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Abstract: In the realm of the emergence and spread of infectious diseases with pandemic potential
throughout the history, plenty of pandemics (and epidemics), from the plague to AIDS (1981) and
SARS (in 2003) to the bunch of COVID variants, have tormented mankind. Though plenty of
technological innovations are overwhelmingly progressing to curb them—a significant number of
such pandemics astounded the world, impacting billions of lives and posing uncovered challenges to
healthcare organizations and clinical pathologists globally. In view of addressing these limitations, a
critically exhaustive review is performed to signify the prospective role of technological advancements
and highlight the implicit problems associated with rendering best quality lifesaving treatments to
the patient community. The proposed review work is conducted in two parts. Part 1 is essentially
focused upon discussion of advanced technologies akin to artificial intelligence, Big Data, block chain
technology, open-source technology, cloud computing, etc. Research works governing applicability
of these technologies in solving many uncovered healthcare issues prominently faced by doctors and
surgeons in the fields of cardiology, medicine, neurology, orthopaedics, paediatrics, gynaecology,
psychiatry, plastic surgery, etc., as well as their role in curtailing the spread of numerous infectious,
pathological, neurotic maladies is thrown light off. Boundary conditions and implicitly associated
challenges substantiated by remedies coupled with future directions are presented at the end.

Keywords: artificial intelligence; big data; block chain; cancer; cardiology; cloud computing; healthcare;
hololens; robotics; open-source technology

1. Introduction

Technology is astounding; it is completely surrounding every aspect of the 21st century human
lives—indeed it is really an exciting time for healthcare and information technology (IT).

From the past few decades and centuries, different types of pulmonary (viral), bacte-
rial, and inflammatory diseases have continuously posed challenges to clinical pathologists
and technocrats—evidently exposing the limitations of existing public health practices [1].
Characteristically, the above mentioned viral diseases are an outcome of the different
genetic substances (viruses) found in air, water, soil, etc.—causing diversified infectious
diseases from the flu and cold to the deadly COVID-19 pandemic and its variants. On
the other hand, pandemics affect the internal human immunity system, liver, and other
organs, gradually damaging the healthy cells, thereby enhancing morbidity and mortality
rates [2] and generating social and economic turbulences [3]. Typically, pandemics are
so tricky, in that sometimes they start with meek illness and slowly affect the respira-
tory tract, targeting the internal immunity system and ultimately leading to multi-organ
failures in most patients, ultimately followed by cardiac arrests and deaths [4–9]. The
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sudden outburst of the COVID-19 pandemic uncovered the deficiencies of global health-
care systems in preparing to handle emergency public-health situations—in addition to
the existing uncovered maladies in clinical microbiology, medical education, preoperative
surgical planning, spine medicine, tuberculosis diagnosis, mastectomy surgical planning,
orthopaedic surgery, laparoscopic surgery, surgical training, robotic surgeries, anxiety
(and depression treatments), hospital navigations, etc. Therefore, the need for addressing
the gaps and deficits associated with rendering best quality preventive life-saving emer-
gency treatments to the patient community, as well as uncovering the variant number of
unspoken medical issues (disorders) and ailments that serve as major hindrances in saving
lives of people, has motivated authors to conduct this review work to decipher the contri-
bution of innovative technological advancements governing healthcare applications. The
proposed review work was conducted in two parts, such that contribution of technologies,
such as artificial intelligence (and its subsets—machine learning and deep learning), Big
Data analytics, block-chain technology, open source technologies, and cloud computing are
discussed in the current PART-I manuscript, while technologies such as robotics, drones,
3D printing, IoT (Internet of things), virtual/augmented/mixed reality, and their roles
played in uncovering many healthcare issues specifically targeting the manifold health-
care domain and its allied segments to mimic various healthcare trends [10] are left for
discussion in Part II of the manuscript.

As many healthcare organizations are maintaining the critical patient health data
in various heterogeneous systems, it is exceptionally difficult for healthcare providers
to deliver superior quality healthcare services to the patients. Keeping in view all these
limitations, artificial intelligence (AI) systems are deployed to ensure life-saving timely
decisions [11,12] and heart failure prediction using different data modalities [13], machine
learning (ML) classifiers and deep learning(DL) algorithms to interpret medical findings
akin to epilepsy [14,15], nerve and muscle diseases [16,17], heart rhythms [18,19], cancer
predictions [20], ill effects of virus diseases [21], and biomedical studies of other health-
care segments [22], an ML approach survey on bone-segmentation techniques in knee
osteoarthritis [23], DL techniques for estimation of articular cartilage loss rate [24], 3D CNN
deployment for more accurate diagnosis of knee osteoarthritis [25,26], and the prediction of
knee joint kinematics from wearable sensor data [27], and radiologists deployed advanced
DL algorithms and Big Data in healthcare sectors [28] to signify the prominent role of
Big Data in hospital management and medical waste reduction [29]. Since AI-based DL
algorithms are limited by the computing power requirements and implicit complexity
levels, advancements in Big Data-based shallow network-enabled computing systems to
react faster than humans in different complex situations have been exploring the role of
Big Data in modeling the viral activities globally [30]. The government of France formed a
worldwide AI system (Well-being Data Hub) to ensure collaborative working environment
between scientists and specialists of society to provide outstanding clinical information for
the society.

