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Abstract: The creation of multiple applications with a higher level of complexity has been made
possible by the usage of artificial neural networks (ANNs). In this research, an efficient flexible finite
impulse response (FIR) filter structure called ADALINE (adaptive linear element) that makes use of
a MAC (multiply accumulate) core is proposed. The least mean square (LMS) and recursive least
square (RLS) algorithms are the most often used methods for maximizing filter coefficients. Despite
outperforming the LMS, the RLS approach has not been favored for real-time applications due to its
higher design arithmetic complexity. To achieve less computation, the fundamental filter has utilized
an LMS-based tapping delay line filter, which is practically a workable option for an adaptive filtering
algorithm. To discover the undiscovered system, the adjustable coefficient filters have been developed
in the suggested work utilizing an optimal LMS approach. The 10-tap filter being considered here
has been analyzed and synthesized utilizing field programmable gate array (FPGA) devices and
programming in hardware description language. In terms of how well the resources were used, the
placement and postrouting design performed well. If the implemented filter architecture is compared
with the existing filter architecture, it reveals a 25% decrease in resources from the existing one and
an increase in clock frequency of roughly 20%.

Keywords: MAC; ADALINE; FPGA; LMS; hardware description language

1. Introduction

This research focuses on applications of signal processing, such as channel equalization,
acoustic echo removal, speech recognition, and blind source separation. Filters are the
main source used for removing unwanted data from a signal, eliminating background
noise and extracting useful information for subsequent analysis. There are two types of
filters: analog and digital. Digital filters can be quickly reconfigured, have a small footprint,
and are highly effective. When compared with their analog counterparts, digital filters
offer greater precision. Both finite FIR and IIR digital filters are common. In most cases,
FIR filters are efficient to implement, have a low number of finite precision errors, and are
stable and linear in phase. The computational complexity is higher than that of an IIR filter
by a significant margin [1]. Additionally, there is a reduction in the number of coefficients
and the amount of space needed for an IIR filter. Furthermore, because they are more
similar to analogue models, IIR filters have superior magnitude responses. As a result,
fewer multiplier units are needed to implement an IIR filter instead of an FIR filter. As
such, IIR filters find widespread application in high-speed systems. Unlike analogue filters,
digital IIR filters do not share their frequency response with those of the analogue variety.
Moreover, IIR notch filters are unreliable [2] when the interference signal’s frequency varies.
Furthermore, IIR filters consist of a feedback loop, which, when implemented with an
adaptive filter, causes further delay and creates hardware complexity. Another way to speed
up the process is by using pipelining; high speed is provided by a pipelined architecture for
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normalized least mean squares (NLMS) adaptive filters [3,4]. Furthermore, adaptive filters
can also be used for artifact removal [5,6]. All filters have multipliers, and when the input
increases, the multipliers also increase. Considering the disadvantages in addition to the
advantages, we have developed a novel active noise cancellation system based on a neural
network, called ADALINE with single time-sharing MAC. This has been synthesized using
an FPGA. In an adaptive FIR filter architecture, the direct implementation of an N-tap
FIR filter requires N-MAC operations. These operations are difficult to compute due to
their hardware complexity and the amount of space they require. The ADALINE filter
architecture is implemented using a time-sharing multiplier architecture throughout a
pipelined-based single MAC core regardless of the number of taps. This is performed
to overcome the limits discussed above. The concept of time sharing only appears in
the filtering section of existing systems. Recently, many nonlinear methods based on
neural networks have been created to produce various FIR filter types [7]. For adaptive
noise cancellation in this study, we chose an ADALINE because of its straightforward
structure and bias component, which increases the convergence rate [8]. To evaluate
performance when altering audio recording parameters, this study offers a noise canceller
implementation example utilizing an ADALINE network. Additionally, synaptic weights
are examined to gauge how well an adaptive filter works. Every system has a flaw in that
noise may be inadvertently added during acquisition operations, resulting in inaccuracies
in the processing of digital signals, delays in the right equipment’s operation, irritation
to users, and other unanticipated concerns. ANNs offer an interesting solution to this
problem, which is made possible by a unique configuration of the ADALINE network. An
ADALINE is chosen for noise cancellation based on its ability to function as an adaptive
filter and the fast-processing speed it can provide. ADALINE is undoubtedly a method
worth researching given that it is now the neural network methodology that is most
frequently used in practical applications [9]. Its rapid processing performance is aided by
its simple network architecture and low component count. Comparing the performance of
the ADALINE system with that of other systems is the most effective technique to evaluate
its performance. This research is to implement ADALINE with the MAC architecture. MAC
is the architecture used in signal processing applications with multipliers. Reducing the
number of multipliers is also necessary to reduce resource complexity [10,11]. Therefore, it
is necessary to create an architecture that goes beyond the aforementioned limitations. In
this proposed architecture, error computation of weight update block (LMS algorithm) is
performed with parallel MAC architecture with pipelining to maximize the speed. This
was performed to optimize the speed. Using a time-sharing technique for a 10-tap adaptive
FIR filter, the block that handles error computation and weight updating requires just
13 multipliers according to the design that has been proposed here. When combined
with ADALINE, the architecture’s complexity is reduced, and its speed is increased. The
effectiveness of the suggested architectures in terms of time and space is examined. The
results are validated using an approach called FPGA in the loop (FIL). This paper is divided
into the following sections: Section 2 describes ADALINE neural networks, and Section 3
explains MAC. The MAC architecture is discussed in Section 4 along with the activation
function of ADALINE. Section 5 presents the results and discussion, and Section 6 concludes
the work.

