
Citation: Nikolaidis, D.; Groumas, P.;

Kouloumentas, C.; Avramopoulos, H.

High-Throughput Bit-Pattern

Matching under Heavy Interference

on FPGA. Electronics 2023, 12, 803.

https://doi.org/10.3390/

electronics12040803

Academic Editors: Leonardo Pantoli,

Egidio Ragonese, Paris Kitsos,

Gaetano Palumbo and

Costas Psychalinos

Received: 27 December 2022

Revised: 29 January 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Communication

High-Throughput Bit-Pattern Matching under Heavy
Interference on FPGA
Dimitris Nikolaidis 1,*, Panos Groumas 2 , Christos Kouloumentas 2 and Hercules Avramopoulos 1

1 School of Electrical and Computer Engineering, National Technical University of Athens,
15773 Athens, Greece

2 Optagon Photonics, Eleftheriou Venizelou 47, 15351 Pallini, Greece
* Correspondence: dimnikolaidis@mail.ntua.gr

Abstract: Bit-pattern matching is an important technological capability, used in many fields such
as network intrusion detection (NID) and packet classification systems. Essentially, it involves the
matching of an input bit pattern to a bit-pattern entry of a memory structure inside the system.
Contemporary methods focus on the decomposition of the input bit pattern into smaller and more
manageable parts, with the subsequent parallel processing of these elements. This fragmentation
promotes the use of advanced pipeline techniques and hardware optimizations, enabling these
methods to achieve very high throughputs and reasonable efficiency. However, the functionality of
their respective circuits is limited to only performing pattern matching when there is no interference.
In this article, we intend to present a circuit that performs pattern matching under heavy interference;
instead of fragmentation, a more holistic approach will be adopted. To improve the throughput of
the circuit, long bit sequences will be directly compared to many memory entries simultaneously.
The minimization of hardware consumption and maximization of efficiency in these comparisons
will be achieved with the use of novel hardware architecture that is based on pipelined adder trees
and comparators. The platform of implementation is an FPGA (Field-Programmable Gate Array).

Keywords: bit-pattern matching; high interference; high throughput; VHDL; FPGA

1. Introduction

Bit-vector pattern matching is an important function of modern hardware systems and
has a strong presence in many fields. Notable examples include packet header classifica-
tion [1], string matching (in the field of network intrusion systems) [2–4], and many others,
including biology, image processing, and text search [5]. In essence, bit-vector pattern
matching concerns the identification of an input pattern of a specific size to a known pattern
that resides in the memory of the system performing the operation [6]. Since the size of
the patterns is typically greater than 1000 bits, the main method used by state-of-the-art
solutions is to break down the input pattern into smaller sub-patterns and then use small
and efficient processing elements to perform pattern matching at maximum throughput [6].
In this paper, we will present a different approach to pattern matching that focuses on
matching under heavy interference.

Contemporary methods are very efficient in pattern matching; however, there is a criti-
cal disadvantage connected to their use, in that they cannot perform pattern matching when
the pattern is significantly altered. While there are many solutions for pattern matching that
are very proficient [6,7] and employ advanced methods to maximize operating frequency
and the optimal use of memory blocks, there is little to no provision for performing pattern
matching at the same data rates (gigabits) under interference. Since digital data can be
manipulated easily and can take any form, being able to distinguish between very large
patterns that have undergone significant alternation can prove to be very important in
fields such as image recognition [8].

Electronics 2023, 12, 803. https://doi.org/10.3390/electronics12040803 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040803
https://doi.org/10.3390/electronics12040803
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5579-9935
https://doi.org/10.3390/electronics12040803
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040803?type=check_update&version=1

Electronics 2023, 12, 803 2 of 12

The circuit presented in this article aims to solve this problem by changing the phi-
losophy behind the process of pattern matching. Instead of breaking down the pattern
into smaller sub-patterns, the entire pattern is directly compared with as many memory
elements as possible in every clock cycle. To achieve this end with few resources, the
comparison procedure was augmented with pipelined adder trees. The intention behind
this choice is to sever the connection between the size of the pattern and the operating
frequency. In other words, the circuit is able to handle large patterns without suffering
losses in operating frequency and throughput. The architecture used is minimalistic and
can be implemented very easily on all types of hardware platforms. The circuit can handle
bit-error rates (BER) of up to 10−1 with high accuracy, as a result of its nature. Detection
via adder trees and the comparators of large bit patterns is resistant to bit errors, regardless
of the error pattern.

This article is, first and foremost, an introductory presentation of the novel treatment
of pattern matching that is described above. It is not meant to be a conclusive survey of
every single possible configuration of the architecture of the proposed circuit but is, rather,
a proof of concept. It presents evidence that there is, in fact, merit in pursuing this type of
approach to pattern matching since it displays multiple advantages that are not present
in other schemes. The circuit itself is a kernel implementation. Certain aspects of it (e.g.,
memory) were implemented without particular attention being paid to their efficiency, as a
means to an end, and other aspects (I/O circuitry) are left to the user. Since these functions
are already widely researched, future plans include the integration of optimized memory
and an I/O circuitry module, as well as a thorough survey of all the parameters connected
to the design.