Today, Chatbot and virtual patient care technologies decide the order of treatment
for patients (or casualties), while AI and supercomputing performances are focused upon
accelerated research works to uncover the inhabitancy of pre-diagnostic requirements
and surgical hindrances (and viruses and bacterial infections) occasionally challenging
the clinical pathologists, surgeons, and doctors were developing therapeutics. On the
other hand, investigations are under progression to innovate hypersensitive technological
gadgets for assisting clinical specialists, thereby helping governments to safeguard health
and lives of patient community. The rest of the manuscript is organized as follows—in
Section 2-survey and review works pertaining to applicability of AI, Big Data, block chain,
open-source and cloud computing technologies to healthcare applications is discussed.
Section 3 provides an overview of advanced technologies with an elaborative discussion
on investigative healthcare frameworks and their applicability. Further the implicit pros
and cons associated with unspoken challenges with wide scope for future explorations are
presented in Section 4. Section 5 brings out the concluding remarks.
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2. Overview of Technological Contributions to Healthcare Sector

The past few decades witnessed multiple research works to determine the best possi-
ble ways of subjecting technological advancements to revamp the healthcare domain by
continuously providing solutions to nature-thrown viruses, pandemics, and clinical issues,
as well as diagnostic procedures relevant to cardiology, neurology, orthopaedics, dentistry,
oncology. etc. This section of the manuscript is aimed at highlighting the survey and review
works pertaining to applicability of AI, Big Data, block chain, open-source and cloud
computing technologies to various healthcare issues. There are AI-based healthcare apps to
measure patient health conditions, provide medication warnings, products (IBM Watson)
to assist clinical pathologists in oncology, breast cancer colorectal cancer, rectal cancer, lung
cancer, etc., typically highlighting the potential of AI to improve the therapeutic accuracy
and clinical treatment process.

On the other hand, large amounts of clinical and patient data (Big Data) are gener-
ated at an unprecedented speed for documenting electronic health records, with many
novel investigations and discoveries being published time-to-time ensuring the efficient
management and interpretation of Big Data opening new avenues for modern healthcare.
Now, healthcare is at an arena where regularly evolving use cases are handled by different
healthcare organizations and industries through the adoption of block chain technology,
such that members of the research community and practitioners typically grasping novel
block chain-based healthcare applications targeting them. Rapidly developing innovations
depicting the applicability of IoT technology, coupled with the variant types of sensors
connecting smart devices, promoted the seamless requirement of data analysis and data
storage platforms, such as cloud computing. The gradual and systematic transformation in
healthcare systems to ensure highly efficient and flexible healthcare services to the patient
community can be attributed to multiple investigations taken place over past few decades.

Table 1 summarizes the research findings extracted from various survey papers and
review papers depicting the applicability of technologies such as AI, Big Data, block chain,
and open-source and cloud computing technologies to solve clinical and healthcare issues.
In the current manuscript, the authors have pooled research data pertaining to all the above
five technologies, enabling readers to make them abreast of technological know-how’s
(relevant to healthcare sector) and providing a direction for future investigations to be
carried out, thus paving way for multi-disciplinary collaborative research works.

Table 1. Past review highlights of various technologies for healthcare applications.

Year Past Review Highlights Reference

Artificial Intelligence

2021 Review to summarize the application of virtual and augmented reality technologies to
orthopaedic surgery training and practice aims. [31]

2020 Review aimed to provide an overview of potential applications of AI and Big Data in the
global effort to manage the COVID-19 pandemic. [32]

2019 Evolution of research in AI in health and medicine: A bibliometric study. [33]

2018 Literature review depicting application of machine learning techniques and methods to solve
orthopedic problems (covering articles of last two decades). [34]

2016 IBM computing system Watson for oncology with Manipal Hospitals. [35]

2004 AI-based technologies depicting innovations in medicine and healthcare industry. [36]

2016 Big Data application review in bioinformatics, clinical informatics, imaging informatics, and
public health informatics. [37]

2015 Cloud framework to ensure concurrent and scalable medical record retrieval. [38]

2014 Review on facilitating big data to predict hazards of disease incidence and improve primary care. [39]

2016 Survey on research advancements in ML for Big Data processing. [40]

2022 Review of blockchain technology in healthcare, finance, wireless networks, IoT, andsmart grids. [41]
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Table 1. Cont.

Year Past Review Highlights Reference

2021 Survey depicting various research works pertaining to deployment of block chain in Internet
of Things (IoT). [42]

2021 Comprehensive survey of emerging IoT technologies, machine learning, and blockchain for
healthcare applications. [43]

2020 Literature review of blockchain approaches for electronic health record systems. [44]

2019 Review of block chain model implementation to existing and latest healthcare scenarios. [45]

2020 Attempt to analyze combination of IoT and cloud computing for healthcare applications. [46]

2019 Attempt to highlight research challenges to build a security model for EHR. [47]

2019 Survey depicting development of IoT- and cloud computing-based healthcare applications. [48]

3. Emerging Technologies

“Technological Advancement—a boon to Patients and Healthcare Providers”
Technological advancements deeply penetrated and significantly impacted clinical

care and the healthcare industry, to such an extent that the immersion of encroaching
technologies into healthcare sector witnessed exponential expansions, in conjunction with
societal advancements, specifically (since last 20 years) enabling clinicians and doctors
to ensure better patient care and treatments. A few breakthrough technological inven-
tions, such as infusion pumps, haemodialysis, heart pressure monitoring valves, and MRI
scanners, etc., continuously redefined the routine medicinal approaches of treatments.
Keeping in view the emerging population rise and pressing demands to provide lifesaving
medical treatments at higher success rates—technological advancements are diverted to-
wards clinical research, diagnosis, treatments, surgeries, etc, thanks to the advancements
of information technology (IT) resources for providing a number of online communica-
tion platforms (healthcare websites) enabling round the clock interaction of patients with
medical professionals (Figure 1).
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Figure 1. Digital Health Technologies.