2. ADALINE

Every system in the world has the drawback of having a noise that can be added
unintentionally during acquisition operations, leading to errors in digital signal processing,
delays in the operation of the right devices, inconvenience to users, and other unforeseen
issues. Because of this, artificial neural networks offer an intriguing approach to solving
the problem [12]. To enable this procedure, a particular configuration of the ADAptive
LINear Element Network is used; this configuration is also known as an adaptive filter.
It is feasible to construct many applications, such as the design of active power filters,
the control of wind speed forecasts, and fetal ECG extraction, using the adaptive filter
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structure of the proposed work. The fundamental problem with using normal filters is that
they do not work for nonlinear systems; in this case, mathematical modeling of adaptive
filter construction removes this limitation in developing applications. ADALINE is the
name of one of the essential models for signal processing and data prediction. Similar
to perceptrons, ADALINE networks’ outputs can take on any value, as opposed to the
perceptron’s output, which can only be either 0 or 1. Only linearly separable issues can be
resolved by ADALINE and the perceptron. Nevertheless, this study uses the least mean
squares learning rule, which is far more effective than the perceptron learning rule. The
Widrow–Hoff learning rule, often known as the LMS, moves the decision boundaries as
far away from the training patterns as possible by minimizing mean square error [13,14].
A processing unit’s ability to adjust its input/output behavior in response to changes in
the environment is implied by the fact that ANNs are sophisticated adaptive systems. The
fixed activation function and input/output vector that is used when a specific network is
built increase the significance of learning in ANNs. We must now modify the weights to
alter the input/output behavior.

The basic structure of ADALINE is shown in Figure 1, where the output depends on
bias and weight. The same structure can be replaced with neural networks, as shown in
Figure 2.
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ADALINE networks are sometimes called MADALINE when the input neuron in-
creases, and the structure of MADALINE is shown in Figure 2. In the MADALINE network,
a W matrix of weights connects the inputs from R to one layer of S neurons.

Ted Hoff and Bernie Widrow invented the ADALINE network (see Figure 3). ADA-
LINE contains “purelin” linear function transfer, whereas perceptron (“hardlin”) serves as
a classifier for this type of transfer function, which is not similar.
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Figure 3. ADALINE network configuration.

The output of the ADALINE network is calculated by

a = purelin(wT p(k) + b) (1)

The same in the iteration form can be given as

a = purelin
R

∑
1

(
wT p(k) + b

)
(2)

Tapped delay line structure is shown in Figure 4. This can be added with the conven-
tional ADALINE network to make an adaptive filter p(k) = y(k) in the first tap since there
is no delay, after each tapped delay p(k), will be increased accordingly.
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The Widrow–Hoff rule is only capable of training single-layer linear networks. This
can also be prepared for multilayer networks by incorporating a single linear network with
proper delay elements, as indicated in Figure 5. Below, an adaptive filter can be made by
combining a taped delay and an ADALINE network.
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For the above adaptive filter, the output function is given as

a(k) = purelin

(
R

∑
1

w1,iy(k− i + 1) + b

)
(3)

where “y(k)” is the input signal and i represents the delay line count. Mean square error is
minimized by updating the weight, bias, and error until the desired error using the least
mean square approach (LMS) and steepest descent method. To calculate the mean square
error, Widrow and Hoff’s Equation (4) is employed.

F̂(x) = (t(k)− a(k))2 = e2(k) (4)

Equation (5) is produced if the gradient estimate was obtained.