This article consists of 6 sections. The second section houses the presentation of a set
of fundamentals regarding the function of pattern matching itself, as well as the philosophy
behind using adder trees instead of only comparators. This will become the basis of our
approach. The third section presents the fundamental pattern-matching circuit upon which
the general design is based. Its function is to compare the entire pattern to a memory entry
and conclude whether it matches the pattern being searched. The fourth section covers the
functionality of the entire circuit, together with the results of its implementation on the
chosen board. The fifth section is entirely dedicated to the testing of the pattern-matching
mechanism under heavy interference. The main topics are the error model used to simulate
the communication channels and the circuit’s matching capabilities. The article concludes
with a summary of our findings.

2. Fundamentals

The main purpose of bit-vector pattern matching is the matching of an input pattern
to one known pattern. Usually, the known patterns are referred to as rules and the size of
the set of rules is known as the rule set. Rule sets vary in size; generally, they are lower than
or equal to 1000 [7]. In other implementations, the patterns are broken down further into
sub-patterns, but this will not be the case in our circuit. Table 1 presents an input pattern,
along with the rule set used. The rule size is 5 and the length of the pattern is 10.

Table 1. Rule set.

Input Pattern 0011011101

Rule 1 1101001101
Rule 2 0001011101
Rule 3 1001011111
Rule 4 1111110101
Rule 5 1011110100

In this particular case, the input pattern does not match any entry exactly, but it can
be matched with Rule 2 since it is the closest in terms of Hamming distance. Determining
the closest bit vector in terms of distance can be simply achieved by xnoring(the bits in

Electronics 2023, 12, 803 3 of 12

respective positions pass through xnor gates) the input pattern with each memory entry
and then summing the product bits. Table 2 depicts this operation.

Table 2. The similarity of patterns.

Input Pattern Rule 2 Xnor Sum of Xnor Gates

0 0 1

9(1001)

0 0 1
1 0 0
1 1 1
0 0 1
1 1 1
1 1 1
1 1 1
0 0 1
1 1 1

The highest value for the sum is the number of bits when both patterns are the
same and is set at 0 when they are complements. The simplicity of this method fits the
minimalistic tone of the circuit. Achieving its implementation with the fewest possible
resources and the highest possible frequency, while providing maximum accuracy, will be
key to success. Before moving on to the hardware requirements, we are going to present
two basic circuits that will be used extensively in the architecture.

2.1. Adder Tree

An adder tree is a well-known circuit that calculates the sum of a set of numbers. Its
general form can be seen in Figure 1 for a model with 11 bits (each input is a bit).

Electronics 2023, 12, x FOR PEER REVIEW 3 of 12

In this particular case, the input pattern does not match any entry exactly, but it can be
matched with Rule 2 since it is the closest in terms of Hamming distance. Determining the
closest bit vector in terms of distance can be simply achieved by xnoring(the bits in
respective positions pass through xnor gates) the input pattern with each memory entry and
then summing the product bits. Table 2 depicts this operation.

Table 2. The similarity of patterns.

Input Pattern Rule 2 Xnor Sum of Xnor Gates
0 0 1

9(1001)

0 0 1
1 0 0
1 1 1
0 0 1
1 1 1
1 1 1
1 1 1
0 0 1
1 1 1

The highest value for the sum is the number of bits when both patterns are the same
and is set at 0 when they are complements. The simplicity of this method fits the
minimalistic tone of the circuit. Achieving its implementation with the fewest possible
resources and the highest possible frequency, while providing maximum accuracy, will
be key to success. Before moving on to the hardware requirements, we are going to present
two basic circuits that will be used extensively in the architecture.

2.1. Adder Tree
An adder tree is a well-known circuit that calculates the sum of a set of numbers. Its

general form can be seen in Figure 1 for a model with 11 bits (each input is a bit).

Figure 1. Adder tree for an 11-bit model.

The circles are adders of appropriate size for each level, while the squares represent
registers. The addition of registers between the levels of adders enables pipelining. At
each level, the numbers are added in pairs. If there is a leftover number, it proceeds as
previously set. This means that in level i, there are ଶ additions (either ceil (ଶ) or floor (ଶ))
and ceil(log2n) levels in total. The final sum is also ceil(log2n) bits in length. The largest

Figure 1. Adder tree for an 11-bit model.

The circles are adders of appropriate size for each level, while the squares represent
registers. The addition of registers between the levels of adders enables pipelining. At
each level, the numbers are added in pairs. If there is a leftover number, it proceeds as
previously set. This means that in level i, there are n

2i additions (either ceil (n
2i) or floor

(n
2i)) and ceil(log2n) levels in total. The final sum is also ceil(log2n) bits in length. The

largest adder needed is ceil(log2n) − 1 bits. The critical path of this adder determines the

Electronics 2023, 12, 803 4 of 12

maximum operating frequency of the entire tree. This is the main reason the adder tree by
itself cannot support very long sequences. Adders of 32 bits are significantly slower than
adders of 4 bits when they are forced to perform addition in one clock cycle. Pipelining
the bigger adders will result in enormous hardware consumption, which will ultimately
offset the trees’ efficiency. For the circuit to be able to handle bit sequences of 1000 bits
while operating in the frequency of 4-bit adders, with no significant hardware overhead,
significant modifications need to be made.

2.2. Comparator Tree

A comparator tree is a variation of the adder tree. Just as the name implies, when
given a set of n numbers, it can determine the maximum or minimum of these numbers. It
can be easily pipelined using the same method as the adder tree. By keeping the position
of each number on a parallel register, it can output not only the maximum value but also
its position inside the set. The depth of the pipeline is also calculated as ceil(log2n) clock
cycles. In the context of the circuit, this will be used to determine which rule the input
sequence is closest to and provide it as an output.