There are many data mining and data warehousing tools at the open discretion of
hospitals and healthcare organizations to manage the gigantically complex crunches of
patient’s data, helping to accomplish storage resiliency in the healthcare sector because
data mining in healthcare provides information on the symptoms, causes, and courses of
actions under certain conditions. One cannot shrug off the impacting role of emerging
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technological advancements in the healthcare sector—as they lowered the mortality rate
and enhanced average life expectancy levels because “With technology early diagnosis
always ensures better prognosis”.

In today’s scenario, the majority of the human community is resorting to self-medication
and healing techniques, thanks to the internet—now patients are able to comfortably com-
municate with a nurse or doctor instantly over many healthcare websites, without even
moving an inch, and they are at the disclosure of talking to likely affected symptomatic
people through plenty of online social interaction forums lead by specialized doctors and
medical professionals. Today, telemedicine and tele-health facilities are making use of
emerging technological advancements to deliver life-giving healthcare services to people
inhabiting remote areas. On the other hand, today’s healthcare system is greatly driven
by the promoted utility of wearable technology gadgets, coupled with personalized treat-
ments to aid mankind unendingly. On the contrary, social media apps, such as Facebook,
Twitter, Snapchat, Instagram, etc., are greatly serving to ensure effective communication
between clinicians and patients. The digitization of health records in many countries
provides the ample benefits of reduced healthcare expenses, pandemics prediction, pre-
vention of sudden deaths, development of new therapeutics (novel drugs), devising best
healthcare services, etc.

In the words of the famous plastic surgeon Dr. Charlie Chen, “Technology and
Medicine are handy to either—in performing various activities like Pre-operative planning,
surgical planning and post-operative planning etc., to monitor the outcomes”.

3.1. Artificial Intelligence

AI is a booming technology that has impressively penetrated into healthcare do-
main and its allied fields, including other sectors, such as banking, agriculture, automo-
biles (self-driven cars), gaming consoles, business administration, marketing management
(forecasting), sales management, crime detection, cyber security aspects, etc. The demand
for deploying artificial intelligence (AI) in healthcare domain existed for many years, and
it presumed to top level in 2018 - with wide-spread range of applications. Typically, the
artificial intelligence-based ML and DL architectures comprising the 2D convolution neural
network structures (CNN), recurrent neural network structures (RNN), auto encoders (AEs),
DNN(deep neural networks), LSTM(linear short-term memory), AlexNet, VGG (visual
geometry group) network, SqueezeNet, Inception Res-Net, CapsNet, GoogleNet, DenseNet,
XceptionNet, MobileNet, GANs (generative adversarial networks), etc.,have deep grass-
roots in many specialized areas of healthcare, ranging from clinical diagnosis, treatments,
telemedicine, endoscopy, laparoscopy, dentistry, neurology, orthopaedics, gastroenterol-
ogy, paediatrics, gynaecology, radiology including disastrous COVID pandemic, the latest
monkey pox virus, and many other infectious (pulmonary) diseases. Additionally mul-
tiple numbers of Hybrid DL Network architectures (CNN-RNN/AE) and cross-coupled
advanced technology specimens (architectures) are deployed for utility in healthcare appli-
cations. Few such architectures include:

Standard 2D-CNN—Typical CNN architectures are comprised of convolutional layers,
pooling layers, fully connected layers, and their combinations with their outputs forward
propagated to the fully connected layers. CNNs are a form of deep learning models com-
monly employed for better outcomes to analyze visual imagery, typically CNNs and the
k-nearest neighbor (KNN) ML algorithm are used for the accurate prediction of diseases, es-
pecially when deployed for early stage prediction and medical diagnosis during COVID-19
using chest X-ray and CT(computed tomography) images. Techniques such as dropout
and batch normalization of networks ensure the achievement of better learning in CNNs.
However, the problem of over fitting in training can be overcome with convolutional layers,
while a differentiable function can also be utilized to transform the volume of conversions
among different layers because of the structurally arranged sequence of layers (Figure 2).
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Figure 2. Standard CNN.

VGGNET—Typically VGGNET is a deep CNN architecture with multiple layers that
include the optimum number of convolutional layers utilizing the ReLU activation function
and the softmax classifier in the final layer, with variant filter sizes and strides among
the convolutional layers. VGGNET possesses around 11, 16, and 19 layers and few other
variants, respectively (Figure 3). However, most of the VGGNET variant architectures are
comprised of three fully connected layers at the end, while the number of convolution layers
count is different. VGGNET is one among the popular object recognition architectures.
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Figure 3. VGG NET.

GoogleNET–Typically, the GoogleNET Architecture is a 22-layer deep-convolutional
neural network intended for computer vision tasks such as face recognition and detection
etc. It is trained on over a million images to classify them into around 1000 categories
of objects. The architecture is comprised of more than 60 million parameters, involving
650,000 neurons, such that any pre-trained GoogleNET may be loaded to ensure the
classification of images into more than 100 object categories. However, the number of
parameters in the GoogleNET architecture is less, in comparison to the VGGNET and/or
AlexNet architectures [49–51].