∇̂F(x) = ∇e2(k) (5)

Equation (5) can be expanded with derivatives to weights.

∇e2(k) =
∂e2k
∂w1,j

= 2e(k)
∂e(k)
∂w1,j

(6)

Substituting Equation (4) in (6),

∂e(k)
∂w1

=
∂[t(k)− a(k)]

∂w1
=

∂
[
t(k)− (wT p(k) + b)

]
∂w1

(7)
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Changing the above equation in iteration form

∂e(k)
∂w1,j

=
∂

∂w1,j

[
t(k)−

(
N

∑
i=1

w1,j
T p(k) + b

)]
(8)

∂e(k)
∂w1,j

= −p(k) (9)

A similar process for bias updation is given as

∂e(k)
∂b

=
∂

∂b

[
t(k)−

(
N

∑
i=1

w1,j
T p(k) + b

)]
(10)

∂e(k)
∂b

= −1 since b = 1 (11)

By this, weight and bias updation is given in simplified form as

F̂(x)w = ∇e2(k)w
2 = −2e(k)y(k) (12)

F̂(x)b = ∇e2(k)b
2 = −2e(k) (13)

The steepest descent algorithm states that

xk+1 = xk − α∇F(x)|x=xi (14)

Rearranging the above equations with the relation of F̂(x)w = F(x), it is possible to
obtain the updated weight and bias, which can be used further for adaptive filter.

wk+1 = wk − α2e(k)y(k) (15)

bk+1 = b− α2e(k) (16)

Equations (15) and (16) are the updated weight and bias, which is to be added with
the ADALINE filter.

3. General Construction of MAC

A fundamental step in computing, particularly for applications involving digital signal
processing, is the multiplication and accumulation process. At this point, an accumulator
is added along with the calculation of the product of two values. This procedure is
carried out by a hardware component of the digital signal processor known as a multiplier–
accumulator. The MAC unit, which is constantly on the critical path, controls the system’s
overall speed. Real-time DSP applications require the development of a quick MAC. Due
to the growing need for wireless sensor networks, MAC devices that consume low power
will surely dominate the market. To boost the speed of the MAC unit, two key bottlenecks
must be considered. The partial product reduction network, which is employed in the
multiplication block, is the first, and the accumulator is the second. A typical operation
called “multiply–accumulate” computes the sum of two numbers and adds that sum to an
accumulator. The general structure of MAC is depicted in Figure 6.

The multiplier is made up of three parts: an adder, a summing network, and a
partial product generator (PPG). The summing network, which divides the total number
of partial products into two operands, a sum and a carry, is the heart of the MAC unit.
The summation network occupies the majority of the circuit area and latency. To best
implement, the summation network, numerous algorithms, and topologies are suggested.
The multiplication result is subsequently produced using these two operands by the last
adder. The result of the multiplication is added with double precision using the accumulator
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and the accumulated operand. The accumulator requires a very large adder since the
operand size is so large.
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4. MAC-Based ADALINE Filter

The conventional adaptive filter in this Figure 7. The number of multipliers will also
increase according to the number of multipliers. Which will further increase the hardware
requirements.
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In existing systems, delays are inserted to make the process sequential, resulting in
slower speeds and larger FPGA implementations. To overcome this resource complexity,
this proposed work is implemented with a single MAC ADALINE filter, where many mul-
tipliers are replaced with a single multiplier, and the product is shifted to the accumulator
accordingly. Figure 8 depicts the proposed construction of a single MAC-ADALINE filter.
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This proposed architecture can be split into two different blocks: an error computational
block and a weight update block. The error computational block can also be known as the
filter block. The weight update block consists of a pipelined-based single MAC algorithm
with an existing LMS architecture. Clock cycles are used to complete the filter operation; for
a 10-tap filter, 10 clock cycles are required to compute the filter operation. For every clock
cycle, one data is inserted, and the output is taken for every clock cycle. To select the data
across the registers, multipliers are used and the select line for the 4:1 mux is assigned by
the counter. Once the filter coefficients have been stored in registers, a multiplexer is used to
pick up the data from the registers and perform the multiplier operation. The accumulation
block, which is used to multiply the previous data value by the present data value, is reset
to zero after two clock cycles. The input will be given to the activation function like the
ADALINE operation. This activation function will be active only with the updated weight
and bias values. A multiplexer selecting pick lines and an accumulator action are limited to
one generic counter, and the error signal is the difference between the filter output and the
desired signal (din), which is returned to the input (Y out). The warning symbol updates
the filter coefficients c0 reg and c1 reg, c2 reg, and c3 reg at the same time. The outcome is
multiplied by x_in with a step index of 0.06 before being added to the output.
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5. Result and Discussion

The suggested designs were assembled and synthesized using Altera Cyclone
IV4CE115F23C7 and Xilinx Virtex-5 FPGA. The Altera DE2-115 and the Matlab Simulink tool
are used to test the model’s performance for real-time operations using FPGA in a loop.

