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Abstract: Resting-state functional connectivity has been widely used for the past few years to forecast
Alzheimer’s disease (AD). However, the conventional correlation calculation does not consider
different frequency band features that may hold the brain atrophies’ original functional connectivity
relationships. Previous works focuses on low-order neurodynamics and precisely manipulates the
mono-band frequency span of resting-state functional magnetic imaging (rs-fMRI). They specifically
use the mono-band frequency span of rs-fMRI, leaving out the high-order neurodynamics. By
creating a high-order neuro-dynamic functional network employing several levels of rs-fMRI time-
series data, such as slow4, slow5, and full-band ranges of (0.027 to 0.08 Hz), (0.01 to 0.027 Hz),
and (0.01 to 0.08 Hz), we suggest an automated AD diagnosis system to address these challenges.
It combines multiple customized deep learning models to provide unbiased evaluation, and a
tenfold cross-validation is observed We have determined that to differentiate AD disorders from
NC, the entire band ranges and slow4 and slow5, referred to as higher and lower frequency band
approaches, are applied. The first method uses the SVM and KNN to deal with AD diseases. The
second method uses the customized Alexnet and Inception blocks with rs-fMRI datasets from the
ADNI organizations. We also tested the other machine learning and deep learning approaches by
modifying various parameters and attained good accuracy levels. Our proposed model achieves
good performance using three bands without any external feature selection. The results show that
our system performance of accuracy (96.61%)/AUC (0.9663) is achieved in differentiating the AD
subjects from normal controls. Furthermore, the good accuracies in classifying multiple stages of AD
show the potentiality of our method for the clinical value of AD prediction.

Keywords: rs-fMRI; classifications; high-order neuro-dynamic functional network; deep learning;
Alzheimer’s disease

1. Introduction

AD is a chronic, developing, acute abnormality that affects people over 60 years of
age [1,2]. Classified as the typical cause of dementia, it comprises memory loss, loss of
spatial orientation, lack of time sense, behavioral issues and, at the acute stages, retrograde
amnesia and mild cognitive impairment [3,4]. The disease is characterized by the unique
“clumps” found in the brains of patients, termed medically as amyloid plaques and tangled
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fibers called neurofibrillary tangles. As the ailment progresses, the above-listed anomalies
in the brain result in the degradation of the neural networks, causing the gradual loss
of bodily functions. The progression from the loss of mental capabilities to physical
degradation renders AD physically and mentally taxing to the families of the afflicted
and the caregivers. Recent advancements in medical care have increased life expectancy,
which in turn has increased the aged population [5]. Thus, the fraction of the human
population susceptible to AD has also increased. Some researchers have begun using
computer techniques such as neural networks, optimization, machine learning, and so on
to solve the medical domain issues [6].

In existing ML techniques, a field expert manually extracts and labels features. Espe-
cially in the field of computer vision, deep learning (DL), an advanced machine learning
(ML) technique, outperforms classical ML in terms of detecting inclusive structures in
complex, high-dimensional data. The main benefit of DL algorithms is that they attempt
to incrementally learn high-level properties from the brain imaging data, minimizing the
need for domain expertise. DL outperforms ML since it can accurately handle enormous
volumes of data, while ML algorithms require a specific processing step.

Objectives of the Study

Automated diagnosis systems have gained importance in the field of medical image
analysis. The recurring patterns in images have the potential to determine the conformation,
function, and activities of the brain. Unlike most popular AD discovery algorithms, the
input dataset is extensive. Therefore, an efficient technique is essential.

The main objective of this research work is to propose an automated AD diagnosis sys-
tem by developing a high-order neuro-dynamic functional network. LFOs (Low-Frequency
Oscillations) also refer to slow brain activity fluctuations between 0.01 to 0.08 Hz. To under-
stand brain atrophies, these slow fluctuations are analyzed using different levels, such as
slow4, slow5, and full-band ranges. The use of LFOs in brain studies allows for examining
slow changes in brain activity that may be relevant to various neurological conditions.

2. Related Works

Many researchers are interested in revisiting this area to identify a treatment for AD
because of the relevance of early detection of the disease. Therefore, the most significant
studies in this area will be presented in this section. The classified approach of the MCI
(mild cognitive impairment) and AD patients using different network approaches with
strengths and weaknesses are described. Ting Ma et al. [7] have extracted two important
parameters constructed via the pre-processed data of rs-fMRI, such as ALFF and ReHo. In
addition, their findings imply that during deterioration, ROIs in the brain may experience
various physiological alterations. Evanthia E. Tripoliti et al. [8] created the five phases of the
method by including preprocessing fMRI to remove non-task-related variability, modelling
the BOLD material resulting in the stimulus, extracting from fMRI image data, features
selection, and finally, the random forest algorithm. The methods assist in classifying the
disease, with 80.5–87% accuracy. Dachena et al. [9] elaborated on MRI and fMRI shared
with the misuse of MMSE to discriminate AD using SVM classification. Additionally,
the multimodal approach (MRI, fMRI, MMSE) provides more accuracy of 95.65% and
specificity of 97.22% with a sensitivity of 93.39%. Zhe wang Li et al. [10] classified AD, MCI,
and NC and proposed a regularized LDA approach that reduces the noise effect by using
two required shrinkage methods. Furthermore, they investigated the relationship between
LDA and Maximum Likelihood-based classifications. These developed methods can be
applied to a limited sample size.