On the other hand, GoogleNET (Figure 4) can be deployed as a pre-trained network,
predominantly for imaging applications favoring the healthcare domain and allied sectors,
thus aiding the appropriate diagnosis of patient data from X-rays, CT scan reports, MRI
scan reports, and data from various towers, as well.
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RESNET—A RESNET, or residual network, is a deep learning CNN model that is
predominantly employed for many computer vision tasks and designed to support vari-
ants of 34, 50, 152, and 1202 layers. While the ResNet18 architecture is comprised of
11 million trainable parameters, with only two pooling layers, one at the beginning and the
other at the end of the network, on the other hand, the popular ResNet50 is a 50-layer deep
CNN architecture comprising 49 convolution layers and 1 fully connected layer at the end,
such that a pre-trained version of ResNet50 trained on more than a million images can be
loaded to classify images into around 1000 categories.

RESNET architectures are almost similar to the VGG architectures comprising
3 × 3 filters, while the pre-trained RESNET models can also be deployed in various
realistic clinical applications (Figure 5). Investigations depicting utility of hybrid ML and
DL architectures for addressing the healthcare issues and challenges encountered by clin-
ical pathologists and doctors are discussed here. Alakus et al [52], Ali Narin et al. [53],
Zhang et al. [54], Alqudah et al. [55], and Medhi et al. [56] explored the utility of ResNet DL
models based on KNN (k-nearest neighbor), SVM (support vector machine) algorithms, etc.
Afshar et al. [57] developed a deep neural network (DNN) framework training different
NN models, such as CNN, RNN, long short-term memory (LSTM), hybrid CNN-LSTM,
and CNN-RNN, etc., to biomedical and healthcare applications covering various segments
of health sectors. The authors in [58–60] applied machine learning techniques, decision
trees, SVM classifiers, etc., to predict the clinical severity and spread of viruses, and
Lalaantika Sharma [61] et al., developed a tool for heart diseases, deploying machine learn-
ing algorithms. In recent years, we have seen the applications of AI in medicine to diagnose
brain tumors and multiple brain disorders from MR images [62–65], as well as breast cancer
from mammographic images [66–69]. Deep learning has changed the applicability of AI in
Big Data processing by mimicking the feelings of human beings, as well [70,71].
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Long short-term memory (LSTM) DL networks [72–76] are proven to be highly advan-
tageous for learning sequences and increased utility in robotic control, speech recognition,
human action recognition, etc. Recurrent neural networks(RNN) [77,78] present promising
results in various ML-based computer vision tasks [79–81], on the other hand, a special
type of neural network—GANs (generative adversarial networks)—are deployed in a
wide field of medical image computing [82–85] to perform predictive diagnostic analysis.
The authors in [86–93] employed deep convolutional neural systems, ResNet-101 and
Inception-v4, AlexNet, VGGNET, Google tools, etc., for clinical rescue operations and
medical applications. The roles of advanced technologies such as block chain, Big Data,
drones, and the Internet of Things (IoT), cannot be side-lined, especially in the prediction of
pandemics [94–100] and other healthcare issues troubling the clinical pathologists. DNN al-
gorithms, LSTM models, auto-encoder algorithms, SVM, hidden Markov chain model (HMM),
etc., variants serve various diagnostic cardio-thoracic healthcare applications. A few such
exploratory works are tabulated below (Table 2).

Table 2. Review of AI in Healthcare.

Sl. No Ref. Category of
Health Segment Application Type Year

1 [101–104]

AI in healthcare

Periodontal diagnosis, overview, literature review, genetic
algorithm-based CNN for COVID detection

2022
2020

2 [105–110]
CNN-based knee MRI images mapping

DL for orthopedic disease
Anterior cruciate ligament tear detection based on deep CNN

2022

3 [111] DL techniques for recognition of tropical diseases
in images 2022

4 [112] DL-based schistosomiasis in Africa and Senegal 2022

5 [113] Patient diagnosis and treatment activities 2021

6 [114]
Epileptic seizure detection ML and deep CNN for seizure detection in

EEG signals
2022

7 [64,65] 2019, 2018

8 [115]

Pandemic detection
and diagnosis

CNN-based framework using transfer learning d 2020

9 [116–120]
Auto encoder framework to model transmission dynamics,

DL CT image analysis, and ML-DL models for
COVID detection

2020

10 [121] Deep generative model (CogMol) to investigate protein
structure of corona virus 2020
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Table 2. Cont.

Sl. No Ref. Category of
Health Segment Application Type Year

11 [95] Pandemic data analysis IoT, block chain, and AI models 2020

12 [66,122,123] Breast cancer NLP-based mammography interpretation system 2020, 2017

13 [82] Medical imaging Generative adversarial networks in medical imaging
applications for screening 2020

14 [62,63] Brain tumor DNN with generative adversarial neural networks for
brain tumor detection 2017, 2020

15 [124] Home diagnosis ML-and NLP-based personalized home care and diagnosis 2019

16 [125] Nursing ML-based home nurse avatar 2019

17 [126] Oncology clinical trial ML-, DL-,andNLP-based IBM deploying Watson
AI platform 2018

18 [127] Psychiatric diagnosis Predicting development of psychosis in people 2018

19 [128] Opthalmology ML for predicting eye diseases 2018

20 [129] Robot-assisted surgery Robotic prostatectomy, cardiac, oncology 2017

21 [130] Cardiology ML-based mobile platform on anticoagulation therapy 2017

22 [131] Drugs distribution ANN-based software to detect patient and drug
for ingestion 2017

23 [132] Diabetics ML-based glucose monitoring system 2017

24 [133] Tuberculosis Alexa and GoogleNet CNNs for diagnosing tuberculosis 2017

25 [70] Skin cancer detection ANN and ML for cancer detection using skin lesions 2017, 2019

26 [134,135] Cardiac arrest monitoring ANN for monitoring heart conditions based on
patient history 2012, 2017

27 [136–141] COVID Pandemic Survey AI (and Bigdata) for clinical decision support and
management of COVID-19 2020, 2021

28 [142] Health care AI applications in health care 2021

3.2. Big Data

“Bigdata for health-care domain is an economically feasible life saver to enhance the operational
efficiency of medical systems”.

