units, and we used a softmax containing 10 digits. For the CIFAR-10 dataset,
we used a similar model to the MNIST dataset, which was comprised of 3 convolutional
layers and 2 fully connected layers. In the following, we set the number of participants
as N = 30, N = 60 and N = 90, split the training dataset according to the predefined
number of participants, and set the learning rate on MNIST and CIFAR-10 to 0.002 and 0.01,
respectively. Next, we defined the maximum privacy loss εmax as 10 and the minimum
privacy loss εmin as 1. The clipping threshold C was set to 4. According to Proposition 1,
we could realize the transformation of (ε, δ)-DP to ρ-zCDP, as shown below:

ε ≥ ρ+2
√

ρ log(1/δ). (22)

We trained and tested all models ten times and reported the average results. Further-
more, we compared ADPML and four baselines, which are listed below.

• ADPML, a differential privacy-enabled multi-party learning framework with a dy-
namic privacy budget allocating strategy.

• Centralized, a centralized model training on the entire datasets from all participants
without any privacy consideration.
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• SecProbe [22], which protects the privacy of each participant by inserting perturbation
into the objective function based on the functional mechanism.

• CSDP [21], which injects perturbation into the sum of all updates from each participant.
• Fixed Noise (εmax), a differentially private multi-party learning framework with a

fixed minimum noise level εmax.
• Fixed Noise (εmin), a differentially private multi-party learning framework with a

fixed maximum noise level εmin.

Conv2D(32,[5,5])/ReLU

Input(28*28*1)

MaxPooling2D([2,2])

Conv2D(64,[5,5])/ReLU

MaxPooling2D([2,2])

Dense(512)/ReLU

Dense(10)

Output

(a) MNIST

Conv2D(128,[3,3])/ReLU

Input(32*32*3)

MaxPooling2D([2,2])

Conv2D(128,[5,5])/ReLU

MaxPooling2D([2,2])

Dense(512)/ReLU

Dense(10)

Output

Conv2D(256,[5,5])/ReLU

MaxPooling2D([2,2])

BatchNorm

BatchNorm

BatchNorm

(b) CIFAR-10

Figure 3. The network architectures of MNIST and CIFAR-10 datasets.

4.2. Experiments on the Level of Privacy Guarantees

In Figure 4, we compared ADPML and Centralized, SecProbe, and CSDP algorithms
under the same total privacy budget, based on different numbers of participants (N = 30,
N = 60, N = 90). In this experiment, we set δ = 10−2, β= 0.9 for MNIST and δ = 10−5,
β= 0.6 for CIFAR-10, respectively. As the model training proceeded, more privacy budget
was accumulated. However, the model utility of ADPML outperformed other baselines
under the same value of accumulated total privacy budget. In fact, CSDP added the
same volume of noise during each epoch, which might not only increase the total privacy
budget, but also degrade the model performance compared to an adaptive noise addition.
Moreover, CSDP conducted the perturbation after model aggregation, which might not be
solid enough to resist the honest-but-curious participants. Although SecProbe alleviated the
attack effectively, it distorted the objective function of each local model through objective
perturbation. The objective perturbation depended on the minimum curvature instead
of the expected curvature, which might also increase the amount of noise [41]. Therefore,
fixed noise addition approaches might pose a considerable challenge to the compromise
between model utility and privacy preservation.

In addition, as shown in Figure 5, Tables 2 and 3, ADPML accumulated less total
privacy budget compared to the Fixed Noise (εmax), while acquiring almost the same
accuracy as the Fixed Noise (εmax). What was more, the model accuracy of ADPML and
Fixed Noise (εmax) was better than Fixed Noise (εmin), since a larger ε implied a lower
variance of the noise, and, in contrast, a better model performance implied the relaxation of
the privacy-preserving level. When the value of ε was small, a large volume of perturbation
would be injected, i.e., stronger privacy guarantees were achieved, but at the expense
of model utility. Therefore, a dynamic privacy budget allocating was preferable to a
fixed noise addition approach, as we could add more noise to model parameters at the
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beginning of model training and gradually decrease the amount of perturbation to control
the accumulation of total privacy budgets and maintain the model’s accuracy. At the same
time, although ADPML took slightly more communication rounds than Fixed Noise (εmax),
ADPML provided stronger privacy guarantees and saved more total privacy budget.
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Figure 4. The model accuracy of different strategies for 30, 60, and 90 participants.
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Figure 5. The total privacy budget of different noise addition strategies for 30, 60, and 90 participants.

Table 2. The communication round of different strategies for 30, 60, and 90 participants.

Dataset Participants

Methods

Fixed Noise
(εmax)

Fixed Noise
(εmin) ADPML

MNIST
N = 30 16 18 18
N = 60 15 17 17
N = 90 14 16 16

CIFAR-10
N = 30 20 23 23
N = 60 19 22 22
N = 90 18 21 21
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Table 3. The model accuracy of different strategies for 30, 60, and 90 participants.