Babajani-Feremi et al. [11] have developed an approach that can discriminate pos-
sible MCI-decliners using structural and functional MRI integration for AD identifica-
tion. A multi-scale time series kernel-based learning model was used to diagnose brain
diseases as the foundation for the traditional statistical analysis technique proposed by
Fei Guo et al. [12]. They found that this method has advantages for accurately identifying
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brain diseases. Xia-an Bi et al. [13] classified AD, patients’ abnormal brain regions, and HC
by proposing a random neural network cluster based on fMRI data and found that a neural
network cluster is a suitable approach for identifying AD. His group also integrates other
imaging to know brain activity and combines brain and cerebellum activity. In addition,
they differentiate AD and HC patients. In this study, the authors examined 138 participants
using various accuracy criteria.

The model for early-stage detection from functional alterations in MRI images was
created by Modupe Odusami et al. [14] using ResNet18. The accuracy of the ResNet18
is as follows: the attained results are 99.9% for EMCI (Early Mild Cognitive Impairment)
against AD, 99.95% for LMCI (Late Mild Cognitive Impairment) against AD, and 99.95%
for MCI against EMCI. Accuracy, sensitivity, and specificity were all improved using the
created model. Then, a novel three-dimensional two stage-age-network (TSAN) was used
to compute brain age using T1-weighted MRI data. The two-stage network design used
by TSAN was demonstrated [15]. (i) The first stage network more accurately calculates
the approximate brain age from the discretized brain age, and (ii) the first stage network
measures brain age. Additionally, some researchers used machine learning methods to
categorize AD. Feature extraction from ADNI’s fMRI images was used in this work [16],
and the performance analysis is based on the confusion matrix. Additionally, the author
has developed various techniques for CNN architecture and machine learning classifiers
(SVM, KNN, DT, RF, and LDA). The accuracy levels provided by the suggested model are
85.8%, 77.5%, 91.7%, 96.7%, and 79.5%. Finally, the accuracy levels provided by the CNN
architecture are 98.1%, 95.2%, 87.5%, and 89.0%, respectively.

Quamzheng Li et al. [17] built the R-fMRI data to calculate the functional connectivity
of different brain areas. Additionally, a standard control-targeted autoencoder network was
constructed to distinguish between MCI and normal ageing. The technique offers accurate
AD classifiers and discriminative brain network characteristics. Deep learning outperforms
the more traditional R-fMRI method in categorizing high-dimensional multimedia data, as
shown by the accuracy increases of 31.21%.

Unmang Gupta et al. [18] presented an architecture that operates by using the 2D-CNN
model to encode each 2D slice of the MRI. It shows that when compared to the most cutting-
edge methods, the permutation invariant layers train more quickly and produce better
predictions. Additionally, they provide more accurate estimates of healthy participants’
brain ages. Cross-validation of the sMRI-fMRI model by Vince D. Calhoun et al. [19]
indicates that it performed better than a unimodal prediction analysis. Additionally, some
research is based on data from the correlation coefficients between the R-fMRI signal and
functional intellectual network creation. Compared to the former method, this method
demonstrated an increased diagnostic accuracy of about 25%. The convolutional component
of the Spatial-Temporal Net is employed to describe the spatial dependency between the
time series segments of various brain areas and to predict the course of AD using rs-fMRI
time series data. This method performed better than the most recent methodology in
terms of categorization accuracy. Furthermore, it sheds light on the pathogenic chain that
underlies AD [20].

Based on an examination of fMRI data, Yifei Zhang et al. [21] explains a unique
technique for differentiating AD patients from normal (healthy) individuals: functional
connectivity between the brain’s activity voxels. The predicted AD patients are significantly
influenced by the FC between activity voxels inside the prefrontal lobe and those between
the prefrontal and parietal lobes, according to the suggested technique, which demonstrated
higher classification accuracy. It also has a high prospective value.

Uttam Khatri et al. [22] examined the dynamic frequency functional networks at
frequency response time series, including full-band, slow-4, and slow-5 bands, using the
rs-fMRI data amassed by the ADNI. His team also combined four frequency bands with
dynamic frequency brain functional network elements to aid in the early identification of
AD. In addition, it also offers a fresh perspective on how the brain network functions and
offers early Alzheimer’s detection. The author also attained a 94.10% classification accuracy
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level, 96.75% specificity, and 90.95% sensitivity. The High-Order Dynamic Functional
Connectivity model’s experimental results can improve the classification performance with
different levels of evaluation matrices to identify the AD.

The author in [23] implemented two significant approaches—first, normal CNN meth-
ods with 2D and 3D structural brain images. Second, transfer learning methods were
applied achieved 97%. Deep learning methods reached 95.17% and 93.61% accuracy for 3D
and 2D multiclass AD and MCI classifications. The authors in [24] incorporated unsuper-
vised convolutional spiking neural networks trained with the preprocessed ADNI datasets.
They achieved three binary categories without the spike of 86.90%, 83.25%, and 76.70%.

The Motivation for Study

• Studies with the literature reviews have revealed conventional/existing approaches,
and correlation calculation has not considered different frequency band features,
which eventually maintains the accurate functional connectivity relationships of brain
atrophies.

• Moreover, existing works focus on low-order neurodynamics, manipulating the mono-
band frequency span of rs-fMRI by leaving out high-order neurodynamics.

• Researchers also claim great potential lies in the deep learning and rs-fMRI-enabled
classification models.