Today’s healthcare industry has traversed a long way, surpassing decades of hurdles,
toward the current trends of deploying Big Data in vast number of healthcare applications
(Figure 6), such as the maintenance of generic patient databases, medical imaging applica-
tions, electronic health records of patients in authorized databases(portals) and government
agencies, clinical employees pay records, pharma-technological inventions, search engines
data, data pertaining to generic databases, smart phones and wearable gadgets, virtual
tele-medical facilities, robotics deployment in medical healthcare applications, etc.

The swift development of IoT technologies keep on generating tonnes of medi-
cal data from ubiquitously variant number of sensors and wearable devices [18], and
these exceptionally unparalleled volumes of data associated with data analytics of AI
generate in massive volumes of Big Data from wide number of mobile devices (smart
phones), IoT gadgets [143,144], etc., to predict online complaining behavior in hospital
industry—substantially applying big-data analytics to perform online reviews [145].
Establishments relevant to handling such ubiquitous volumes of Big Data from various
applications shall be attributed to the explorative investigations and innovations synchro-
nizing the frameworks and mechanisms contributed by the wide scope of works by the
research community. Few such applications relevant to healthcare are tabulated (Table 3)
for an elaborative understanding of their findings.
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Table 3. Review of Big data in Healthcare.

Sl. No Paper Category of Health Segment Application Type Year

1 [146,147] Pandemic surveillance Big Data analytics platform to estimate the risk of
pandemic spreading and surveillance 2022,2020

2 [148] COVID Analysis of COVID-19 in China 2020

3 [149–153] Infectious disease
surveillance and healthcare

DL, Big Data analytics, AI, and IoT to monitor
spread of bacteria, viruses, and pulmonary diseases 2018, 2016, 2020

4 [154] Electronic health records Big Data for risk estimation in cancer patients 2011

5 [155] Safety and prediction Big Data for secured healthcare 2017

According to a forecast by software giant CISCO, it was predicted that the highly diver-
sified and heterogeneous volumes of data generated from clinicians, IoT devices/wearables,
healthcare organizations, etc., are anticipated to reach a toll of around 930 exabytes (from
terabytes) from 2022—the processing of this diversified text and video formatted Big
Data with conventional databases is highly constrainable, compelling Big Data analysts
to significantly manage, analyze, and leverage Big Data in order to merge them. De-
spite these challenges and limitations, plenty of progressive technological innovations
continuously transform healthcare Big Data into useful and actionable information by ap-
propriately leveraging suitable software tools, which opens doors to remarkably predictable
conclusions and contributions, thus transforming every aspect of healthcare to be more
economically feasible.

With the affluence of sourcing healthcare data from various resources—clinical pathol-
ogists are able to checkout optimally better medical and financial decisions well ahead of
dangers, providing gifted life-saving quality care to the patient community and ensuring
overwhelming professional satisfaction to the clinical community, as well as the family
members of the patient community. Irrespective of the vastly applicable subjective areas of
Big Data in the healthcare sector—the fullest adoption of Big Data analytics into healthcare
was still lagging behind other industries, which is attributed to the associated challenges,
such as privacy of healthcare information, data security concerns, budget constraints, etc.
A demonstration of the Big Data analytics approach for providing aggravated patient care
in hospitals and clinical arenas is summarized below:

(A) Prediction of staffing requirements in hospitals, based on patient count.
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(B) Patients’ electronic health records (EHRs) maintenance, warning them of pending lab
tests in synchronization with doctor’s instructions.

(C) Provision of on-the-spot real-time medical data analysis to healthcare practition-
ers by continuously gathering patient’s health data and pumping the same to the
cloud instantly.

(D) Enhance patient’s self-health monitoring engagement using smart devices, for exam-
ple, counting steps walked upon, monitoring heart beats, blood pressure levels, sugar
levels, sleeping habits, etc., connecting them to physicians as, and when, required.

(E) Promoting patients to opt for advanced medical treatments based on factors that are
really discouraging them from taking up treatments.

(F) In cancer, curing enables medical researchers to examine tumor samples and predict
the interaction of certain mutations based on patient treatment records (in bio-banks)
to chalk out the highest rates of recovery and success in cancer patients.

(G) It is helpful in sequencing cancer samples genetically and deploying them to a cancer
database and the global researcher’s community.

(H) Predictive analytics help doctors to arrive at life-saving conclusive treatments, in the
case of patients suffering from complex ailments and disorders.

(I) Big Data analytics promote telemedicine services to prevent the further worsening of
patient’s health conditions in remote areas.

(J) Integration of Big Data analytics into medical imaging for healthcare drastically saves
the time incurred by radiologists by quickly finalizing the clinical procedures to be
adopted for every patient.