3. Core Circuit Description

The circuit performing the matching between the input pattern and one entry of the
memory structure will be built in two phases. In the first phase, we are going to present the
basic circuit, the lesser pattern identifier upon which the entire architecture will be based;
in the second phase we are going to present the scaled-up model, the cascaded pattern
identifier, which performs pattern matching with the same operation frequency, regardless
of the size of the pattern.

3.1. Lesser Pattern Identifier

We assume that the entire input pattern is n bits long. We xnor the input pattern with
one memory entry (respective bit positions are fed to xnor gates). Then we break down
these bits in q symbols of m bits each, so we have q × m = n. This fragmentation is not
aimed at creating sub-patterns. It is a strategy, the ultimate purpose of which is to enable
the circuit to perform pattern matching at maximum frequency. Each symbol of the m
xnored bits is then driven through a pipelined adder (Section 2.1). The sum of the xnor
outputs gives us an estimation of how close the input pattern to our pattern is. After the
adder tree, each sum is passed through a comparator. If the sum is equal to the number
of bits per symbol (m), then the output of the comparator becomes 1, indicating that the
correct symbol was detected. Then, by checking the output of the comparators, we can
determine how many symbols were detected. If all the m symbols were detected, then the
pattern was detected. An implementation of it is shown in Figure 2 for q = 3 and m = 5. All
values are marked on the wires of the circuit for convenience and clarity. The number that
the comparators use to determine whether the symbol was detected or not is known as the
weight of the lesser identifier. In Figure 2, the weight of the identifier is 5.

It is clear that the lesser pattern identifier alone cannot be used to identify large patterns
(n > 100). If there are too many symbols (q > > 1) then the outputs of the comparators are
too many to check in one cycle, thus increasing the critical path. If the symbols are too
large, the adder trees require adders comprising many bits, which increases the critical
path. For these reasons, the actual pattern matching will be performed using the cascaded
pattern identifier.

Electronics 2023, 12, 803 5 of 12
Electronics 2023, 12, x FOR PEER REVIEW 5 of 12

Figure 2. The lesser pattern identifier.

It is clear that the lesser pattern identifier alone cannot be used to identify large
patterns (n > 100). If there are too many symbols (q > >1) then the outputs of the
comparators are too many to check in one cycle, thus increasing the critical path. If the
symbols are too large, the adder trees require adders comprising many bits, which
increases the critical path. For these reasons, the actual pattern matching will be
performed using the cascaded pattern identifier.

3.2. Cascaded Pattern Identifier
The cascaded pattern identifier is a circuit with multiple stages. Each stage comprises

a lesser pattern identifier (see Section 3.1) where the comparator outputs are fed to the
identifier of the next stage. Figure 3 presents the circuit of a cascaded pattern identifier.
The number of input bits is kept low in the example, in order to plot the entire circuit
clearly. This version has 2 stages. The first stage (stage 1) comprises 30 bits, organized as
5 bits per symbol for 6 symbols. In the second stage, the inputs drop from 30 to 6. They
are organized in 2 symbols of 3 bits each. The last 2 bits indicate if the entire pattern of 30
bits was detected. We can see that the weights of the comparators are now higher than or
equal to 4 for the first stage and higher than or equal to 2 for the second stage. This means
that there is a margin for error. Additionally, the pattern that needs to be detected only
appears in the symbols of the first stage. For stage 2, all symbols are replaced with
combination 111 since subsequent stages are used to determine how well the first stage
detected the pattern. As we can see, only a part of the pattern was detected based on the
weights used by the comparators and there is no match. The latency of the circuit is
represented by ceil(log25) + 1 + ceil(log23) + 1 = 7 clock cycles. The term 1 + 1 represents the
clock cycles needed by the comparators. To conserve hardware, comparators can be
implemented as combinatorial circuits so they do not consume clock cycles. The log terms
are a product of the adders. In general, for a circuit of t stages, the clock cycles needed by
the circuit are ݏ݈݁ܿݕܥ = ݐ [∑ ceilሺlogଶ௧ୀଵ ܾሻ], where bi represents the bits per symbol for
each stage.

Figure 2. The lesser pattern identifier.

3.2. Cascaded Pattern Identifier

The cascaded pattern identifier is a circuit with multiple stages. Each stage comprises
a lesser pattern identifier (see Section 3.1) where the comparator outputs are fed to the
identifier of the next stage. Figure 3 presents the circuit of a cascaded pattern identifier. The
number of input bits is kept low in the example, in order to plot the entire circuit clearly.
This version has 2 stages. The first stage (stage 1) comprises 30 bits, organized as 5 bits
per symbol for 6 symbols. In the second stage, the inputs drop from 30 to 6. They are
organized in 2 symbols of 3 bits each. The last 2 bits indicate if the entire pattern of 30 bits
was detected. We can see that the weights of the comparators are now higher than or equal
to 4 for the first stage and higher than or equal to 2 for the second stage. This means that
there is a margin for error. Additionally, the pattern that needs to be detected only appears
in the symbols of the first stage. For stage 2, all symbols are replaced with combination
111 since subsequent stages are used to determine how well the first stage detected the
pattern. As we can see, only a part of the pattern was detected based on the weights used
by the comparators and there is no match. The latency of the circuit is represented by
ceil(log25) + 1 + ceil(log23) + 1 = 7 clock cycles. The term 1 + 1 represents the clock cycles
needed by the comparators. To conserve hardware, comparators can be implemented as
combinatorial circuits so they do not consume clock cycles. The log terms are a product of
the adders. In general, for a circuit of t stages, the clock cycles needed by the circuit are
Cycles = t +

[
∑t

i=1 ceil(log2 bi
)
], where bi represents the bits per symbol for each stage.