Dataset Participants

Methods

Fixed Noise
(εmax)

Fixed Noise
(εmin) ADPML

MNIST
N = 30 94.11± 1.08 72.15± 0.69 94.16 ± 0.27
N = 60 95.62± 0.23 73.68± 0.54 95.63 ± 0.33
N = 90 96.88± 0.37 74.36± 0.12 96.92 ± 1.12

CIFAR-10
N = 30 80.07± 0.42 63.23± 0.17 80.06 ± 0.28
N = 60 80.98± 0.29 64.84± 0.40 80.96 ± 0.53
N = 90 82.17± 2.46 65.21± 0.21 82.14 ± 0.16

4.3. Experiments on the Number of Participants

In this subsection, to illustrate the relationship between the number of participants and
model accuracy, we defined privacy parameters δ = 10−2, β= 0.9 for MNIST and δ = 10−5,
β= 0.6 for CIFAR-10. Participant numbers were set to N = 30, N = 60, N = 90, respectively.
According to Figure 6, the number of participants N exerted an impact on model accuracy.
Larger N indicated better model performance, since a great many participants not only
implied a lower variance of noise, but also provided more training data and local gradients
for model optimization.
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Figure 6. The model accuracy of ADPML under different total privacy budgets for 30, 60, and 90
participants.

In addition, according to Figure 5, Tables 2 and 3, we could derive that the accumu-
lated total privacy budgets moderately decreased as the number of participants increased,
since the more participants, the greater their contribution and the faster the model con-
verged. Moreover, although the ADPML framework rendered the training process slightly
time-consuming for realizing almost an identical accuracy as the Fixed Noise (εmax) model,
it economized around 21–24% total privacy budgets and provided stronger privacy guaran-
tees than the Fixed Noise (εmax).

4.4. Experiments on the Relaxation Factor

Figure 7 shows the influence of different relaxation factors δ on model accuracy under
various total privacy budgets. In this subsection, the number of participants was set as
N = 60, and we varied the relaxation factor δ in

{
10−5, 10−4, 10−3, 10−2

}
. As can be

observed from Figure 7, each curve portrays the optimal performance acquired by a fixed
relaxation factor δ. The change rate of model accuracy rose faster in the early stages, then
gradually tended to be gentle, and eventually converged to a high level.
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Figure 7. The model accuracy of ADPML under different total privacy budgets for various choices of
relaxation factors.

As shown in Figure 7, we could derive that the ADPML framework achieved the
best performance when the relaxation factor δ = 10−2 on MNIST, and the ADPML frame-
work with δ = 10−5 outperformed other settings of relaxation factor δ on CIFAR-10.
Moreover, from Figure 7, it cannot be denied that the change in total privacy budgets
exerted a great impact on model performance for a fixed δ, whereas different values of
relaxation factor δ had little impact on the model performance. Consequently, the privacy
budget was of utmost importance in the prediction of model accuracy.

4.5. Experiments on the Privacy Loss Increase Rate

In Figures 8 and 9, we explored the relationship between privacy loss increase rate β
and economization proportion of total privacy budgets and model accuracy for N = 30,
N = 60, and N = 90 participants, respectively. In this experiment, we also used the settings
with the best performance, i.e., we set δ = 10−2 for MNIST and set δ = 10−5 for CIFAR-10.
The privacy loss increase rate β controlled how fast the privacy loss grew. According to
Figure 8, compared to other values of the privacy loss increase rate β, ADPML economized
the most total privacy budgets when β = 0.7 on MNIST. For CIFAR-10, ADPML acquired
the lowest total privacy budget when β = 0.6. If β was large, the growth rate of the cumu-
lative total privacy budget was faster, and the noise level rapidly reached the lowest initial
value (i.e., εmax); thus, the economization proportion of the total privacy budget reduced.
On the flip side, when the value of β was excessively small, more epochs were required to
reach the minimum noise level, and more privacy budget was spent during training.
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Figure 8. The economization proportion of total privacy budgets with different privacy loss increase
rates for 30, 60, and 90 participants respectively under ADPML.
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Figure 9. The model accuracy under different privacy loss increase rates for 30, 60, and 90 participants
under ADPML.

In Figure 9, we derived that the change of privacy loss increase rate β had an influence
on model performance. When β was small, the model accuracy was affected by the setting
of β, whereas when β became large, the effect of β on model performance tended to be
stable. This was because the total privacy budget increased slowly when β was small,
which led to a gradual increase in the amount of noise injected into model parameters,
thereby affecting the accuracy of the model. However, when the privacy loss increase rate β
became larger, the volume of noise added to model parameters became progressively closer
to the minimum value, and the model parameters approached the optimum gradually.
Furthermore, the model accuracy tended to be stable. Combined with Figure 4, we deduced
that ADPML could outperform baselines at an identical value of the total privacy budget.
On the flip side, ADPML could decrease the accumulation of total privacy budgets by
taking advantage of the introduction of the privacy loss increase rate.

5. Conclusions

In this study, we investigated a zero-concentrated differential privacy algorithm in
multi-party learning to protect the privacy of participants. We developed a dynamic privacy
budget allocating strategy to avoid the excessive accumulation of total privacy budgets,
while achieving a better compromise between model utility and privacy preservation,
compared to traditional differential privacy preservation approaches with lower model
accuracy and higher privacy cost. During the early stages of model training, we injected
more noise into model parameters at the participant-side before aggregation, and gradually
decreased the amount of noise with the direction of the gradient descent becoming more
accurate. Rigorous experiments, validated on two benchmark datasets, illustrated the
effectiveness of the ADPML framework. Although the proposed framework reduced
the consumption of total privacy budgets, it was still not independent of the number of
training epochs. Therefore, we plan to explore some novel approaches to improve the
independence of the privacy budget, so that the consumption of total privacy budgets can
become independent of the number of training steps. Moreover, it is worthwhile to extend
the differential privacy mechanism to image data, and then integrate this notion into the
ADPML framework to further improve the practicality of the model.
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AI Artificial intelligence
GAN Generative adversarial network
SMC Secure multi-party computation
HE Homomorphic encryption
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zCDP Zero-concentrated differential privacy
ADPML Adaptive differentially private multi-party learning
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