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Abstract: In this paper, a novel Monogenic Sobel Directional Pattern (MSDP) using fractional order
masks is proposed for extracting features. The MSDP uses fractional-order Sobel masks to identify
thin edges along with color and texture-based information thereby increasing performance. Other
edge-detection methods can identify only thick edges. There are three modules namely feature
extraction, dimension reduction via a novel discriminant analysis method, and classification using a
Convolutional Neural Network (CNN). The proposed MSDP is insensitive to the rotation and scaling
changes existing in the images. The Bat Algorithm-based Optimization (BAO) is used for the selection
of the best parameters of MSDP. The best value is modified by the Pearson Mutation (PM) operator
in an effort to aid the algorithm in avoiding local optima and achieving a balance between global
and local searches. The proposed work uses CNN for classification and achieves higher classification
accuracy for six datasets.

Keywords: CNN; classification; optimization; accuracy; human–computer interaction

1. Introduction

Facial expression recognition has its scope in many applications of human–computer
interaction. Human–computer interaction and computer vision are vital in social network-
ing sites. In human–computer interaction, a better understanding of human emotions is
necessary for a natural interaction between humans and machines. There are different
methods of recognizing emotions. In different applications in our day-to-day life, an
emotion recognition process is needed [1,2]. A wide range of study fields, including the
detection of human social/physiological interactions and the diagnosis of mental illnesses,
can benefit from the use of Facial Expression Recognition (FER). FER has a wide range of
uses. Applications are found in a variety of sectors, including law, marketing, e-learning,
monitoring, and medicine. Facial images are the best method of recognizing emotions. In
the facial images, the intensity of the pattern varies as per the emotions expressed. When
the quality of the image is not good, it affects classification accuracy. The degradation
of the image happens because of the blur, turbulence in the atmosphere, and focusing
issues. Therefore, a better feature-extraction technique that is insensitive to these variations
in quality is very much needed for the better recognition of emotions. While capturing
the images, the scaling and alignment of the image are also vulnerable to transformation.
So, when extracting the features, feature vectors gathered should be insensitive to these
scaling and orientation changes. There are many feature-extraction techniques in the
literature [3–6]. However, they are not entirely compatible with the process of emotion
recognition as, some of them such as Local Binary Pattern (LBP), Opposite Color Local
Binary Patterns (OCLBP), Local Configuration Patterns (LCP), Four Patch Local Binary
Pattern (FPLBP), and Multi-scale Local Ternary Pattern (MLTP) are blur-sensitive [4]. The
Short-Term Fourier Transform (STFT)-based feature extraction technique [5] is insensitive to
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blur, but it is scale-variant and rotation-variant. The phases computed using low-frequency
coefficients are not sensitive to the blur and also have other image capturing issues [6]. In
addition, edge detection methods when united with the texture extraction methods help
combine the texture information along with the edge information of the images [3]. Then,
when massive preprocessing techniques are used, the method is less efficient and more
time-consuming. Instead, the features obtained from the facial image can be improved to
achieve a good classification accuracy, because degradation of the facial images will happen
even after using the best quality image-capturing methods. This paper proposes a novel
and more accurate method of emotion recognition. The key contributions of the proposed
technique are as follows:

• A novel feature-extraction technique based on fractional Sobel edge detection is pro-
posed as MSDP that is rotation, scale, and blur-resistant;

• A novel Pearson Mutation (PM) operator-based Bat algorithm-based optimization
(BAO) is used for obtaining best parameters of MSDP;

• A novel Pearson Kernel-based Supervised Principal Component Analysis (PKSPCA)
for dimension reduction is proposed for reducing the dimension of features.

This novel algorithm improves the classification accuracy while identifying the facial
images. Texture and sharp edge information are obtained and a feature vector is formed.
The random noise that is included in images during image acquisition is removed. The
images from six different datasets are used for the experimental analysis. This proposed
technique achieves the highest accuracy compared to all other prevailing methods.

The overall structure of the paper is organized as follows. Section 2 describes the
related works, Section 3 describes the methodology used in the proposed work, Section 4
analyzes the results, and Section 5 concludes the paper.