However, all the existing methods have their bottlenecks and limitations. Therefore,
the model aims to establish a novel DL method that can push the classification accuracy
boundaries towards the most accurate AD and MCI classification approaches. This research
model leads to finding out the limitations of an early diagnosis of AD.

So, with the advancements in rs-fMRI and the deep learning approach, unique ways
have been developed to introduce a diagnosis system for high-order neuro-dynamic func-
tional networks using various levels, which motivated us to create such a classification
model. Results of the study claimed optimal performance with the D2 model using three
bands (slow4, slow5, and full-band) without any external feature selection compared to
other models.

3. Methods and Materials

From the literature, it was deduced that low-order neurodynamics precisely manipu-
late the mono-band frequency span of resting-state functional magnetic imaging (rs-fMRI),
leaving out the high-order neurodynamics. These were then hypothesized to be outper-
formed by DL techniques. Experimentally, we also propose an automated AD diagnosis
system by developing a high-order neuro-dynamic functional network using various levels
such as slow4, slow5, and full-band ranges (0.027 to 0.08 Hz), (0.01 to 0.027 Hz), and (0.01
to 0.08 Hz) of rs-fMRI time-series data.

3.1. ADNI Dataset

ADNI (https://adni.loni.usc.edu/ accessed on 1 September 2022) comprises mul-
timode neuroimages of people who have Alzheimer’s disease and is developed by the
National Institute of Aging (NIA). The ADNI database consists of three classes of biological
markers: AD, MCI, and NC. A total of 153 baseline subjects were selected. Table 1 shows
the demographic details of the selected rs-fMRI subjects.

The MRI protocol for ADNI1 (2004–2009) focused on consistent longitudinal structural
imaging with 1.5T scanners using T1- and dual-echo T2-weighted sequences. One-fourth of
ADNI1 subjects were scanned using the same protocol on 3T scanners. ADNI-GO/ADNI2
(2010–2016) imaging was performed at 3T with T1-weighted imaging parameters similar
to ADNI1. In place of the dual-echo T2-weighted image from ADNI1, 2D FLAIR and T2-
weighted imaging were added at all sites. Both fully sampled and accelerated T1-weighted
images were acquired in each imaging session.

https://adni.loni.usc.edu/
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Table 1. The demographic of the rs-fMRI subjects for our proposed model.

Number of Samples AD (n = 51) MCI (n = 51) NC (n = 51)

Average
Standard
Deviation

(SD)
Average

Standard
Deviation

(SD)
Average

Standard
Deviation

(SD)

Age 75.2 7.4 75.3 7.0 75.3 5.2
Education 14.7 3.6 15.9 2.9 15.8 3.2

MMSE 23.8 2.0 27.1 1.7 29.0 1.2
CDR 0.7 0.3 0.5 0.0 0.0 0.0

3.2. Data Pre-Processing

SPM 12 was used to pre-process the ADNI dataset and segment it into grey, white,
and cerebrospinal fluid planes. The initial ten volumes were removed to permit dynamic
equilibrium in each subject. All the slices were resampled with the slice-time correction to
provide uniformity in time variation. Here, the middle slice was taken as a reference. It is
followed by the realignment technique based on the reference slice. The individual averaged
functional slices were co-registered using the landmark-based registration technique to
their corresponding MRI. Later, the segmentation process was performed to extract the
brain parts such as White Matter (WM), Gray Matter (GM), and cerebrospinal fluid (CSF).
Every fMRI slice was resized/normalized to MNI (Montreal Neurological Institutes) space,
and resampling was performed with a 3 × 3 × 3 mm3 setting.

A Gaussian kernel was used for smoothing. Last, low frequencies are categorized
based on their ranges—slow4 (0.027 to 0.08 Hz), slow5(0.01 to 0.027 Hz), and full-band (0.01
to 0.08 Hz). Zhang et al. [25] proposed the new model,” hybrid high order fully connected
networks”, to describe the previously unenclosed intermediary relationship between down
and up-order brain networks, getting the highest accuracy. Even the existing model was
not able to address the dynamic brain changes. This work proposes a novel method using
an automated AD diagnosis system by developing a high-order neuro-dynamic functional
network using various frequency levels (slow4, slow5, and full-band) of rs-fMRI time-series
data. Another common transformation is the imaging time series, which converts time
series into images. One significant benefit of this transformation is the ability to retrieve
data for any two time points given a time series. These imaging time series have been
classified using deep neural networks [26], particularly convolutional neural networks.

Higher-order functional brain connections across several frequency bands are used
in customized deep-learning models to distinguish AD and MCI from normal healthy
levels. Thus, the combination of higher-order dynamic and frequency division-based brain
networks opens a new window into diagnosing AD. We have used an “ensemble process”
to increase the current model’s performance by integrating many models into a single
robust model. Figure 1 illustrates the complete workflow of the proposed model using
deep neural networks.

The SPM12 software [27] and the toolboxes DPARSF (Data Processing Assistant for
rsMRI) [28] and REST (Resting-state fMRI Data Analysis Toolkit) [29] were used to process
the input scans. The initial ten volumes were removed to permit the dynamic equilibrium
in each subject. Normalization for images has been performed, by which they were
normalized from 0 to 1. We used the Inception V2 architecture [30] to identify abnormalities
in the brain and detect them, leading to better results with less computational effort. The
primary aim of this network was to select a particular layer at each level. This Inception
V2 network uses a single filter size on the input brain MRI image (1 × 1) for which max
pooling action is involved as a result of this inclusion.
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This neuro-dynamic functional network provided better accuracy, sensitivity, and
specificity, apart from being speedy and efficient for detecting AD using rs-fMRI images.
The ADNI image dataset’s performance has been evaluated using various metrics, such as
recall, specificity, and overall accuracy.