The simulated waveform of an adaptive FIR filter is depicted in Figure 9. In the diagram,
x_in and x_val are input signals; d_in and d_out are the desired signals; and the filter output
and error output are y_out and e_out, respectively. The adaptive FIR filter output, y_out, is
obtained at 125 ns after processing input signals for a six-cycle delay at an 80 ns processing
time, and it is displayed in the MAC output. These architectures use a time division multiplier
to implement single MAC-based filter sections. Figure 10 shows the RTL schematic diagram
activation function and a schematic diagram of the ADALINE filter.
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Matlab Simulink’s block of 2 × 2 neural network architecture is seen in Figure 11. To
evaluate the effectiveness of the algorithm, sine wave signals were used. Table 1 shows the
hardware utilization of the existing structure with the proposed architecture. Due to the
time-based multiplexing process, a single MAC architecture is sufficient to carry out any
tap values.
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Table 1. Comparison of proposed architecture with existing architecture.

Parameters Vinita Singh [15] K. R. Rekha [16] Tornez-Xavier [17] Proposed Architecture

Logic utilization Used Available Utilization
percentage Used Available Utilization

percentage Used Available Utilization
percentage Used Available Utilization

percentage
Number of
slice registers 363 12,480 2% 292 12,480 2% 669 12,480 5% 667 12,480 5%

Number of
slice LUTs 668 12,480 5% 782 12,480 6% 330 12,480 2% 1211 12,480 9%

Number of fully
used LUT-FF pairs 489 1510 32% 432 1510 28% - 1510 - 368 1510 24%

Number of
bonded IOBs - 172 - 34 172 19% 3 172 1% 45 172 26%

Number of
BUFG/BUFGCTRLs 5 32 15% - 32 1 32 3% 1 32 3%

Number of
DSP48Es 13 24 54% 1 24 4% 16 24 66% 24 24 100%

In Table 2, the proposed architecture is compared with conventional devices. In the
proposed architecture, the 10-tap filter is highly compared with other devices, and the
32-tap filter output is solved since MAC has the taps. The suggested LMS structures
dramatically reduce space when compared with the conventional FIR filter structures and
boost speed because they use infrastructure for single MAC cores with an ADALINE filter.
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Table 2. Synthesis comparison of the existing system with the proposed architecture.

Implementations Multipliers FFs LUTs Slices Taps/Bits Sampling
Clock (ns)

Throughput
(MSPs)

(XC4000E) [18] - 72 452 N/A 2/10 N/A N/A
(XCV250-5) [19] 168 × 8 528 296 368 8/8 5.50 181.8
(XCV300-6) [5] 168 × 8 N/A N/A 945 8/8 8.33 120
ADALINE (XC3S1200E-4)
Sharing-3M [20] 318×18 511 611 521 10/16 622.55 1.61

Sharing-7M [20] 718×18 593 712 544 10/16 302.08 3.31
Sharing-13M [20] 1318×18 736 836 640 10/16 206.78 4.84
Nonsharing [20] 2318×18 409 933 576 10/16 62.62 15.97
D3_ADALINE (XC3S1200E-4) [20] 2318×18 585 934 589 10/16 20.83 48.01
D5_ADALINE (XC3S1200E-4) [20] 2318×18 907 945 618 10/16 17.81 56.15
D3_ADALINE (XC2V250-5) [20] 2318×18 585 933 599 10/16 15.116 66.16
D5_ADALINE (XC2V250-5) [20] 2318×18 905 945 616 10/16 12.668 78.94
D5_ADALINE (XC2VP50-5) [20] 2318×18 907 945 618 10/16 13.452 74.34
D5_ADALINE(XC4VLX60-12) [20] 23DSP48E 907 945 641 10/16 8.915 112.17
D5_ADALINE (XC5VLX50-3) [20] 23DSP48E 905 853 283 10/16 6.653 150.31
Proposed design single MAC
ADALINE adaptive FIR
filter(10-tap) (XC5VLX50-3)