(K) Big Data analytics helps healthcare institutions in preventing suicide deaths and
self-harm (as globally, around eight lakhs people expiring every year due to suicides).

(L) Big Data analytics provides end-to-end effective supply chain management solutions
to hospitals and healthcare institutions by leveraging the analytics tools to arrive at
accurate decisions.

(M) Big Data analytics play a pivotal role in developing ground-breaking new drugs
and forward-thinking therapies, based on gene cloning information analysis and
intransigent patient predictions.

It can be compellingly said that, in the present-century healthcare scenario, Big Data is
implicitly embedded with intelligent AI tools for building complex simulation monitoring
mechanism models that aid clinical pathologists in various healthcare-relevant fields, in
order to save the lives of the patient community (Figure 7).
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3.3. Block Chain Technology

Block chain technology in the healthcare ecosystem typically addresses various
operational compatibility challenges to conserve and swap the overall patient diagnostic
information with hospitals, clinical laboratories, pharmacy industries, physicians, surgeons,
etc. This technology enables a reliable, trustworthy data switch-over and workflow beyond
limitations, with totally decentralized and disseminated ledger technology paving the path
to novel healthcare information exchange application models. The members of the block
chain technology-dispersed network are comprised of clinicians, pathologists, hospitals,
laboratories, pharmaceutical companies (optional), government medical agencies, autho-
rized healthcare and distribution companies, etc. This network enables storing all kinds of
digital transactions into a pooled (shared) ledger, with each of the members having access to
an identical copy preserved in the ledger, such that any modifications to the pooled ledger
stands reflected over all the copies and no single member of the network holds any power
to alter or modify the data, while keeping other in abeyance. Contrary to the conventional
healthcare data storage-preserving mechanism of physical data, this technology provides
a barter system model of healthcare information exchanges, comprising health records,
documents, or images in a data repository known as a data lake, such that they are highly
scalable and capable of storing wide varieties of data in various formats ranging from text,
documents, and visuals, to images, etc. To ensure the confidentiality and legitimacy of the
information, the entire data are preserved in the data lake after encryption, and they are
digitally authenticated (signed) by the healthcare provider, i.e., whoever incorporates a
medical record in the data lake.

Block chain technology is typically based on open-source software, commodity hard-
ware, and open APIs that runs on a peer-to-peer internet-connected network of computers—
all maintaining an identical copy of transaction ledger—and it offers many advantages to
healthcare IT, while potentially addressing interoperability challenges with built-in fault
tolerability, adversity revival mechanisms embedded with data encryption, and cryptog-
raphy features throughout. It serves as a replacement to the conventional client/server
distributed database management systems comprising Structured Query Language or
relational inputs.

A block chain network offers vast advantages to the healthcare sector by incorporating
personalized and secured real-time data accessibility permissions at the granular level and
ensuring continuous accessibility to real-time data generated from wearable sensors and
mobile devices, thereby enhancing the critical clinical care (CCC) and coordination among
doctors in emergency situations (Figure 8). This rapidly evolving field provides fertile
ground for experimentation, investment, and verification testing, henceforth paving the
way for developing a new breed of SMART applications, thus aiding healthcare providers
and surgeons. Research works and experimental evolutions critically elaborating the
prominently applicable role of block chain technology to the medical sector and allied
segments of healthcare applications are highlighted.

An innumerable number of innovations contributing to the applicability of block
chain technology for healthcare applicable segments is under progression to elaborately
educate the healthcare institutions and medical community. Not all, but few, are briefed
for creating awareness among the future research community anticipators. Kumar and
Tripathi [156] et.al, created a block chain consortium network to validate virus-related scan
reports, block chain technology applications in managing electronic medical records (EMR),
patient consent management [157–159], health insurance dispensation [160–162], artificial
intelligence data transfer model development [163], genomics, logistics management for
medical supplies, transportable healthcare and IoT [164,165], shared keys utility in the
case of patient (key-holder) expiry [166], secure cloud-based EMRs [167], AI-based medical
research collaboration with legitimacy [168,169], hybrid block chain solutions with medical
IoT for remote patient monitoring [170], i.e., cardiac monitoring, sleep apnoea testing, etc.,
safety concerns of patients and medical personnel [171–175], and block chain technology-
based retrieval of medical information through linking of hospitals [176–178].The hybrid
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utility of cloud and block chain technology (IBM’s medical-block chain; Al Omar et al.,
2019)deployed large-size electronic health records on block chain. Though all the investiga-
tive works cannot be discussed elaborately, few such are tabulated (Table 4) to make the
readers more aware of the happenings.
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Table 4. Review of Block Chain Technology in healthcare.

Sl. No Paper Category of
Health Segment Application Type Year

1 [175,179,180] Healthcare applications Block chain technology’s future challenges 2022, 2019

2 [181,182] Patient Health care
Preserve patient information and data, such as blood
tests, quality assessments, and estimates, in electronic

health record formats
2021, 2020

3 [172,178] Secured healthcare Intelligent block chain framework for secured
biomedical applications 2020,2019

4 [163] Research on
myopia treatment Deep learning and block chain framework study 2021

5 [183] Wide services to
patients community

Block chain infrastructure challenges in future health
care applications 2020

6 [170] Secured healthcare Provenance enhanced IoT and block chain framework 2020

7 [160,161,184] Enhanced clinical trials Block chain framework to ensure best clinical treatments,
healthcare management 2020, 2018