1. Disease Identification method: This is used to classify AD images collected by a
medical expert during screening/monitoring programs.

2. Computer-Assisted Diagnosis: These methods are used to find the chances of
disease based on rs-fMRI image changes.

3. Biomarkers: These are used for evaluating AD disease according to its severity.
This paper aimed to instigate an ML and CNN method for classifying AD from

normal controls.

3.3. Methods
3.3.1. Customized AlexNet

The final three layers are replaced to solve the issue and achieve maximum accuracy.
The last three layers of AlexNet—FC, SoftMax, and classification layer—replace the pre-
trained network. These layers with the altered hyperparameters were eventually included
by fine-tuning the previous layers and training the new layer of the AlexNet model using the
ADNI dataset. The pre-trained model improved classification using the extensive ImageNet
database using the feature extraction method. Minor tweaks are needed for the pre-trained
parameters to adjust to the new MRI brain images. The modified hyperparameters define a
small portion of the freshly transferred network.

Transfer learning is an essential statistical model for developing an efficient DL strategy.
The critical regions of the brain can be recognized from MRI images by using newly
updated parameters in a pre-trained network. These models have good convergence
and are primarily used to extract the features and their classification. For this parameter
learning, stochastic gradient descent with momentum optimizer is used.

As an extension to CNNs, the customized AlexNet architecture was developed to be
competitive at the object detection task. Our proposed model achieves good performance
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using three bands without any external feature selection, reducing the task of exhaustive
search using a set of heuristic approaches.

3.3.2. Customized Inception V2

In this section, the Inception V2 CNN architecture is presented. For AD detection,
TI-weighted MR images and non-invasive methods are used.

The Inception V2 architecture being shown may identify abnormalities in the brain
and detect them, leading to better results with less computational effort. The main goal
of this network is to select a particular layer at each level. This Inception V2 network
utilizes a single filter size on the input brain MRI image (a1 × a1). A max-pooling action is
included as a result of the inclusion. The inception V2’s four pipes operate simultaneously.
The architecture employs (1 × 1 × 1) filters in the first block to decrease the network
by reducing the dimensions. The network begins with three convolutions dimension
(a1 × a1 × a1, b3 × b3 × b3) matrix, which is comparable to the traditional network ap-
proaches (c5 × c5 × c5), (a1 × b3), and (c3 × 1). The filter size in the conventional network
modal is (b3 × b3), which is divided into (a1 × b3) and (b3 × a1) convolutions. As an
example, convolutions in the form of (b3 × b3) or (c5 × c5) are comparable to convolutions
in the form of (a1 × b3) or (a1 × c5) and need less computation than (b3 × b3) dimension
convolutions. In addition, the network comprises only two convolutions (a1 × a1 × a1);
in the third part, it has only the pooling layer, and the fourth has only (a1 × a1 × a1)
filters of convolution.

Similarly, all bands—aside from the max-pooling operation—begin with (a1 × a1 × a1)
convolution filters. All conventional network layers are subjected to batch normalization
to expedite training and reduce the risk of overfitting. After batch normalization is imple-
mented, the convolution network improves and paves the way for data regularization in
each network’s hidden layers; finally, a leaky ReLU function, the activation function, is
implemented. The slope of this function is marginally negative at (0.01). The function’s
slope is somewhat negative (0.01, or so on). The process is as follows in Equation (1):

f (x) = 1(x < 0)(xα) + 1(x ≥ 0)(x) (1)

where α denoted as a negligible constant. The suggested Inception V2 has n properties, as
shown in Figure 2, based on the input. In Figure 2, ∗ symbol indicates the multiplication
operation. The primary advantage of the proposed model is the drastically reduced number
of network parameters. The network’s primary goal is to transfer specific data from the
origin to the target feature space. The primary notion of this network has changed the
feature space of the spatial data from source to destination. The CONV 3D (s.m) represents
the three-dimensional convolution with size (S) and filters (m), whereas the max pool three-
dimensional (p.q) represents the three-dimensional max pool layer for down-sampling
with the stride IQ and size of pool P. The convolution’s filter size nxn has been divided
into ixn and nxi convolutions. It is demonstrated that (a1 × b3) or (a1 × c5) convolutions,
which perform (b3 × a1) or (c5 × a1) convolutions and are an output of the last layer, are
comparable to (b3 × b3) or (c5 × c5) dimension convolutions. Finally, (b3 × b3), which is
less expensive than other convolutions, is the concentration of two convolutions.

The customized model still has its limitations. Pre-trained models such as VGG/inception
often produce valuable features. The big difference is the formation of the problem, especially
the VGG/inception, which was designed for multiclass classification, which means learning
a lot of irrelevant information. All the issues can be solved by fine-tuning a pre-trained
VGG argument with a few layers augmented with a few layers for binary classification, thus
changing the intra-network AD vs. MCI, MCI vs. NL, and NL vs. AD. The weight stored
internally can also be too much, requiring additional regularization. During the design of the
network, we incorporated an Adam optimizer to require fewer parameters for tuning and
implement a faster computation time.



