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Abstract: Commercial e-learning platforms have to overcome the challenge of resource overload
and find the most suitable material for educators using a recommendation system (RS) when an
exponential increase occurs in the amount of available online educational resources. Therefore, we
propose a novel DNN method that combines synchronous sequences and heterogeneous features
to more accurately generate candidates in e-learning platforms that face an exponential increase in
the number of available online educational courses and learners. Mitigating the learners’ cold-start
problem was also taken into consideration during the modeling. Grouping learners in the first phase,
and combining sequence and heterogeneous data as embeddings into recommendations using deep
neural networks, are the main concepts of the proposed approach. Empirical results confirmed the
proposed solution’s potential. In particular, the precision rates were equal to 0.626 and 0.492 in the
cases of Top-1 and Top-5 courses, respectively. Learners’ cold-start errors were 0.618 and 0.697 for
25 and 50 new learners.

Keywords: recommendation system; modeling; sequence-aware; deep learning; embedding

1. Introduction

In the last decade, effective recommendation systems (RSs) have become an essential
tool in modern online education applications, such as Coursera and Udemy. The RS sug-
gests popular and most-enrolled courses to new learners of these applications, and also
helps distance learning websites to suggest e-learning resources, such as books, lectures,
and educational links, along with new and leading courses to existing learners. However,
with the exponential increase in the amount of available online educational resources,
the RSs have to overcome the challenge of resource overload and find the most suitable
material for educators. Commercial e-learning platforms have been using RSs that assess
and manage learner–item interactions to boost learner satisfaction, customize suggestions,
and raise revenue. The e-learning platforms have established a few models for building RSs
based on explicit and implicit features of learners and educational materials. For instance,
the initial RS models were based on similarity [1]. More precise and quicker latent-factor
methods were introduced immediately after the similarity-based paradigm; these use rat-
ings to analyze customer input, and then categorize customers and products based on their
features. Latent-factor methods are typically realized via matrix factorization [2] using a
vector of variables based on a rating matrix to identify product and customer features. Due
to the nature of the collected data, the aforementioned methods for designing recommen-
dation models are categorized as content-based filtering (CBF) and collaborative filtering
(CF) techniques. The accessibility to learner–item interaction input is evaluated using
CBF, which involves the management of many explicit features [3,4]. In contrast, when
generating suggestions, a CF-based RS [5] employs a customer’s previous rating scores
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to anticipate unrated products and subsequently gathers customer requirements from a
specified cohort to process predictions. In recent times, deep learning (DL) has radically
changed recommendation algorithms and improved their effectiveness. In addition to
enabling the modeling of increasingly complicated conceptions as data representations
in the top layers, DL successfully records non-linear and complex customer-product as-
sociations [6]. Various RSs using DL algorithms [7–9] have recently attracted significant
attention due to their unique potential. Neurons in neural models can be differentiated
from one end to another and offer appropriate logical biases tailored to the data format.
When a model with a specific form can be applied to a given data format, it may also be
applied to other data that contain related structures. Furthermore, a differentiable network
comprising many deep neural networks (DNNs) can be trained from start to completion.
Consequently, hybrid RSs are easier to handle. However, a DL recommender mechanism
may be unsuitable if both text metadata (tweets, tags, reviews, etc.) and graphic data
(predicted photos) are used together, for instance. A combined (end-to-end) representation
training is not possible in such cases, and hence conventional RS algorithms frequently fail.
As an example, processing comments requires expensive preprocessing (such as extractive
summarization), while content data (text) may be immediately processed by DL-based
algorithms [10]. DNN characteristics are extensively and widely applied to assist RSs that
use heterogeneous data [11,12]. However, DL and matrix factorization approaches [13,14]
exhibit a continuous increase in prediction time when a system contains an enormous
number of customers and products. To solve this issue, algorithms that generate top-K
candidates have been suggested [15,16]. Unfortunately, these algorithms are often unable
to simultaneously use both consecutive and heterogeneous inputs (i.e., semantic features).
Therefore, we propose a novel DNN method that combines synchronous sequences and
heterogeneous features to more accurately generate candidates in e-learning platforms
that face an exponential increase in the number of available online educational courses
and learners. Mitigating the learners’ cold-start problem was also taken into consideration
during the modeling. To the best of our knowledge, both features have not been previously
used together, despite the substantial amount of research conducted to independently apply
sequences and homogenous features in building RSs. Grouping learners in the first phase,
and combining sequences and heterogeneous data as embeddings into recommendations
using deep neural networks, are the main concepts of the proposed approach. The primary
highlights of our study are as follows:

â Initialize learners as a homologous category via clustering;
â Combine synchronous sequences and heterogeneous data;
â Make time-aware course recommendations based on the sequence of learners’ history;
â Overcome the learners’ cold-start problem by concatenating additional features;
â Improve overall candidate generation performance when utilizing a large dataset.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the latest DL recommendation methods that use sequences and heterogeneous features
to generate the top-N candidates, solve learner cold-start problems, and increase overall
recommendation efficiency. Sections 3 and 4 explain the proposed method in detail and
demonstrate its accuracy by comparing it with alternative approaches through experiments
and evaluations. Section 5 summarizes the findings and scope of the study. In general,
most of the relevant sources included are comparatively newer publications.

2. Literature Review
2.1. Sequence-Oriented Recommendation Methods

To tackle the ongoing challenges around course recommendations and course cold
starts, several recent investigations [17–22] have used heterogeneous and sequence-oriented
metadata as auxiliary features. Specifically, Zhao et al. [23] established a book RS based
on customer history that considers the length of time between consecutive purchases. To
mitigate the item cold-start problem, a novel methodology was created by Riedl and Yu [21],
who built customized tales utilizing the greatest series of customer-observed events. In
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addition, a CF technique to compose dual probabilistic viewpoint approaches using pure
customer data was designed by Lam et al. [18]. Likewise, extensive research [4,24,25] has
concurrently incorporated multiple types of implicit and explicit data features in the pre-
diction phase. Most candidate generation techniques and top-N RSs are relatively identical
in terms of objectives. Therefore, similar to candidate generation, top-N recommendation
algorithms exploit the prediction strength to select perspective products over large product
spaces. For example, product-based carts [15] were suggested to consumers based on an
analysis of product commonality. The basic autoencoder-based AutoRec [26] mechanism
expressed by Formula (1) is another innovative top-N recommendation model:

h(r; θ) = f (W·g(Vr + µ) + β) (1)

where β and µ are the biases of each layer; g and f represent the model’s activation functions;
and r is the input’s reconstruction. In this model, all customer ratings are processed as a
training dataset by the input layer, which further reduces them in the encoder section. The
decoder component of the model was based on the bottleneck at the midsection, where the
layers of the model were widened. The original dimension in the input layer was reinstated
in the output layer.

Moreover, the overfitting problem was tackled using L2 regularization to train the
model, while also reducing the sum of the MSE between the input and output ratings.
The parameters W and V in Formula (2) represent the first- and second-layer weights,
respectively:

min
θ

n

∑
i=1
‖ri − h(ri; θ)‖

2

+
λ

2
(‖W‖2

F + ‖V‖2
F) (2)

where λ is the regularization parameter, and r represents each learner’s rating history.
Despite their flexible nature and high prediction accuracy, issues are encountered by

methods using autoencoders when processing learner content to generate recommendation
data because of the learner’s history. To prevent this, a ground-breaking top-N RS was
proposed in [27], which is based on a neural probabilistic language model. The model
reduces the sparse-valued input into a fixed authentic-valued embedding vector given by
Formula (3):

Vi =
[
vi

1, . . . , vi
j . . . , vi

p

]
∈Wn×p (3)

where p is the embedding vector size, i is the customer id, and W is the embedding matrix.
The embedding vector is used to train the probabilistic component of the sentence sequence
and a distributed description of every single word.

A further illustration of candidate selection is the deep recommendation algorithm of
YouTube [16]. Candidate selection and product ratings are the two key components. By
eliminating irrelevant films, the candidate selection phase reduces thousands of available
films to a few hundred. The initial layer of the candidate-selection neural network mimics
the factorization technique, using no deep layers and relying solely on customer sequence
history; hence, the candidate-selection phase can be considered a nonlinear variation of
the factorization technique. The approach proposed in this study closely resembles the
neural network model of YouTube. Nonetheless, most recommendation engines do not
usually consider the product order. In particular, calculating the mean of the embedded
customer history causes the YouTube neural network algorithm to suffer from sequence
features. In addition, the customer’s past experience is transformed into a customized
Bayesian rating [28], so that the ratings never store the customer’s past order data.