By constructing the pattern identifier in this way, we have achieved two important
things. Firstly, for large patterns, adders do not need to scale indefinitely. We can use
more stages and steadily decrease the number of bits to keep the bits per symbol low. This
means that the size of the pattern, in bits, has no effect on the critical path (and as a result
of the operating frequency and throughput). Secondly, by manipulating the weights of the
comparators, we can adjust the detecting ability of the circuit (it resembles a neural network,
where comparators are neurons). As an example, we offer the implemented version of the
circuit with 1200 input bits and 3 stages. The general form can be seen in Figure 4. This
method can be scaled to any pattern length and any combination of adder-size, and the
levels can be constructed and tested to maximize the detection capability.

Electronics 2023, 12, 803 6 of 12
Electronics 2023, 12, x FOR PEER REVIEW 6 of 12

Figure 3. The 2-stage cascaded pattern identifier.

By constructing the pattern identifier in this way, we have achieved two important
things. Firstly, for large patterns, adders do not need to scale indefinitely. We can use
more stages and steadily decrease the number of bits to keep the bits per symbol low. This
means that the size of the pattern, in bits, has no effect on the critical path (and as a result
of the operating frequency and throughput). Secondly, by manipulating the weights of
the comparators, we can adjust the detecting ability of the circuit (it resembles a neural
network, where comparators are neurons). As an example, we offer the implemented
version of the circuit with 1200 input bits and 3 stages. The general form can be seen in
Figure 4. This method can be scaled to any pattern length and any combination of adder-
size, and the levels can be constructed and tested to maximize the detection capability.

Figure 3. The 2-stage cascaded pattern identifier.

In the first stage (lesser identifier 1) the 1200 bits are broken down to 120 symbols of
10 bits. Following the logic of Figure 2, we use 120 adder trees, divided into 10 bits each.
The results of these trees are fed to 120 comparators, which have a predetermined weight.
The results of the comparators are now fed to the next lesser pattern identifier (2). This
identifier has an input of 120 bits, which is broken down into 12 symbols of 10 bits. The
same process is applied, then the outputs of the second identifier (14 bits) are fed to the
last identifier (3), where they are broken down into 1 symbol of 12 bits. The output of the
last identifier is 1 bit. This bit vector is used to determine the detection of a pattern. If the
bit output is 1, the pattern was detected. As mentioned, the key pattern of the first lesser
identifier is the pattern being searched. For the second and third stages, the key pattern is
the all-1 vector. This is because the second- and third-stage identifiers act as confirmation
that the pattern in the previous stage was indeed detected. The clock cycles for 1200 bits
are Cycles = 3 + 2× ceil(log2 10) + ceil(log2 12) = 15. The largest adder used is of 4 bits.

Electronics 2023, 12, 803 7 of 12Electronics 2023, 12, x FOR PEER REVIEW 7 of 12

Figure 4. The 3-stage cascaded pattern identifier.

In the first stage (lesser identifier 1) the 1200 bits are broken down to 120 symbols of
10 bits. Following the logic of Figure 2, we use 120 adder trees, divided into 10 bits each.
The results of these trees are fed to 120 comparators, which have a predetermined weight.
The results of the comparators are now fed to the next lesser pattern identifier (2). This
identifier has an input of 120 bits, which is broken down into 12 symbols of 10 bits. The
same process is applied, then the outputs of the second identifier (14 bits) are fed to the
last identifier (3), where they are broken down into 1 symbol of 12 bits. The output of the
last identifier is 1 bit. This bit vector is used to determine the detection of a pattern. If the
bit output is 1, the pattern was detected. As mentioned, the key pattern of the first lesser
identifier is the pattern being searched. For the second and third stages, the key pattern is
the all-1 vector. This is because the second- and third-stage identifiers act as confirmation
that the pattern in the previous stage was indeed detected. The clock cycles for 1200 bits
are ݏ݈݁ܿݕܥ = 3 2 × ceilሺlogଶ10ሻ ceilሺlogଶ12ሻ = 15. The largest adder used is of 4 bits.

4. Pattern-Matching Circuit and Implementation
By using the cascaded pattern identifier, we performed pattern matching of an input

to a set of memory entries. The number of units of the cascaded pattern identifier is the same
as the number of memory entries. The input is fed to all of the units, while each memory

Figure 4. The 3-stage cascaded pattern identifier.

4. Pattern-Matching Circuit and Implementation

By using the cascaded pattern identifier, we performed pattern matching of an input
to a set of memory entries. The number of units of the cascaded pattern identifier is the
same as the number of memory entries. The input is fed to all of the units, while each
memory entry is fed to its respective unit. If we have enough stages, we can minimize
the set of output bits of the cascaded identifier to 1 bit for the final level. If the number of
units is k, they produce k bits, each bit indicating whether the input pattern was matched
correctly. When a pattern is found, these k bits contain one “1” and k − 1 “0”s. The place of
the 1 is the matched entry in the memory. Different approaches can be adopted to detect
the 1. In the current case, a comparator tree was used (Section 2.2). The tree’s hardware
consumption was extremely small and had no detrimental effect on the operating frequency.
The general form of their entire pattern identifier can be seen in Figure 5. The rule set
consists of 64 entries.