Electronics 2023, 12, 1031 8 of 19

Electronics 2023, 12, x FOR PEER REVIEW 8 of 19 
 

 

(s.m) represents the three-dimensional convolution with size (S) and filters (m), whereas 

the max pool three-dimensional (p.q) represents the three-dimensional max pool layer for 

down-sampling with the stride IQ and size of pool P. The convolution’s filter size 𝑛𝑥𝑛 

has been divided into 𝑖𝑥𝑛 and 𝑛𝑥𝑖 convolutions. It is demonstrated that (a1 × b3) or (a1 

× c5) convolutions, which perform (b3 × a1) or (c5 × a1) convolutions and are an output of 

the last layer, are comparable to (b3 × b3) or (c5 × c5) dimension convolutions. Finally, (b3 

× b3), which is less expensive than other convolutions, is the concentration of two convo-

lutions. 

 

Figure 2. Inception V2 network architecture. 

The customized model still has its limitations. Pre-trained models such as VGG/in-

ception often produce valuable features. The big difference is the formation of the prob-

lem, especially the VGG/inception, which was designed for multiclass classification, 

which means learning a lot of irrelevant information. All the issues can be solved by fine-

tuning a pre-trained VGG argument with a few layers augmented with a few layers for 

binary classification, thus changing the intra-network AD vs. MCI, MCI vs. NL, and NL 

vs. AD. The weight stored internally can also be too much, requiring additional regulari-

zation. During the design of the network, we incorporated an Adam optimizer to require 

fewer parameters for tuning and implement a faster computation time. 

In the traditional training method, the learning rate always remains the same. Re-

cently, it has been suggested that the learning rate should be gradually changed, but this 

method has not been used in migration learning. Frequent changes in the learning rate 

not only accelerate the network convergence but also solve the problem that the loss value 

oscillates and is challenging to converge, with the learning weight also being gradually 

reduced. In top-level network training, better weight parameters are learned. A set of ex-

periments are carried out to ensure the enhanced convergence rate of the model with im-

proved recognition accuracy. The hyperparameter value is shown in Table 2. 

Table 2. Training Parameters for Customized AlexNet and Inception V2. 

Training Parameter Value 

Batch size 4 

Epochs 50 

L1 (learning rate) 1 × 10−5 

Op (optimizer) Adam optimizer 

β_1 0.9 

β_2 0.999 

ε (epsilon) 1 × 10−7 

  

Figure 2. Inception V2 network architecture.

In the traditional training method, the learning rate always remains the same. Recently,
it has been suggested that the learning rate should be gradually changed, but this method
has not been used in migration learning. Frequent changes in the learning rate not only
accelerate the network convergence but also solve the problem that the loss value oscillates
and is challenging to converge, with the learning weight also being gradually reduced. In
top-level network training, better weight parameters are learned. A set of experiments
are carried out to ensure the enhanced convergence rate of the model with improved
recognition accuracy. The hyperparameter value is shown in Table 2.

Table 2. Training Parameters for Customized AlexNet and Inception V2.

Training Parameter Value

Batch size 4

Epochs 50

L1 (learning rate) 1 × 10−5

Op (optimizer) Adam optimizer

β_1 0.9

β_2 0.999

ε (epsilon) 1 × 10−7

3.3.3. Ensemble Deep Learning Model (D2)

The customized models of Alexnet and Inception V2 described in the previous sections
are separately tested on the dataset. The ensemble output is then created by adding the
probabilities of each participant’s output.

The ensemble process merges various learning algorithms to gain their collective
performance or to enhance the performance of current models by mixing different models
to produce one trustworthy model. An ensemble framework works best when the partic-
ipating systems are statistically varied because ensemble learning attempts to assemble
complementing information from its numerous contributing models. Information fusion
for improving classification performance is the primary justification for employing an
ensemble learning model. To acquire a more reliable result, models trained using various
data distributions related to the same set of classes are used while making predictions.
The primary sources of error in learning models are noise, variation, and bias. Deep learn-
ing (DL) algorithms are accurate and stable due to the ensemble methods’ capacity to
reduce these error-causing elements. SVM and KNN are two different learning methods.
SVM makes the quite restricted assumption that a hyperplane separates the data points.
In contrast, KNN attempts to approximate the underlying distribution of the data in a
non-parametric way.
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4. Experimentation Setup and Results Analysis

A typical Windows 10 system with 8 GB ram is used to develop an automated tool in
MATLAB for the comparison of the results. The pre-processing steps of ADNI subjects are
given in Section 2. The same input images are provided to all the transformations to get
an unbiased estimation of their performance. One hundred fifty-three brain subjects are
chosen and utilized for this purpose. Tenfold cross-validation is used for calculating the
accuracies. The number of cross-validation sets is created from the entire dataset, and the
result averaged precision from all those sets. The input array used for the deep learning
models varies for different low frequencies. The slow4 features are resized to 50 × 50,
slow5 features are resized to 60 × 60, and full-band features are resized to 110 × 110. This
size is fixed based on the number of corresponding features. Figure 3 illustrates the entire
execution process model.
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4.1. Performance Analysis

Performance analysis is necessary to evaluate the performance of any classification
system. The tests are conducted in the following ways: three external bands, such as slow4,
slow5, and full-band, are used to extract the dataset’s features.

Specificity: It correctly identifies negatively labelled classes using Equation (2).