8 [185,186] Validation Block chain enabling healthcare industries to obtain
validated data of patients 2019

9 [157] False content detection Block chain ensures identification of false data to
healthcare insurance companies 2018

10 [187] Patient healthcare Block chain and Big Data for transforming patient
healthcare segments 2018

11 [162] Medical insurance Block chain-based genuine insurance claiming system 2018

12 [166,176] Drugs distribution Supply chain distribution framework for distributing drugs 2018

13 [188] Healthcare Innovations Block chain technology innovations for health
care applications 2017
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3.4. Open-Source Technologies

Over the past few decades, healthcare IT journeyed through multiple transformations
from the then existing administrative perspective mechanism to the current day’s construc-
tive critical care mechanism, offering life-saving superior quality treatments to patients
today, with the help of emerging technologies, such as AI, Big Data, block chain, cloud
computing and IoT, amicably saving the lives of the patient community through timely
healthcare facilities. This entire process of materialization shall be attributed only through
the exchange of medical data across hospitals, medical institutions, patients, doctors, con-
nected wearable(and smart) devices, electronic health (and medical) records, back-end
administrative processing staff, and front-end clinical staff effectively utilizing the open-
source software (Figure 9)—that leaves operational flexibility for healthcare institutions
and medical centers to perform an analysis of real-time medical data, with the help of
many visualization tools, thus ensuring better and timely life-giving care treatments to the
patient community.
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The penetration of open-source tools and software into the healthcare sector is offer-
ing numerous benefits of ethical advantages, such as license-free utility, inter-operability,
safe integration, etc., and promotes innovations akin to the publication of research and
methods. Explorative research works that typically signify the applicability and utility of
open-source software in the healthcare scenario-based segments of medication, surgeries,
and treatments in various allied sectors are briefly highlighted for feasible studies and
continuous evolutions by the research community. In 1990, Open GALEN (a non-profit
organization) was formed to provide an open-source route for disseminating the academic
research results of medical terminology and tools for future development [189]. Health
information technology (IT) has its own history for adopting open-source technologies.
The U.S Veterans Health Information Systems and Technology Architecture (VistA) and
Mirth (an open-source software) were distributed as free source code [190,191]. In view of
the easily available open software tools, healthcare IT practitioners have the flexibility to
choose from licensed vendor tools, open-source tools, hybrid software environment (or
in-house) tools, etc., to suit their requirements, since most of the open-source technologies
are built upon the collaborative utility concepts of providing freely accessible code to all
healthcare practitioners. Large open-source projects, such as Apache, Eclipse, and Mozilla,
demonstrated the role of open-source technology (OST) adoption in facilitating a matured
healthcare ecosystem [192]. The National Health Service (NHS) in England supported
an initiative called Code4Health—an open-source platform [193–195].Open-source health
information technologies (OS-HIT) [196] are used to curb viral diseases, such as Ebola and
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other pandemics [197]. Open-source software publicizes bugs, allowing sophisticated users
to fix them, thereby regularly updating the codes to enhance the applicability of reusing
proven code and benefitting the patient’s safety. Care2X is an open-source hospital infor-
mation system [198], and Open Receipt Computer Advanced is another OSS in Japan [199]
that aids the patient community and clinicians.

As we are aware that proprietary vendors always insist upon standardization only,
healthcare IT practitioners (and doctors being ethical) shall insist upon OST (open-source
technology) to drive standardization, though they are aware of the fact that most of the
open-source software runs on shared source code; hence, they are tweaked to work in
synchronization with the proprietary software. Therefore, they shall trade off whether to
go for stand-alone open-source programs or adopt a mix of either, in order to counter the
administrative challenges. On the other hand, the flexibilities associated with open-source
software users ability to adopt any desired open-source support vendor enables them to
create diverse and global communities on the internet, with a motto of helping others
desiring to use them [200–205], thereby helping the clinical and healthcare community as
a whole.

3.5. Cloud Computing for Healthcare

Cloud healthcare is a cloud computing service for healthcare providers with internet-
connected remote servers deployed for storing, maintaining, and processing personal
healthcare-related patient data (PHRPD). This setup of cloud computing healthcare is in
disparity, with an on-site datacenter and server mechanism of the conventional system [206].
Cloud storage healthcare mechanisms offer large volumes of secured data storage space at
rescue—of course maintained by tech savvy IT professionals. Specifically, the Microsoft
Azure cloud computing system provides on-demand simple access to healthcare applica-
tions and data.

Typical healthcare cloud service scenarios under utilization (Figure 10) and the associ-
ated benefits of cloud healthcare are briefly discussed, as follows:

A. An efficient electronic medical health record (EMHR) ensures hospitals and healthcare
institutions facilitate the storage of the entire patient health history, in order to provide
enhanced medical services with the fullest security and privacy of data.

B. Cloud storage machinery for the EMHR of patients paved the way for a collaborative
patient caring mechanism, ensuring the easy sharing of patient’s medical records with
other physicians and surgeons, in order to formulate the treatment methodologies to
be adopted for every patient, thereby preventing over-prescribed medications and
repeated tests for the patients.

C. Since cloud-based healthcare service providers alone handle the maintenance of cloud
services, healthcare providers need not worry about the initial expenditures and can
focus more upon rendering the best services to patients, except to arrange provisions
for their own storage space and hardware setups.

D. With the EMHR mechanism, healthcare providers can maintain an onsite data storage
system, with IT staff totally waiving having reams of patient data physically, which is
prone to theft/damage or being affected by natural disasters etc.