2.2. Clustering-Based DL Recommendations

The accessibility to vast online educational content has made it more complex for
learners to quickly choose the most pertinent content. To overcome this obstacle, a consid-
erable number of DL recommendation techniques [29–31] have been developed using a
combination of clustering methods as an initial step to guide learners overloaded with data.
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For example, a context-aware DL-based RS [32] was first proposed to derive contextual
features utilizing a word-embedding technique. Then, a clustering method was applied to
create positive, neutral, and negative sentiment clusters via the derived features. Finally, a
deep recurrent neural network (RNN) was used to determine the most desirable customer
from each cluster with the help of information entropy and biclustering [33], which offers
a composite sorting approach to handle data diversity and sparseness. Biclustering can
precisely identify the density components of a rating matrix, and an information entropy
measure determines the similarity of a potential client to the density components. More-
over, to facilitate customer CF, Binbusayyis [34] developed a deep-clustering method that
leverages the strengths of both fuzzy clustering and DNNs. The developed method first
uses a deep autoencoder to extract the customers’ underlying feature representation from
the initial data matrix, and then performs fuzzy clustering operations on that information
to create customer groups. The authors of [31] suggested using improved hierarchical
reinforcement learning via a clustering approach that combines a hierarchical reinforcement
neural network and a pretrained network to lessen the sparsity of book-renting informa-
tion. Prior to recommending courses, clustering can be employed as a preparatory step to
boost recommendation accuracy, as indicated earlier. This promotes the customization of
suggestions by enabling computers to produce additional content representations from
the learners’ input. In summary, the proposed methodology first leverages clustering to
initialize learners as a homologous category and decrease data sparsity, and then applies
synchronous sequencing and heterogeneous features to generate top-N prospective courses
and overcome the course cold-start problem, thus enhancing the overall candidate gen-
eration performance on big datasets. The possibility that the learners’ tastes change over
time sets the envisioned paradigm, with the exception of previous efforts. To the best of
our knowledge, there is currently no other methodology that applies clustering to create
homologous groups, and simultaneously integrates heterogeneous and sequence features
within those groups.

3. Proposed Approach

This section explains the proposed approach, which combines sequences and hetero-
geneous features to more accurately generate candidates in e-learning platforms that face
an exponential increase in the number of available online educational courses and learners.
The following subsections describe the details of the recommendation model developed in
this study.

3.1. Initializing Learners via K-Means

Because the numbers of available learners and courses on e-learning platforms have
significantly grown, conventional RSs are unable to fulfil the online demand due to the time-
consuming requests of potential learners in the entire e-learning platform. Furthermore,
the efficiency in generating potential courses decreases as the number of cells augment.
The initial sparseness of the input is the primary cause of poor efficiency. To mitigate the
sparseness of the initial input while developing the candidate generation system, our study
proposes a personalized course recommendation strategy that first applies a clustering
technique based on the k-means algorithm to initialize learners as a homologous category,
and then aggregates DNNs in each group of learners, utilizing synchronous sequences and
heterogeneous features to generate the top-N prospective courses. Learners are categorized
as homologous groups based on the input matrix. Depending on the resemblances between
the potential learner and group center, the peers near the potential learner can be found and
utilized to improve course generation. After the homologous groups have been established,
course generations for a potential learner are produced by summing the responses from
the remaining learners within the same homologous group. As illustrated in Figure 1, the
idea is to use a learner clustering technique to divide the learners of a current e-learning
platform into similar categories. The clustering process might result in a varying number
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of divisions of a particular size, or a defined set of divisions of varying sizes according to
their similarity.
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Figure 1. Learners’ clusters.

Algorithm 1 is a widely investigated procedure for initializing learners using the
k-means algorithm:

Algorithm 1: Learners’ clustering algorithm

Input: learner–course interactions data, k-number of clusters
Output: dense learner clusters
Begin:

Define learner set l= {l1, l2, l3 . . . , lm};
Define course set co = {co, co2, co3 . . . , con};
Choose primary r rating learners acting as the clustering cl = {cl1, cl, cl3 . . . , clm};
The clustering kernel is null as c = {c1, c2, c3 . . . , ck};
do

for each learner li ∈ l
for each cluster kernel cli ∈ cl

calculate similarity sim(li, cli);
end for
sim(li, cl) = max{ sim(li, cl1) , sim(li, cl2) . . . , sim(li, clk)};
clm = clm ∪ li

end for
for each cluster cli ∈ cl

for each learner lj ∈ l

cli = average
(

cli, lj

)
;

end for
end for

while (c is not change)
Finish

The sparseness of the input data is probably the most crucial challenge in building
RSs. We specifically initialize learners as a homologous group from the input data, and
then apply the sequence-oriented course generation approach within each group separately.
We determine dense learner interactions with certain courses by initializing the learner’s
homologous group. Eventually, the initial input data transforms into a dense learner–course
data matrix for each homologous group.
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3.2. Sequence-Oriented Embedding