S =
True Negative

True Negative + False Positive
(2)

Recall/Sensitivity: It identifies correctly positive labelled classes by using Equation (3)

R =
True Positive

True positive + False Negative
(3)

Accuracy: It is an overall accuracy of true positive and negative out of the total number
of observations that are examined by using Equation (4),

Accuracy =
TP + TN

TP + FP + FN + TN
(4)
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4.2. Result Analysis

To provide an unbiased evaluation, repeated tenfold cross-validation is observed, and
the mean results are presented in this section. This study demonstrates the customized
AlexNet, InceptionNet, and D2 stacked models. The images were normalized from 0 to 1.
The Training Parameters for AlexNet and InceptionNet models are given in Table 2.

Table 3 lists the performance of customized AlexNet, InceptionNet, and D2 models
using slow4, slow5, and full-band features. Their corresponding area under the curve
(AUC) is plotted in Figure 4. With AlexNet, slow5 parts give the highest performance. For
the AD again NL dataset, the majority baseline classification performance is 93.34%, and
the AUC is 0.9488. For the MCI vs. NL dataset, the majority baseline classification accuracy
is 76.56%, and for the AUC is 0.76.03. For the AD vs. MCI dataset, the majority baseline
classification accuracy is 76.34%, and the AUC is 0.7780.

Table 3. Summarizes the performance of customized AlexNet, InceptionNet, and D2 models using
slow4, slow5, and full-band features.

Group Frequency Band Classifers Acc (%) SPE (%) SEN (%) AUC

AD/MCI

Full-band

AlexNet

58.67 65.37 68.45 0.6221

Slow4 75.47 74.56 70.46 0.7603

Slow5 76.34 76.88 77.45 0.778

AD/NL

Full-band

AlexNet

63.23 60.23 70.34 0.6444

Slow4 91.34 90.45 92.42 0.9163

Slow5 93.43 92.34 92.45 0.9488

MCI/NL

Full-band

AlexNet

74.29 72.34 70.67 0.7573

Slow4 75.23 77.45 77.95 0.7675

Slow5 76.56 77.56 78.34 0.7754

AD/MCI

Full-band

InceptionNet

78.89 77.37 75.56 0.7967

Slow4 79.79 74.37 75.56 0.8021

Slow5 80.45 82.45 81.45 0.8196

AD/NL

Full-band

InceptionNet

65.9 62.38 72.56 0.6878

Slow4 92.38 92.36 91.46 0.9390

Slow5 94.47 93.87 93.56 0.9518

MCI/NL

Full-band

InceptionNet

62.67 64.38 62.47 0.6320

Slow4 75.59 78.59 72.57 0.7668

Slow5 79.67 78.56 76.34 0.7989

AD/MCI

Full-band

D2

76.67 77.37 75.88 0.7782

Slow4 78.58 75.31 75.96 0.7959

Slow5 82.67 81.15 80.16 0.8445

AD/NL

Full-band

D2

64.67 61.2 73.67 0.6540

Slow4 94.56 92.12 94.26 0.9546

Slow5 96.61 94.34 94.96 0.9663

MCI/NL

Full-band

D2

66.99 67.65 62.4 0.6758

Slow4 74.19 77.12 71.25 0.7514

Slow5 81.87 79.86 75.47 0.8221
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Figure 4. (a–c) shows the ROC curve obtained from the AD/NL, MCI/NL, and AD/MCI.

InceptionNet trained with slow5 frequencies reaches the highest performance. For the AD
vs. NL dataset, the baseline classification accuracy/AUC is 94.47%/0.9518, and for the MCI
vs. NL dataset, the majority baseline classification accuracy/AUC is 79.67.47%/0.7989. For
the AD vs. MCI dataset, the majority baseline classification accuracy/AUC is 80.45%/0.8145.

The D2 model with slow5 frequencies achieves the highest performance compared
to all the other features. For the AD vs. NL dataset, the baseline classification accu-
racy/AUC is 96.61%/0.9663; for the MCI vs. NL dataset, the majority baseline classification
accuracy/AUC is 81.87%/0.8221, and for the AD vs. MCI dataset, the majority baseline
classification accuracy/AUC is 82.67%/0.8445. Among the three features, the slow4 and
full-band perform lower than the slow5 frequencies for all the classification tasks. Addi-
tionally, it is noted that the D2 model outperforms better than other conventional models.
It shows the diversity of the results produced using the AlexNet and InceptionNet models.

Next, the results are compared with conventional ML algorithms and are furnished
in Table 4. The performance of our ensemble model outperforms the machine learning
algorithms by 5–9%. It is also highlighted that other research also indicates that slow5
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features perform better than using slow4 or full-band frequencies. The hyperparameter
value is shown in Table 5.

Table 4. Compares the performance of KNN and SVM model using slow4, slow5, and full-band
features with traditional machine learning models.

Group Frequency Band Classifers Acc (%) SPE (%) SEN (%) AUC

AD/MCI

Full-band

KNN

58.1 60.45 56.89 0.5782

Slow4 74.61 71.25 68.59 0.7539

Slow5 73.01 77.46 78.11 0.7503

AD/NL

Full-band

KNN

61.49 55.93 67.15 0.6215

Slow4 89.56 89.87 92.42 0.8986

Slow5 91.06 91.46 90.57 0.9166

MCI/NL

Full-band

KNN

65.16 69.45 68.15 0.6780

Slow4 71.13 74.15 69.45 0.7225

Slow5 71.06 71.89 74.98 0.7279

AD/MCI

Full-band

SVM

56.9 60.24 69.67 0.6215

Slow4 73.67 72.04 67.57 0.7492

Slow5 74.56 77.57 79.59 0.7501

AD/NL

Full-band

SVM

62.79 57.13 68.45 0.6312

Slow4 90.06 89.87 92.42 0.9199

Slow5 91.76 93.46 91.97 0.9226

MCI/NL

Full-band

SVM

68.46 70.45 69.45 0.6951

Slow4 72.33 76.45 71.67 0.7386

Slow5 73.76 71.23 74.34 0.7418

Table 5. Training parameters for SVM and KNN.