Electronics 2023, 12, 803 8 of 12

Electronics 2023, 12, x FOR PEER REVIEW 8 of 12

entry is fed to its respective unit. If we have enough stages, we can minimize the set of
output bits of the cascaded identifier to 1 bit for the final level. If the number of units is k,
they produce k bits, each bit indicating whether the input pattern was matched correctly.
When a pattern is found, these k bits contain one “1” and k − 1 “0”s. The place of the 1 is the
matched entry in the memory. Different approaches can be adopted to detect the 1. In the
current case, a comparator tree was used (Section 2.2). The tree’s hardware consumption
was extremely small and had no detrimental effect on the operating frequency. The general
form of their entire pattern identifier can be seen in Figure 5. The rule set consists of 64
entries.

Figure 5. Pattern-matching circuit.

The circuit uses the address produced by the comparator tree to output the matched
memory entry. The total latency of the circuit is the latency of the cascaded pattern
identifier and the latency of the comparator tree at the end, which is 15 + 8 = 23 cycles. In
terms of the memory, this was implemented as a very long linear shift register (bits 0 to
1199 are entry 0, bits 1200 to 2399 are entry 1, bits 2400 to 3599 are entry 2, etc., all the way
to entry 63), which runs on the same clock as the cascaded identifiers, i.e., 667 MHz) and
has a 1-bit input on the first position. If entry y needs to be outputted, the corresponding
bits are in positions y * 1200 to (y + 1) * 1200 − 1. To update the entire memory, 1200 × 64 =
76,800 clock cycles (10−4 s) are needed (1 bit per clock cycle). To update parts of the
memory, a proportional number of clock cycles are needed; however, updates need to be
performed in order. Each group of positions (0 to 1199 for entry 0, etc.) is connected as the
second input to each one of the 64 3-stage cascaded identifiers (the first input being the
1200-input pattern). The circuit does not support dynamic memory updating. Updating
of the memory must be completed before the circuit recommences normal operation. This
makes the design reported in [2] better in this area since it supports dynamic updating.

As mentioned, we opted for an input pattern that was 1200 bits long, with three
stages of cascaded identifiers (bits per symbol were 10, 10, and 12, respectively) and a rule
set of 64 rules. The biggest adder used is 4 bits, which can be seen in the operating
frequency of the system. The weight of the comparators (value above which the symbol is
detected as matched) was set to 6, 6, and 8, respectively, for every level (bits per symbol =
4). This was used to enable the circuit to detect patterns, under the interference of BER =
10−1. As mentioned, the circuit received the input pattern as an input (along with standard
reset and enable signals) and outputs the pattern that matches the closest to an entry in its
memory. For its implementation, 205,082 LUTs and 355,013 FFs were used. For only one
unit, 3051 LUTs and 5531 FFs (approximately 1/64th) are necessary. The FPGA evaluation
board that was used was the ZCU106 Ultrascale+. Since the biggest adder used was 4 bits,

Figure 5. Pattern-matching circuit.

The circuit uses the address produced by the comparator tree to output the matched
memory entry. The total latency of the circuit is the latency of the cascaded pattern identifier
and the latency of the comparator tree at the end, which is 15 + 8 = 23 cycles. In terms of
the memory, this was implemented as a very long linear shift register (bits 0 to 1199 are
entry 0, bits 1200 to 2399 are entry 1, bits 2400 to 3599 are entry 2, etc., all the way to entry
63), which runs on the same clock as the cascaded identifiers, i.e., 667 MHz) and has a 1-bit
input on the first position. If entry y needs to be outputted, the corresponding bits are in
positions y * 1200 to (y + 1) * 1200 − 1. To update the entire memory, 1200 × 64 = 76,800
clock cycles (10−4 s) are needed (1 bit per clock cycle). To update parts of the memory, a
proportional number of clock cycles are needed; however, updates need to be performed in
order. Each group of positions (0 to 1199 for entry 0, etc.) is connected as the second input to
each one of the 64 3-stage cascaded identifiers (the first input being the 1200-input pattern).
The circuit does not support dynamic memory updating. Updating of the memory must
be completed before the circuit recommences normal operation. This makes the design
reported in [2] better in this area since it supports dynamic updating.

As mentioned, we opted for an input pattern that was 1200 bits long, with three stages
of cascaded identifiers (bits per symbol were 10, 10, and 12, respectively) and a rule set of
64 rules. The biggest adder used is 4 bits, which can be seen in the operating frequency
of the system. The weight of the comparators (value above which the symbol is detected
as matched) was set to 6, 6, and 8, respectively, for every level (bits per symbol = 4). This
was used to enable the circuit to detect patterns, under the interference of BER = 10−1. As
mentioned, the circuit received the input pattern as an input (along with standard reset and
enable signals) and outputs the pattern that matches the closest to an entry in its memory.
For its implementation, 205,082 LUTs and 355,013 FFs were used. For only one unit,
3051 LUTs and 5531 FFs (approximately 1/64th) are necessary. The FPGA evaluation board
that was used was the ZCU106 Ultrascale+. Since the biggest adder used was 4 bits, an
operating frequency of 667 MHz was achieved, providing a total terminal throughput
(with no memory updating) of 1200 × 667 = 800.4 Gbps. Compared to other pattern-
matching circuits, hardware consumption is on the same magnitude but is slightly higher.
In a previous study [7], the pattern-matching circuit of the same size of input × entries
consumed 29,056 slices on Virtex 6. This translates to 116,224 LUTs and 232,448 FFs [9],
which is about half of that for the proposed design in LUTs and two-thirds of that in FFs.
The proposed design, however, provides four times the throughput. In another study [6],

Electronics 2023, 12, 803 9 of 12

only illustrations are provided for the hardware consumption; however, the throughput
provided is still half of the proposed design (for one core). The designs reported in [2–4]
are not specialized and the throughput they present is much lower (<30 Gbps). Table 3
presents the aggregated results described above.