A discrete categorical variable is mapped to a vector of continuous integers during
embedding. Embeddings are low-dimensional, continuously learned vector representations
of discrete variables used in neural networks. Neural network embeddings are helpful
because they can reduce the dimension of categorical variables and accurately reflect
categories in the converted space. Neural networks’ weights that receive one-hot encoding
of categorical data as their input, as shown in Figure 2, are called embeddings.
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Here, h is the hidden layer node, p is the hidden layer embedding vector size, V
is the embedding vector for course three, v is the embedding vector weight, and N is
the number of courses. These weights are stored as a matrix of variables to reduce the
computational cost.

As part of the training phase, the network receives categorical values from the relevant
row of the matrix, and the variables in this row and all other weights in the network are
then trained. Pretrained or randomly initialized weights can be utilized as embedding
vectors depending on the circumstances. Utilizing trained weights is advised when time
is limited. Vectors obtained from techniques such as the Bayesian personalized ranking
(BPR) [28] may be used to build a trained embedding. To validate the proposed method,
we used the Ubob.com dataset (accessed on 24 December 2022), which contains categorical
data in every field. Because every field has a different length, it is challenging to analyze
the data using conventional techniques. In our approach, the number of courses unique to
each learner constitutes the embedding layer. To address this issue, we used the length of
the learner history sequence to generate a mask, which was then used in combination with
the embedding vector to eliminate superfluous embedding. The mean vector of courses
was initially determined through a conventional deep RS using Equation (4):

1
n

n

∑
i=0

Vi (4)

where n denotes the size of the learner history, and Vi is the embedding of the course that
the learner has chosen.

The forecasts are identical across all combinations of member histories because this em-
bedding strategy assumes that learner preferences are constant over time. This assumption
may not be accurate in every circumstance. Initially, we create a learner–course connection
matrix R ∈ Rm×n, where m and n represent the number of learners and courses, respectively,
r(u) = (Ru1, . . . Rum) is the sequenced history of each learner, u ∈ U = {1, 2, . . . m}, and
r(i) = (R1i, . . . Rmi) describes the sequenced history of every course i ∈ I = {1, 2, . . . m}.
Furthermore, assumptions are made as follows: if learner uk studied “management” last

Ubob.com
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year and is currently taking “economy”, while learner ul had already taken “economy” and
is now learning “management”, then:

n uk: {management, economy}
n ul: {economy, management}

Compared with ul, who studied economy and management, in that order, uk has
a noticeably different preference. The first customer could have previously completed
management, and eventually may change their mind and choose economy, whereas the
second learner would want to enroll in the management course after completing economy.
This demonstrates that the sequence should not be disregarded and suggests that proposing
the same products may not render a reliable forecast. We provide a novel embedding vector
that comprises sequence information to exploit the sequence data (learner history). The
learner’s category history should be input into the model without modifying its order (for
example, (i1, i2, i3 . . . iN)). Software was used to create the model. The history duration
should be equalized by adding a certain constant number that will be subtracted in the
following layer because N changes for various learners and neural networks can employ
a constant matrix form. This integer number (the history of learners) is passed onto
the subsequent embedding layer, which substitutes integers with the appropriate float
dense vector. Large datasets typically use vectors with a length of 128; however, this
may be altered. The importance of items that were consumed in the past diminishes
over time, as previously indicated, and products that consumers have recently taken may
be given a higher weight when forecasting the next items. To describe the order of the
item in the learner’s history, the values are multiplied by each embedding vector of the
learner’s history:

V′ =
V

N− order + 1
(5)

In this case, ‘order’ is the number of courses in the learner’s history, N is the number of
courses, and V is the embedding vector of the current course. Equation (6) is used to obtain
the average of these vectors following consecutive embedding of objects:

Vsequential =
1
N

N

∑
i=1

V′ i. (6)

The input layer is then concatenated with V-sequential and actual embedding, as
shown in Figure 3, to determine the layer about the learner’s average and sequential
preferences.
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3.3. Content Data

Generally, the customer content data comprise continuous and categorical (small and
large) information. The continuous data are received by neural networks as inputs and
large amounts of category data are used to function as embedding vectors. However, it
is possible to enter categorical data into a network serving as a sparse vector (one-hot
encoding) when the datasets are small. For instance, if the learner data include a field such
as gender, it may include three categorical features: male, female, and missing information.
In this situation, the data should be encoded using the one-hot method described below:

Female: [1, 0, 1]
Male: [0, 1, 0]
Missing data: [0, 0, 1]

Our dataset comprised the learner’s “jobcode” information, which utilized keywords
to describe the learner’s occupation. We calculate the mean vector and concatenate deep
networks using these data as an embedding vector input because there are more than
100 job codes, and a single learner could have multiple job codes.