E. Truly speaking, cloud healthcare paved the way for Big Data applications because the
EMHR mechanism today enables physicians and doctors to predict effective treatment
options for patients, based on subtle correlations in patients past medical data using,
many complex computer algorithms.

F. Cloud healthcare provides long-term financial benefits to organizations because it
ensures fully scalable healthcare solutions, with provisions for the in-line expansion
of the business.

G. The cloud healthcare EMHR-based data storage mechanism promotes researchers
to derive more benefits from digitized healthcare information and open access to
massive, previously inaccessible data sets.
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H. Cloud healthcare provides an interoperability platform to facilitate rapid data transfer
between IoT-enabled devices that can interface freely, such that organizations with
cloud computing capabilities can acclimatize to the changing scenario of the healthcare
landscape in the future [207].
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A typical, realistic deployment of a cloud computing scenario for healthcare applica-
tions, visualizing the healthcare data information flow between cloud computing servers,
patients, doctors, surgeons, health institutions, medical centers, clinical pathologists, labo-
ratories, ambulances, and back-end data processing personnel, is depicted (Figure 11) to
develop a clear, analytic view of the cloud computing-based healthcare scenario.
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In India, the government of Delhi devised an integrated patient healthcare data
managing system between the hospitals, with around 13.9 billion ($18.9 million) rupees
associated with IT providers (NEC Corporation, India). It is expected that the global cloud
healthcare market is going to hit 35 billion Canadian dollar by 2024, with a predicted annual
growth rate of 11.6%, despite the fact that around 69% of the respondents confirmed that
the majority of hospitals have no plans to port their existing data centres to cloud storage.

4. Future Scope and Challenges

Though the deployment of technological advancements to the healthcare sector is
no doubt a boon, there are plenty of implicit challenges associated with their practical
utility for addressing many healthcare issues. Therefore, the future scope governing the
deployment of technologies such as AI, Big Data, block chain, open-source software, and
cloud computing, substantiated by the limitations(or challenges) adhering to practicality,
are herewith outlined, inviting innovative solutions by the research community.

• Though artificial intelligence penetrated into chat bots, CAD (computer-aided detec-
tion) systems for diagnosis, and surgeries leveraging analytics, human surveillance
cannot be avoided in surgeries because surgical robots can operate logically, but not
empathetically - on the other hand AI applications and relevant data are not totally
free from (i.e., they are susceptible to) cyber-attacks.

• With the healthcare organizations adopting Big Data in large numbers, multiple
sources of Big Data include data from hospital records, patients’ health records, the
results of medical examinations, wearable devices, the Internet of Things (IoT), etc.,
and the challenges associated with handling Big Data demands adequate infrastructure
to systematically analyze Big Data. On the other hand, incompetent and incompatible
data systems render the interfacing of big data sets difficult, thereby posing problems
to ensuring the confidentiality of patient’s data.

• Though fullest deployment of block chain technology bears a potential to revolutionize
healthcare sector by ensuring medical records to be well-organized and secured.
Storage of patient EHR (electronic health records) on block chain is not economically
viable for implementation (especially in the developing and middle-eastern countries).
Further it is difficult to query data with block chain technology; data redundancy, data
privacy infringement, data ownership, etc., are the additional challenges associated
left for being addressed by research community.

• Though open-source technologies (OST) hold the potential to bring various healthcare
service providers together, i.e., pharmaceutical vendors, medical institutions, patient
communities, and researchers, and by slashing down the IT infrastructure costs, they
remain agile to adopt novel IT solutions, while the shared availability of OST elevates
the risk of hacking and data breaches, as well as the lack of standardization in utility,
when compared with software’s provided by the standard vendors.

• Cloud computing transformed the healthcare sector by hastening the migration of
workloads from data centers to the cloud, significantly changing the way information
systems are deployed, operated, and maintained inside a sole informative system.
Cloud computing data in the healthcare sector is prone to data breaches and security
issues, thereby raising concerns in protecting the privacy of real-time data; henceforth,
the types and levels of security issues are left open to be taken care of.

5. Conclusions

The proposed review work outlined the prominent role of AI, Big Data, block chain
technology, open-source, and cloud computing technologies in solving various healthcare
ailments, from general medicine, dentistry, cardiology, neurology, orthopaedics, paediatrics,
gynaecology, and psychiatry to plastic surgery, as well as curbing the different neurotic
maladies, infectious pandemics, etc. Though these technologies have superseded the
role of doctors (clinical pathologists) by relentlessly addressing many interoperability
and platform integrity (confidentiality) issues, there exist many unspoken practical and
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technical liabilities governing their implementation in the healthcare sector. It was observed
that AI cannot fully replace surgeons, contrary to the probability of defective/incorrect
diagnosis by robots—on the other hand, multiple data handling across multiple data
systems raises concerns regarding security firewalls and confidentiality issues, stressing
the need to develop a predictive analysis-based online reporting software(typically, an
open-source software will do). The storage of large-scale medical data using block chain
still seems inferior to the distributed database management systems (DBMS) and not
economically viable. In view of these concerns, cloud chain or distributed storage options
with cloud computing storage are preferred. Ultimately, open-source technologies are
serving to improve the patient care manifold, with due consideration to the cyber security
measures. Therefore, it is essentially required for the healthcare community to leverage
the open-source technologies gaining momentum across healthcare sectors in-line with the
three main goals of healthcare, i.e., accessibility, accountability, and affordability.
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