Table 3. A comparison of terminal throughput (with no memory updating) between the differ-
ent works.

Source Hardware Terminal Throughput

[7] 116,224 LUTs/232,448 FFs 256 Gbps
[6] N/A 358.4 Gbps 1

[2–4] Various (not specialized) <30 Gbps
Proposed 205,082 LUTs/355, 013 FFs 800.4 Gbps

1 The value refers to one processing cluster.

Since the circuit is a kernel implementation, it does not take into account the I/O
circuitry. This is left as a choice for the user, and it is heavily dependent upon the type of
application that the circuit will realize. The throughput comparison, however, is valid. One
previous study [7] uses rules with a much shorter length so that all the I/O pins can be
directly mapped on the FPGA, with a very restrained impact on the hardware consumption
and throughput. Another study [6] presents only illustrations. The throughput in [2–4]
is much lower. In the current case, the board of implementation (ZCU106 Ultrascale+)
has multiple I/O devices (multiple I/O pins and gigabit transceivers), which can be used
in unison to provide the inputs. The choice of what I/Os are used and how often this
happens will determine the end-to-end performance and hardware consumption of the
system. Generally, a value of 800.4 Gigabits/s is the highest possible throughput that the
synthesizer allows for correct implementation. The design can very easily be run at lower
speeds, to provide some leniency for the I/O circuitry. Finally, the output can simply
be given as the number of the entry and not the entire pattern, while the input does not
necessarily have to be 1200 bits per cycle. With data compression techniques, fewer bits
can enter the board, and the larger sequence can be created and fed to the circuit afterward.

5. Pattern Matching under Interference and Simulations
5.1. Error-Free and Error-Present Input Generation

To test the ability of the system to match patterns under heavy interference, simulations
for both error-free and error-present inputs were performed. Since the focus of the design
is its ability to detect severely altered patterns with very high throughput, all possible
sources of misdetection had to be examined. This includes misfires, in other words, if
the design detects a pattern when one is not present. For this reason, to create the input,
100,000 patterns were generated by choosing entries from the memory randomly. For
example, the sequence could be {entry 0, entry 8, entry 10, entry 44, entry 21, entry 53, etc.}.
Another 100,000 patterns were randomly generated 1200-bit patterns (with a 50% chance of
0 and a 50% chance of 1 for each bit) to make absolutely sure that the design did not detect
random patterns as part of the 64 memory entries. For the error-free stream, the memory
entries could be anything, but for the error-present stream, additional considerations had
to be considered. Firstly, the Hamming distance of each memory entry needed to be
sufficiently high for the error rate chosen from all other entries, to ensure that they would
not be misidentified. Secondly, the error model had to be robust and flexible, in order to
simulate realistic error patterns with a high rate of accuracy (BER = 10−1).

To ensure sufficient Hamming distance, the 64 entries were constructed with a Ham-
ming distance of 400 bits between each other, using the following method. Assuming that
an entry of 1200 bits is made up of 100 sub-patterns of 12 bits of vi, it presents the form
v1v2v3v4v100. By performing an exhaustive search on all 12-bit binary numbers it was
determined that the biggest set in which all binary numbers have a Hamming distance

Electronics 2023, 12, 803 10 of 12

of 4 between each other was 128. The memory entries were constructed with this pool of
128 12-bit vectors. Firstly, we aligned the entries vertically.

entry 1 : v1
1v1

2v1
3v1

100

entry 2 : v2
1v2

2v2
3v2

100

entry 64 : v64
1 v64

2 v64
3v64

100

Then, for each column, we shuffled the pool of 128 12-bit vectors and picked 64 at
random (no duplicates). These 64 vectors constitute the column vj

i , j ∈ [1, 64]. All of the
vectors have a Hamming distance of 4 between them and, since there are 100 columns, all
entries have a distance of 400 between them.

The error model used to simulate the channel is the Gilbert–Eliot two-state Markov
chain model [10] which has been shown to be a good approximation of wireless communi-
cation channels [11]. Figure 6 presents the model.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 12

entries, to ensure that they would not be misidentified. Secondly, the error model had to
be robust and flexible, in order to simulate realistic error patterns with a high rate of
accuracy (BER = 10−1).