3.4. Deep Neural Network

As shown in Figure 4, the network begins by concatenating each feature vector into
a single layer. Two or three completely linked layers may be added, depending on the
length of the training data (three throughout all of our tests). Each hidden layer included
64, 32, and 16 units. While the customers’ “jobcode” and “company information” were
encoded employing 16 units each, the courses’ embedding dimension was encoded em-
ploying 32 units. Subsequently, ReLU, Leaky ReLU, and sigmoid activation functions
were implemented. It was determined that a ReLU as given by Equation (7) was optimal
for DNNs:

ReLU =

{
x : i f (x > 0)
o : i f (x < 0)

(7)
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Finally, with an identical number of active courses in the dataset, the SoftMax function
expressed by Equation (8) was deployed in the output layer of the proposed DNN:

Softmax = σ(z)i =
ezi

∑K
j=1 ezj

(8)

It should be noted that the output value corresponds to the number of courses in
the dataset.

4. Experimental Results
4.1. Dataset

The Korean e-learning platform “www.ubob.com” (accessed on 24 December 2022)
provided a dataset to design and implement the recommendation approach. The dataset
was primarily used to assess and compare the recommendation approach with other
related methods. The dataset structure comprises four tables that contain sequence and
heterogeneous information, as illustrated in Figure 5.
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The dataset comprises variables with varying sizes, each of which included categorical
features. For example, the table “student” stores information about learners. Therefore,
it is difficult to establish approaches to examine these features. Moreover, several fea-
tures, including sex and age, lack sufficient data to be employed in the recommendation
engines. Consequently, the table no longer contained these features. There were approxi-
mately 222,000 learners on www.ubob.com (accessed on 24 December 2022); however, only
82,000 learners were associated with the learner–course interactions that were implemented
in our model. Additionally, learners provide “jobcode” data, which summarizes their
occupation with a single term. Every learner’s “jobcode” feature in the platform has a
distinct length. There were 528 eligible “jobcode” features serving 82,000 learners. The
network’s final layer, known as “SoftMax”, could not learn all the classifications when
the dataset was trained only using the features that were already available. Therefore, to
mitigate this problem, the dataset was expanded using a data-augmentation process based
on “the sliding-window technique”. The data augmentation process is presented in Table 1.

Table 1. Data augmentation process.

Learner History Sequence Following Course

L1 = [C1, C2, C3] C4

L2 = [C1, C2] C3

L3 = [C1] C2

www.ubob.com
Ubob.com
www.ubob.com
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For instance, one learner may have a C1, C2, C3, and C4 course history sequence,
meaning that after taking courses C1, C2, and C3, the learner has chosen course C4. Moreover,
if there is a C1 and C2 sequence history, the following course is C3. Based on this strategy,
data augmentation was implemented to increase the dataset size.

After implementing data augmentation, 320,000 examples were obtained, which
impact the efficiency of the proposed network model. To evaluate the performance of the
proposed model, 80% of the dataset was used for training and the remaining 20% was used
for testing.

4.2. Implementation Settings

The proposed approach was implemented using software, hardware configurations,
and model parameters, as illustrated in Table 2.

Table 2. Configurations.

Software
Programming tools Python, Pandas,

Keras-TensorFlow,

OS Windows 10

Hardware

CPU AMD Ryzen Threadripper 1900X 8-Core Processor 3.80 GHz

GPU Titan Xp 16 GB

RAM 128 GB

Parameters

Epochs 20

Learning rate 0.001

Optimal Clusters 8

4.3. Model’s Results
4.3.1. Top-N Predication Performance

First, the proposed sequence-oriented deep network approach initializes learners
to make similar groups. Then, the whole candidate generation process synchronously
integrates the learners’ history sequence data and content data accomplished in each
initialized group. In the implementation process, precision was utilized for the top-N
performance results, and the mean absolute error was used to evaluate the cold-start case.
In addition, to compare the performance of the proposed approach with its competitors,
we contrasted it with the following benchmarks, and the prediction results are illustrated
in Table 3.