2. Related Works

As seen in the various works available in the literature, thick edges were attained
when operators through derivative of first-orders [6,7] are applied to facial images. The
second-order derivative-based operators resulted in better edge detection but lost some of
the important information in facial images. The second-order derivative-based operators
can find the edge-based details in the facial images [7]. The drawback is that these types of
extraction methods are noise-sensitive. Fractional-order derivative masks are projected in
this proposed work to identify the edges and eliminate the noise included in the images
while capturing the facial images. The fractional-order derivative masks when used in
edge detection aid in regulating certain features present in the image by leveling precise
components using frequency in the facial image. These fractional-order edge detection
masks are used in several other research works in the literature [7] but not previously
applied for facial emotion recognition. The blend of edge detection using fractional-order
methods and a classifier was used in an existing work for fingerprint identification. The
restrictions of the integral order were overcome by using a fractional order-based edge
detection technique. This fractional order-based mask for detecting the edges was projected
to attain stronger ridge and valley edges in the fingerprint pictures. The working mask was
used in both directions. A fractional-based differential technique was proposed for Palm
Print prediction. The fractional order-based masks have greater abilities than the integer
order-based ones in improving the texture information of digital pictures [8].

In an existing work for astral image investigation in the literature, the fractional
method was functional on an image using RGB banks and the composite textural data of
the creative bank image was stronger after using the fractional method. A processing tool
was created to improve the quality of astronomical images [9]. It was determined that using
the fractional-order masks aided in finding dim objects and galaxy-like structures with
improved superficial details. A mixture of dual fractional-order derivatives is utilized for
smoothing various regions and removing noise. The methods for detecting the edges based
on fractional-order methods were better in handling redundant structures and textures in
an image and reducing noise. Models can be projected for identifying thin edges along with



Electronics 2023, 12, 836 3 of 25

some texture information, thereby minimizing the time complexity [3–6]. When various
kinds of textured images were included for validation, good performance with an accuracy
above 90% was attained. Many fractional masks were obtained and practiced for noise
removal in images in the literature. These masks depend on the integration methods using
fractional techniques. The GL scheme termed (GL-ABC), the Toufik–Atangana scheme
(TA-ABC), and the fractional Euler technique (Eu-ABC) [10] are the integration methods
already used in the literature. The method created a square and then practiced on all the
regions of a noisy image. The results presented a state that these masks are effective, and
are well-suited with smoothing filters. A fractional edge detection-based convolution mask
was created on the Riemann–Liouville fractional derivative that is a distinct form of the
Srivastava–Owa operator. This resulting mask trapped both intensity discontinuities, and
traced the Dirac edges [11]. However, these highly effective masks are not yet applied in
facial expression recognition.

In the medical images, the fractional order-based Sobel operators have been used in
the literature. There are several other feature-extraction techniques already existing in the
literature for facial expression recognition which have some drawbacks. The Rotational
Invariant-Local Phase Quantization (RI-LPQ) techniques [12] proposed in the literature
were rotational invariant and achieved a high accuracy in recognizing human emotions.
RI-LPQ is more sensitive to the changes in the scale of the images. The methods in the
literature [1–5] are sensitive to the variations in scale and to rotations which result in
poor classification accuracy. The drawback of RI-LPQ is the greater time complexity as
36 angles and a window size of 13 are used. This paper proposes a novel algorithm,
based on the fractional-order Sobel edge detection masks. These masks were able to sense
the minute details on even images with a lower contrast and high noise. This proposed
algorithm extracts the features based on high-frequency components. Already, the Sobel
mask-based features [10] are used in a variety of applications in the literature such as
detecting Alzheimer’s, mammogram images, palm print images, Magnetic Resonance
Imaging (MRI) images, etc. The fractional-order Sobel edge detection masks are not yet
applied for facial emotion recognition [8–11].