To ensure sufficient Hamming distance, the 64 entries were constructed with a
Hamming distance of 400 bits between each other, using the following method. Assuming
that an entry of 1200 bits is made up of 100 sub-patterns of 12 bits of ݒ, it presents the
form ݒଵݒଶݒଷݒସ … . ଵ. By performing an exhaustive search on all 12-bit binary numbersݒ
it was determined that the biggest set in which all binary numbers have a Hamming
distance of 4 between each other was 128. The memory entries were constructed with this
pool of 128 12-bit vectors. Firstly, we aligned the entries vertically.

entry 1: ݒଵଵݒଶଵݒଷଵ … . ଵଵݒ

entry 2: ݒଵଶݒଶଶݒଷଶ … . ଵଶݒ

entry 64: ݒଵସݒଶସݒଷସ … . ଵସݒ

Then, for each column, we shuffled the pool of 128 12-bit vectors and picked 64 at
random (no duplicates). These 64 vectors constitute the column ݒ, ݆ ∈ [1,64]. All of the
vectors have a Hamming distance of 4 between them and, since there are 100 columns, all
entries have a distance of 400 between them.

The error model used to simulate the channel is the Gilbert–Eliot two-state Markov
chain model [10] which has been shown to be a good approximation of wireless
communication channels [11]. Figure 6 presents the model.

Figure 6. Gilbert–Eliot channel model.

The state of EF (error-free) is the state of the channel where no errors occur in
transmission, and the state of EP (error-present) is the state where errors occur with a
probability of h. Transition probabilities between the two states are P and r. Both P and r
are small while 1 − P and 1 − r are large. The total percentage of errors is ℎ × ା = ாܲ. As
mentioned, the Hamming distance from one entry to all other entries in the set had to be
sufficiently high in order to ensure that the possibility of mistaking one entry for another
is inconsequentially low. This model was used to apply a BER of 10−1 to the generated
input.

To summarize the input creation process, first, 64 memory entries with a 400-bit
Hamming distance were created. Then, an input stream of 100,000 of these patterns was
created by picking any one of them randomly (entry 0, entry 63, entry 4, entry 23, etc.). In
all, 100,000 randomly generated patterns were added to the stream, to account for misfires
for a total of 200,000 patterns. Without applying the error model, the input stream was
used for the error-free case. For the error-present case, multiple values of P and r (Gilbert–
Eliot model) were created and, for each value, the error model was applied separately to
the error-free input stream, creating as many test input streams as the number of
generated values of P and r for the same original error-free input stream. The rate of
missed patterns is the average rate of missed patterns of all those input streams.

Figure 6. Gilbert–Eliot channel model.

The state of EF (error-free) is the state of the channel where no errors occur in transmis-
sion, and the state of EP (error-present) is the state where errors occur with a probability of
h. Transition probabilities between the two states are P and r. Both P and r are small while
1 − P and 1 − r are large. The total percentage of errors is h× P

P+r = PE. As mentioned, the
Hamming distance from one entry to all other entries in the set had to be sufficiently high in
order to ensure that the possibility of mistaking one entry for another is inconsequentially
low. This model was used to apply a BER of 10−1 to the generated input.

To summarize the input creation process, first, 64 memory entries with a 400-bit
Hamming distance were created. Then, an input stream of 100,000 of these patterns was
created by picking any one of them randomly (entry 0, entry 63, entry 4, entry 23, etc.). In
all, 100,000 randomly generated patterns were added to the stream, to account for misfires
for a total of 200,000 patterns. Without applying the error model, the input stream was used
for the error-free case. For the error-present case, multiple values of P and r (Gilbert–Eliot
model) were created and, for each value, the error model was applied separately to the
error-free input stream, creating as many test input streams as the number of generated
values of P and r for the same original error-free input stream. The rate of missed patterns
is the average rate of missed patterns of all those input streams.

5.2. Error-Free and Error-Present Simulations

For the error-free scenario, no misdetections were reported for all 200,000 patterns,
even though the weights of the comparators are not equal to the number of bits per symbol
for each level.

For the error-present input, the Gilbert–Eliot Model was applied along the following
lines. For a BER of 10−1, we assumed that PE = 0.1. We substituted h = 0.5, as is common
practice [10], and we ended up with r = 4× P. Since 1 − P and 1 − r were larger than
P and r, the value of r could not be higher than 0.5. We picked a lower value for the
maximum value of r, which is 0.4. This gives us a range of 0.1 and lower for P. We generate
100 values for P between the range of 0.1 and 0.01, which is the usual range given for the P
literature [10–12]. Additionally, the same process was followed for BER = 5 × 10−2. This
gives us the values of r = 9× P with P ∈ [0.044, 0.010]. The error model was then applied
to the previously error-free input stream for each value of P separately (100 simulations) for

Electronics 2023, 12, 803 11 of 12

both BER values (200 simulations of 200,000 patterns). The average rate of missed patterns
was 2× 10−3 for BER = 10−1 and 10−4 for BER = 5× 10−2. The biggest losses were reported
when the value of P approached 0.1, while the losses were the lowest when the value of P
was closer to 0.01. However, the percentage could be improved by increasing the Hamming
distance between the memory entries.

6. Summary

In this article, we have presented a novel circuit for matching bit patterns in the
presence of heavy interference (BER = 10−1, BER = 10−2). The circuit accepts one pattern
of 1200 bits that suffered errors during transmission as the input and outputs the pattern
that was most likely to be transmitted. This consisted of a shift-register memory structure
with 64 1200-bit entries and 64 pattern-matching basic-unit circuits. The structure provides
throughput in the range of 800 Gbps while consuming a reasonable number of resources,
which allows for its implementation on small commercial platforms.