1. AutoRec [26]: To deliver individualized suggestions, a method based on the autoen-
coder approach attempts to use customer preference data for various products.

2. YouTube model [16]: The authors utilized categorical features and continuous data to
make recommendations, whereas the sequence of customer history was disregarded.

3. LightGCN [35]: This model learns customer and product embeddings by linearly
distributing them on a customer-product interaction graph. The weighted sum of the
embeddings was then utilized as the last embedding layer.

4. FISM [36]: The authors offer a technique that creates two low-latent factorized matrices
by learning the product–product matrices to represent and retain the relationships
between products.

5. E-LCRS [37]: This recommendation model was built based on the history and prefer-
ences using a collaborative filtering mechanism.

6. Cluster-IHRS [38]: The recommender evaluates and learns the styles and features
of the learners automatically. Split and conquer strategy-based clustering is used to
process the various learning styles. The algorithm then makes intelligent suggestions
based on the ratings of frequently occurring sequences.
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Table 3. Top-N performance.

Model Precision@1 Precision@5 Precision@10

AutoRec [26] 0.309 0.213 0.175
YouTube model [16] 0.599 0.461 0.294

FISM [36] 0.553 0.3238 0.2358
LightGCN [35] 0.589 0.4702 0.3768

E-LCRS [37] 0.611 0.453 0.209
Cluster-IHRS 0.46 0.352 0.216

SODNN (proposed) 0.626 0.498 0.385

Furthermore, using a trained model, we attempted to illustrate the similarity in the
predicted courses (Table 4) related to the course called “Real Estate Broker_Introduction
2017 (1)”.

Table 4. Predicted course similarity.

Courses Similarity

Real Estate Disclosure Act 0.801

Real Estate Finance 0.775

Real Estate Investing 0.698

Real Estate Course Introduction 0.623

Moreover, the network was trained without overfitting, as evidenced by the visual
representation of the loss functions of the training and validation sets. Furthermore, we
may conclude that the training model performed the best in the 25th epoch (Figure 6).
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4.3.2. Cold-Start Case

The cold-start issue may be minimized because the Ubob.com (accessed on 24 De-
cember 2022) dataset will have sufficient interaction data on learners and courses after
clustering. Additionally, because courses were permanent and never altered, adding new
content is a challenge for this online educational platform. Moreover, generating rec-
ommendations only for new subscribers could be challenging. To address the issue of
new subscribers, the combined default embedding vector, with the help of new learners’

Ubob.com
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“company_id” and “jobcode” features, was utilized to predict courses where the system
already had those features for the new learners. Table 5 demonstrates that the proposed
approach performed better than the compared benchmarks. Thus, simultaneously utilizing
the learners’ sequence history and content data generated good recommendation results in
a cold-start scenario.

Table 5. Learners’ cold-start performance.

Cold-Start Cases

Model

AutoRec [26] YouTube Model [16] FISM [36] Light-GCN [35] SODNN
(Proposed)

MAE
New 25 learners 0.771 0.664 0.792 0.784 0.618

New 50 learners 0.835 0.753 0.843 0.840 0.697

5. Conclusions and Future Work

In this research, we attempted to build a novel deep neural network that combines
synchronous sequences and heterogeneous features to help e-learning platforms generate
candidates when there is an exponential increase in the number of learners and available
online educational courses. Specifically, we first focused on applying a clustering technique
based on the k-means algorithm to initialize learners as a homologous group. Then, based
on aggregating deep neural networks to each group of learners, synchronous sequences
and heterogeneous features are utilized to generate the top-N prospective courses. The
goal of our research was to initialize learners as a homologous category by clustering
and combining synchronous sequences and heterogeneous data. Moreover, the proposed
methodology overcomes the learners’ cold-start issue by concatenating additional features
and enhancing the overall performance of candidate generation on big datasets. The em-
pirical results show that the proposed approach outperforms baseline methods. However,
some limitations need to be addressed to further its development:

• Combine the approach with other more advanced and accurate clustering tech-
niques [39,40];

• Address the need to offer the simplest possible dynamic candidate generation;
• Address the “gray sheep” problem, in which a learner cannot be associated with

any homologous cluster and the online platform is incapable of suggesting relevant
courses.

Moreover, future studies should investigate more advanced models to calculate the
significance of the hidden user and object features and mitigate the above-mentioned prob-
lems. In addition, it should be possible to create an emotion-based candidate generation
model that involves heterogeneous speech data [41] and learners’ history sequence data,
and to develop a recommendation model for visually impaired people [42] based on their
characteristics.
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