Classifiers Hyper Parameter Optimized Value

SVM

Kernel type RBF

Cost 0.1

Gamma 0.001

Kernel degree 2

Coefficient 9

KNN
K-neighbors 500

Weighting Similarity

5. Discussion

In this study, dynamic neuro-functional deep ensemble networks are proposed and
implemented to predict several AD periods, including the MCI (prodromal stage), using
different frequency signals of rs-fMRI. In the three features (slow4, slow5, and full-band fre-
quencies), slow5 achieves the top performance using the D2 model, with an accuracy/AUC
of 96.61% for differentiating AD from NL subjects. In the D2 model trained for the MCI
vs. NL task, the accuracy/AUC is 81.87%/0.8221, and for the AD vs. MCI task, the ac-
curacy/AUC is 82.67%/0.8445 with the D2 model. The results in Figure 5 and Table 6
illustrate that the full-band and slow4 frequencies showed no substantial increase in ac-
curacy. However, the slow5 features yield better performance when compared to the
other two components. According to [20], slow5 features capture more discriminatory
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atrophies in different AD classifications. Our work is wholly automated. There is no need
for feature selection.
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Figure 5. (a–c) shows the different frequency bands obtained from the AD vs. MCI, AD vs. NL, and
MCI vs. NL.
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Furthermore, other works investigated fMRI neuroimaging modalities to identify
regions with different levels of atrophy for the various AD classifications. It is noted that
the additional training and testing of data used in other research make it difficult to compare
our proposed method directly. The current methods use different features/feature selection
in exploring various binary classifications in AD/MCI; the performance of multiple spans
is illustrated in Table 6. The results from Table 6 indicate that dynamic neuro-functional
deep learning ensemble networks with slow5 frequencies achieve better classification
performance than other machine learning methods, including those performed in [31,32].
Gaussian/Regression models are used in most of the previous brain network models.
Additionally, KNN and SVM classifiers use Fisher score feature selection to pick relevant
features [15,33], and SVM with two kernels (radio basis functions and polynomial) are used
along with the Fisher score features reaching 90% accuracy, whereas the linear kernel yield
100% performance. For the same Fisher characteristics, the KNN provides an accuracy of
87.5%. KNN and SVM classification algorithm models are used to analyze and classify
AD diseases.

Table 6. Compares the performance of fMRI-based recent methods with our proposed D2 model.

Authors Subjects Task ACC SENS SPE

Challis et al. [31] 20 NL/50 MCI/27 AD AD again MCI
MCI again NC

80.12
75.15

70.97
100

90.24
50.52

Frankde Vos et al. [32] 173 NL/27 AD AD again NL 76.54 71.75 82.47

Khatri et al. [26] 35 NL/61 MCI/35 AD
AD again NL

AD again MCI
NC again MCI

94.10
87.14
85.85

90.95
91.05
93.89

96.75
86.91
90.01

Ramzan et al. [34] 25 NL/25 AD AD again NL 97.88 - -

Duc et al. [35] 198NL/133 AD AD again NL 85.27

Parmar et al. [36] - AD again NL 96.55

Al-Khuzaie et al. [37] - AD again NL 99.30 - -

Bhaskaran et al. [38] - AD again NL 97.54 - -

Luo et al. [39] 33 NL/27 MCI/24 AD AD again NL 95.67 - -

Emily et al. [40]

174 NL/99 MCI/116 AD

AD again NL
AD again MCI
NC again MCI

79.97
73.94
70.42

Han et al. [41]
AD again NL

AD again MCI
NC again MCI

94.99
83.88
79.52

Huang et al. [42]
AD again NL

AD again MCI
NC again MCI

95.12
82.32
78.88

Li et al.-1 [43]
AD again NL

AD again MCI
NC again MCI

96.47
88.47
81.17

Li et al.-2 [43]
AD again NL

AD again MCI
NC again MCI

97.37
92.11
88.12

- -

Proposed D2 model 51 NL/51 MCI/51 AD
AD again NL

AD again MCI
NC again MCI

96.61
82.67
81.87

94.34
81.15
79.86

94.96
80.16
75.47

ACC: accuracy; SENS: sensitivity or recall; SPE: specificity.

In machine learning, the supervised model k-Nearest Neighbors (KNN) is used. Su-
pervised learning is the process through which a model learns from data that has been
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labelled. A set of input items and output values are fed into a supervised learning model.
The method is then trained using the data to figure out how to translate the inputs into
the required outputs, enabling it to forecast data that has not yet been observed. We must
configure several basic settings for KNN.