To achieve the maximum operating frequency and low latency, the detection method
was implemented through the utilization of a comparator-augmented adder tree-based
circuit called the cascaded pattern identifier. Each pattern matching the basic unit received
the input pattern of the circuit, along with its respective memory entry. With the use of
the cascaded pattern identifier, the process of comparison was achieved with a latency of
23 clock cycles and an operational frequency of 667 MHz. The outputs of all units were
then checked, and the detected entry was outputted.

Contemporary methods of pattern matching revolve around the efficient use of mem-
ory to provide pattern matching at high speeds while providing the function of updating
the memory of the circuit in real time. In its present form, the proposed circuit is the only
circuit that can perform pattern matching under interference at such high data rates and
that has the potential to be expanded indefinitely without compromising its operational
frequency. It also can update its memory, albeit at a much lower pace.

Inherently, apart from bit-pattern matching, the design can also be used without major
modifications to detect a series of analog measurements. One example is the case of a group
of sensors that produce measurements of a certain bit length. By using comparators and
comparing their outputs to a threshold, we can turn each multi-bit measurement into a
single bit. This, in turn, transforms the series of events into a bit pattern that can be directly
detected by the circuit.

Author Contributions: Conceptualization, D.N.; methodology, D.N.; software, D.N.; validation, D.N.;
formal analysis, D.N.; investigation, D.N.; resources, D.N.; data curation, D.N.; writing—original
draft preparation, D.N.; writing—review and editing, D.N. and P.G.; visualization, D.N. and P.G.;
supervision, P.G., C.K. and H.A.; project administration, H.A. and C.K.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC is covered by a waiver.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pong, F.; Tzeng, N.F. HaRP: Rapid Packet Classification via Hashing Round-Down Prefixes. IEEE Trans. Parallel Distrib. Syst.

2011, 22, 1105–1119. [CrossRef]
2. Cho, Y.H.; Mangione-Smith, W.H. Deep network packet filter design for reconfigurable devices. ACM Trans. Embed. Comput. Syst.

2008, 7, 26. [CrossRef]
3. Thinh, T.N.; Hieu, T.T.; Kittitornkun, S. A FPGA-based deep packet inspection engine for Network Intrusion Detection System. In

Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, Phetchaburi, Thailand, 16–18 May 2012; pp. 1–4. [CrossRef]

4. Le, H.; Prasanna, V.K. A Memory-Efficient and Modular Approach for Large-Scale String Pattern Matching. IEEE Trans. Comput.
2013, 62, 844–857. [CrossRef]

http://doi.org/10.1109/TPDS.2010.195
http://doi.org/10.1145/1331331.1331345
http://doi.org/10.1109/ECTICon.2012.6254301
http://doi.org/10.1109/TC.2012.38

Electronics 2023, 12, 803 12 of 12

5. Dlugosch, P.; Brown, D.; Glendenning, P.; Leventhal, M.; Noyes, H. An Efficient and Scalable Semiconductor Architecture for
Parallel Automata Processing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 3088–3098. [CrossRef]

6. Alyushin, A.V.; Alyushin, S.A.; Arkhangelsky, V.G. Scalable processor core for high-speed pattern matching architecture on
FPGA. In Proceedings of the 2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless
Communications (DIPDMWC), Moscow, Russia, 6–8 July 2016; pp. 148–153. [CrossRef]

7. Qu, Y.R.; Zhou, S.; Prasanna, V.K. High-performance architecture for dynamically updatable packet classification on FPGA. In
Proceedings of the Ninth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, San Jose, CA,
USA; 2013; pp. 125–136. [CrossRef]

8. Thomas, M.V.; Kanagasabapthi, C.; Yellampalli, S.S. VHDL implementation of pattern based template matching in satellite images.
In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India,
17–19 August 2017; pp. 820–824. [CrossRef]

9. Xilinx. Virtex-6 LXT FPGA Product Table. Available online: https://www.xilinx.com/publications/prod_mktg/Virtex6LXT_
Product_Table.pdf (accessed on 15 December 2022).

10. Gilbert, E.N. Capacity of a burst-noise channel. Bell Syst. Tech. J. 1960, 39, 1253–1265. [CrossRef]
11. Kim, T.; Lee, H.; Koh, J.; Lhee, K. A performance analysis of polling schemes for IEEE 802.11 MAC over the Gilbert–Elliot channel.

AEU Int. J. Electron. Commun. 2009, 63, 321–325. [CrossRef]
12. Yang, Z.; Li, H.; Jiao, J.; Zhang, Q.; Wang, R. CFDP-based two-hop relaying protocol over weather-dependent Ka-band space

channel. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1357–1374. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPDS.2014.8
http://doi.org/10.1109/DIPDMWC.2016.7529380
http://doi.org/10.1109/ANCS.2013.6665195
http://doi.org/10.1109/SmartTechCon.2017.8358487
https://www.xilinx.com/publications/prod_mktg/Virtex6LXT_Product_Table.pdf
https://www.xilinx.com/publications/prod_mktg/Virtex6LXT_Product_Table.pdf
http://doi.org/10.1002/j.1538-7305.1960.tb03959.x
http://doi.org/10.1016/j.aeue.2008.01.013
http://doi.org/10.1109/TAES.2014.120110

	Introduction
	Fundamentals
	Adder Tree
	Comparator Tree

	Core Circuit Description
	Lesser Pattern Identifier
	Cascaded Pattern Identifier

	Pattern-Matching Circuit and Implementation
	Pattern Matching under Interference and Simulations
	Error-Free and Error-Present Input Generation
	Error-Free and Error-Present Simulations

	Summary
	References