11 403 600 215 10/16 4.95 202

Proposed design single MAC
ADALINE adaptive FIR
filter(32-tap) (XC5VLX50-3)

33 667 1211 368 32/16 5.44 183

The results of the synthesis of 10-tap filter architectures are compared in Table 3 with
the results of the synthesis of existing architectures using the Xilinx Virtex-5 FPGA device.
Comparisons are made between the suggested architectures and the DA-based structure
with a carry save adder that Meher presented earlier [21]. Table 4 contains a listing of
the minimum sampling period, the maximum sampling frequency, and the number of
slices. When compared with the previously used architecture, the speed performance of the
proposed time-sharing single MAC ADALINE filter shows an improvement of 70%, and
the speed performance of the parallel pipelined multiplier structure shows an improvement
of 60%. In comparison with the previously utilized architecture, the slice-delay product
demonstrates an improvement of 18%. Pipelined registers placed in between the multiplier
and adder structure are utilized in both of the proposed architectures to achieve the highest
possible sampling frequency and area efficiency when compared with the architectures that
are currently in use. When a single MAC core is utilized, the area required is drastically
decreased. Because of the bit product matrix, the pipelined multiplier architecture can
maintain a low level of complexity. This is demonstrated in Figure 10, as can be seen.
Table 3 presents a comparison of the results of the synthesis performed on the 16-tap and
32-tap proposed adaptive FIR filter with the results performed on the existing architecture
by using the FPGA device Altera Stratix EP1S80F1508C6 FPGA. The adaptive FIR filter that
used DA architecture and was presented by Daniel Allred [22] made use of an auxiliary
LUT with a special address scheme to update the coefficients. The number k represents
the total number of LUTs that are utilized in DA-based structures. Due to the single MAC
ADALINE core filter structure, the proposed architectures were able to achieve a lower total
number of logic elements when compared with the existing architecture. Tables 5 and 6
present a comparison of the results of the synthesis of the proposed FIR filter with the
results of the synthesis of the existing architecture using a variety of Xilinx FPGA devices.
Because of the single MAC ADALINE core filter structure, the proposed architectures were
able to achieve a significant reduction in the amount of space required while also achieving
a greater improvement in speed.
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Table 3. Synthesis comparison of MAC LMS filter with existing architecture.

Parameters Configurable Logic Blocks

Family Altera Stratix EP1S80F1508C6
Size of filter 16 32

D. J. Allred [22] (k = 2) 1309 2244
D. J. Allred [22] (k = 4) 915 1429
D. J. Allred [22] (k = 8) 798 1073

Proposed single MAC ADALINE 657 1157

Table 4. Synthesis comparison of the existing system with the proposed architecture.

Parameters Delay
(ns)

Frequency
(MHz) Slices Registers LUT Efficiency of

Slice–Delay

Family Virtex-5 XC5VSX95T-1FF1136
P. K. Meher [21] 17.35 57 178 412 267 -
Proposed single
MAC ADALINE 5.14 19,455 240 350 1457

Table 5. Synthesis comparison of proposed MAC LMS filter with adaptive architectures.

Parameters Alfredo
Rosado-Muñoz [23]

Chintan A.
Parmar [24]

Proposed
MAC ADALINE

Family Xilinx Virtex-4 XC4VFX12 FF6618-12
Number of slices 2586 629 230

Delay (ns) 52.71 35.84 9.152
Maximum operating

frequency (MHz) 18.97 MHz 27.895 MHz 109.26 MHz

Table 6. Synthesis results of proposed MAC LMS filter with adaptive filter.

Parameters Alfredo
Rosado-Muñoz [23]

Chintan A.
Parmar [24]

Proposed
MAC ADALINE

Family Xilinx Virtex-5 XC5VLX30 FF324-3
Number of slices 3906 643 227

Delay (ns) 39.6 31.19 8.95
Maximum operating

frequency (MHz) 25.27 MHz 32.060 MHz 111 MHz

6. Conclusions

This study implements an area-efficient MAC with an adjustable coefficient-based
ADALINE filter using the LMS scheme and tests the throughput for 10 taps and 32 taps.
The MAC core’s time-division-based multiplier topology promises a considerable reduction
in hardware costs. When compared with the corresponding traditional design, the speed of
the proposed designs for the ADALINE filter increased by around four times. The proposed
10-tap single MAC ADALINE filter implementation operates at input sampling frequencies
of up to 202 MHz, which is 25% faster than the existing implementation and takes up 20%
less space. In comparison with traditional designs, the proposed architectures significantly
reduce hardware complexity while also improving speed.
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