5.1. SVM Parameter Setup

The parameter setup for SVM with a fixed number of neighbors is five. Gamma and c
are SVM parameters for the Radial Basis Function (RBF) kernel. With low values signifying
“far” and big values suggesting “near,” the γ parameter indicates the range of a particular
training example’s influence. The model’s support vector samples’ radius of influence
can be compared to the inverse of the γ parameters. The C parameter compromises good
training sample classification for an increase in the margin of the decision function. Greater
values of C can tolerate a smaller margin if the decision function is more accurate at
correctly detecting all training points. A lower C reduces the training accuracy at the
expense of a more significant margin and, hence, a more straightforward decision function.
Our suggested dynamic neurofunctional deep ensemble networks demonstrate equal
good performance in the prediction of numerous stages of AD when compared to other
cutting-edge techniques.

The Brain-Connectivity networks, VGG19 [31], ResNet50 [33], Densenet121 [34],
C3d [35], and C3d-LSTM [35], show good performance for the classifications. However, it
is noted that the training set consists of both baseline and longitudinal images, and opti-
mization parameters such as L1 and L2 regularization are needed to set up these networks.
When compared with these models, it can be said that our work shows good compatible
accuracy for all the classifications. This work reveals that there exist unique discriminatory
frequency values in different bands, which is a major factor in determining the performance
of our proposed research work. We have discussed the accuracies of different conventional
ML and recent DL models on fMRI-based datasets in Table 6. In addition, our technique
has an inherent feature selection, a deciding factor for improved accuracy. It is highlighted
that our method requires less parameter optimization and is fully automated. This makes
our method distinct from all the other methods.

From the last ten years, the different network approaches were used. In that, most
authors use fewer datasets with low-frequency time series data and achieve more than 90%
accuracy with varying band levels.

Our ensemble model also required fewer epochs during training; however, because
of the large number of kernels at the first and second layers, the number of parameters is
very high, increasing the model’s time complexity. Comparing this model to other feature
extraction and classification models, the rs-fMRI slice technique effectively reduces the
complexity of pre-processing. The drawbacks found in the low-order neurodynamics
precisely manipulate the mono-band frequency span of rs-fMRI, leaving out the high-
order neurodynamics. We propose an automated AD system to overcome these issues
by developing a high-order neuro-dynamic functional network using various bands. The
confusion matrix of AD is obtained as a 2 ∗ 2 matrix from the experiments performed with
the segmentation and classification.

Table 7 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fourteen subjects as one correctly, and six subjects were
misclassified as zero.

Table 7. Confusion matrix of AD/NL classification.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (AD) 8 2

Actual 0 (NL) 6 4
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Table 8 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fourteen subjects as one correctly, and six subjects were
misclassified as zero.

Table 8. Confusion matrix of MCI/NL classification with the hippocampal region.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (MCI) 9 1

Actual 0 (NL) 5 5

Table 9 presents the confusion matrix of our proposed model. From this, out of twenty
subjects, the classifier predicted fifteen subjects as one correctly, and five subjects were
misclassified as zero. The classifier’s efficiency is evaluated from the 2 ∗ 2 matrix for each
region through TP, FP, TN, and FN. The results obtained give desired performances with
the testing subjects. The observations show no significant differences over “AD vs. NL,
MCI vs. NL and AD vs. MCI”. Hence it portrays that the proposed model outperforms the
multiclass classification problems.

Table 9. Confusion matrix of AD/MCI classification with the hippocampal region.

Actual/Predicted (n = 20) Predicted as 1 Predicted as 0

Actual 1 (AD) 7 3

Actual 0 (MCI) 8 2

5.2. Limitations of the Work

The classification of medical images is a fundamental and significant issue in computer
innovation, which has undergone much research over the past few decades. Even though
the reliability of various medical image classification methods has significantly increased,
these methods may not offer correct AD because of their non-universality, vulnerability to
illumination and spoofing effects, and insufficient accuracy via the poor data quality. There-
fore, in many real-world applications, standard medical picture categorization may not be
able to deliver the needed performance. In this study, we solely used the ADNI dataset to
categorize the three frequency ranges of the various phases of AD. The dataset we used
here is small for the entire experimentation. Additionally, this work solely uses traditional
methods for AD classification, such as SVM and KNN, instead of alternative techniques.

6. Conclusions

In this work, the dynamic neuro-functional deep ensemble networks use various
frequencies in resting-state fMRI to diagnose different stages of AD from real-time ADNI
datasets. The excellent performance is achieved with our proposed D2 model using three
bands (slow4, slow5, and full-band) without any external feature selection, and it is a
combination of two deep learning models. Among the three bands evaluated, the results
show that the slow5 features, when trained with various customized Alex and Inception
networks, perform better for AD/MCI classifications. It is also mentioned that additional
studies are required to develop these networks to increase the precision of AD classifications.
We have contrasted our networks against established machine learning techniques and
more contemporary deep learning techniques. It demonstrates that rs-fMRI multi-band
characteristics have a higher potential for being AD biomarkers than single-band features.
It is also noted that more research is needed to optimize these networks to improve the
accuracy of AD classifications. We have compared our networks with traditional machine
learning methods and current deep learning methods. Our study shows that the multi-
band features of rs-fMRI have more potential to be AD biomarkers than single-band
features. Additionally, the performance of the proposed ensemble model outperforms the
conventional ML algorithms by 5–9%. The proposed model is less complex to train and
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requires fewer hardware resources. Furthermore, the proposed model had surpassed in
terms of accuracy the various existing models. In the future, we aim to test and apply this
model on a more extensive and richer dataset. Moreover, we hope to implement single-cell
transcriptome data using variational neighborhood preserving quantum embeddings and
deep learning. In the future, the use of image augmentation for AD classification may be
added with different image augmentation methods such as flipping, padding, etc.
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