Changes in lighting, position variations, occlusion, ageing, and poor resolutions are
a few of the challenges that affect the performance of a facial recognition system. The
suggested method uses MSDP to address these issues. Despite lighting, age, position
fluctuations, and poor resolution, the fractional order-based Sobel masks aid in obtaining
the precise shape and texture information that improves the performance. The proposed
method identifies even the subtlest expressions. The proposed Monogenic Sobel Directional
Pattern (MSDP) uses fractional order-based Sobel masks [7] for deriving the directional
edges. Four responses are obtained for each pixel. Only the higher frequency components
are taken for the calculation of the edges. This method produces sharp edges. Difference of
Gaussian (DOG) filtering helps to remove the random noise in the code image obtained
from the original image. Finally, the resultant code image is divided into grids and a
histogram is obtained that is specified as input to the machine learning algorithm for
predicting the emotions. The proposed MSDP achieves a high classification accuracy of
above 95% and has very low time complexity. The proposed MSDP enhances the image
and eliminates the noise present in the images by using Difference of Gaussian filters. The
features obtained are also scale-invariant and rotation-invariant which makes it superior to
other existing feature-extraction techniques.

There are different classifiers in the literature. The Hidden Markov Models (HMM)
are too slow and contain too many iterations. Support Vector Machine (SVM) is slow in
computation [13–16]. Convolutional Neural Networks (CNN) [13] require bigger training
data. The classification algorithm should be both fast and have a high performance in
real-time environments. Extreme Learning Machine (ELM) [14,15] is faster and has trivial
constraints applied for optimization. It also results in better accuracy. Each and every
layer of DBN is trained extensively in deep learning techniques. DBN and RBM execute
perfectly in real-life situations. The proposed work uses CNN with LeNet architecture [2]
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that achieves the best performance compared to the other existing classifiers [15]. A type
of deep learning technique called deep belief networks (DBNs) aims to solve the issues
with conventional neural networks. They accomplish this by exploiting the network’s
layers of stochastic latent variables. The RBM is the name of the neural network that makes
up the energy-based model. It is a probabilistic, generative, unsupervised deep-learning
algorithm. The objective of RBM is to find the joint probability distribution that maximizes
the log-likelihood function. LeNet [2] is little and easy to understand, yet it is also huge
enough to provide interesting results. LeNet + dataset may also run on the CPU, making it
simple for beginners to start utilizing Convolutional Neural Networks and Deep Learning.

3. Methodology of the Proposed Work

The whole proposed system is represented in Figure 1. The images are captured using
a camera and the images are preprocessed using the “Chehra” face detection algorithm.
The Chehra face detector detects the face from the images eliminating the background.
Then, from the cropped facial images obtained using Chehra face detector, the features are
extracted using MSDP.
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Figure 1. The proposed system.

Figure 2 provides an explanation of the MSDP. The Riesz-order transformations are
used on the facial images that have been cropped. The scale-invariant characteristics can
be found using the Riesz components. The Riesz components are convoluted with the
derivatives of fractional-order Sobel masks. The parameters of the Riesz transformation
and fractional-derivative Sobel masks [7,8,10,11,17] in MSDP are obtained using the Bat
Algorithm-based optimization (BAO). In the Bat optimization algorithm [18], the novel
Pearson Mutation operator is suggested as in Section 3.3. Finally, using the optimized
parameters, the Riesz-order transformations are applied on the cropped image given as
input. After the transformation, the Riesz components are obtained. Then, the convolution
of the Riesz components with the fractional derivative Sobel masks is performed.

After convolution, four different values are obtained as responses for every pixel. The
maximum pixel intensity value among the four values is considered for every pixel in
MSDP. Then, using all the maximum pixel intensity values for that image, a MSDP code
image is formed which is filtered using DOG. The code image has the needed textural
and structural information for the accurate classification of the facial expressions. The
grids are formed on the code image and the histograms are obtained from every grid.
All the histograms are aggregated together to create the feature vector as mentioned in
Figure 1. These feature vectors are reduced in dimension using proposed PKSPCA. The
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Kernel-based Principal Component Analysis (KPCA) helps in reducing the dimension
of the features. However, certain kernels already in the literature such as Radial Basis
Function Kernel, Polynomial kernel, etc., [2] may be suitable for one dataset which are not
suitable for the other. So, in this proposed work, a Pearson General Kernel is proposed in
PKSPCA that helps in performing the functions of various prevailing kernels just by varying
two parameters. Then, the features of reduced dimension using PKSPCA are classified
using CNN into seven categories of emotions. The Bat algorithm-based optimization
using Pearson mutation operator helps in faster convergence. The reduced feature size
using PKSPCA and the choosing of optimal parameters using BAO-PM in MSDP helps in
achieving the best accuracy in a smaller amount of time.
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3.1. Face Detection Using Chehra

The images collected through the datasets were fed to the ‘Chehra’ [19] (https://sites.
google.com/site/chehrahome/home) face-detection tool in the proposed work using novel
MSDP features (accessed on 21 October 2017). In ‘Chehra’, each regression function is self-
regulating and it accurately distinguishes the faces, even in unrestrained conditions. The
landmarks present in the faces support the construction of a boundary box. The cropping
of the face depends on the boundary box. These cropped facial images are given as input
to MSDP for the extraction of the features.

3.2. Proposed Feature Descriptor MSDP

This proposed MSDP preprocesses the captured images using the ‘Chehra’ face-
detection algorithm and then the Riesz transformation is applied. The fractional derivative
Sobel masks are convoluted with the Riesz components obtained. Bat algorithm-based
optimization (BAO) [20] with PM is used for choosing the parameters. The maximum
intensity value among the four responses is attained for each pixel and a code image

https://sites.google.com/site/chehrahome/home
https://sites.google.com/site/chehrahome/home
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is created. The code image is filtered for noise using the Difference of Gaussian (DOG)
filtering technique and then the resulting code image is divided into smaller grids and the
histogram is computed for every grid. The number of grids is determined depending upon
the length of feature vector needed. The 120 × 120 pixel code pictures are produced by
the MSDP. Then, bin size 10 is employed to create the histograms while employing grids
with a size of 24 by 24. Finally, the feature vector is computed for every grid using the
histogram information, concatenated, and then the final feature vector is obtained which
is then given for discriminant analysis using PKSPCA, that reduces the dimension. The
obtained features are classified using CNN and the emotions are predicted as in Figure 2.

A multi-scale feature descriptor with rotation invariance and a smaller number of
computations is projected in this suggested work as MSDP to attain an enhanced perfor-
mance equating to the prevailing feature descriptors. The Riesz transformation is applied
to the image and the patterns are obtained from the facial image. This proposed method
of feature extraction results in a vigorous performance. The monogenic depiction of the
image includes information regarding magnitude, phase, and orientation [1].

A two-dimensional depiction of the Riesz transformation is represented in Equation (1):

(Rx(x), Ry(x)) =

(
x

2π|x|3
,

y

2π|x|3

)
, x = (x, y) ∈ R2 (1)

The convolution of the facial image and the Riesz transformation is specified with the
monogenic illustration as fMNs(n) in Equation (2). The monogenic signal is the result of f
and its Riesz transform for an image f(x):

fMNs(n) = (f(I), Ra{f}(I), Rb{f}(I)) = f, Ra∗f, Rb∗f (2)

Before the application of the Riesz transformations, the filter for Laplacian of Poisson
is applied on the image for enabling band-pass filter as in Equation (3):

F{LP}(I) = −4π2
∣∣∣I2
∣∣∣ exp(−2π|I|λ) I ∈ R2 (3)

where λ is known as the frequency. The band-pass filtering helps to obtain the finer details.
The frequency which is known as λ is changed to diverse scales {3.5, 7, 14, 28, 56} and
applied in the images for representing the images in a multi-scale depiction. The multi-scale
depiction helps in creating a complete description of the image. This multi-scale depiction
consumes huge time and has high computational complexity. To eradicate this drawback,
the suggested MSDP utilizes only the Ra∗f and Rb∗f from Equation (2). The information
of Ra∗f and Rb∗f are more discriminatory than the sub-component f. In the additional
computations, Ra∗f and Rb∗f are utilized for obtaining images that are not affected by blur
and rotation. In this method, the value of λ ranges up to three scales. Figure 2 depicts
the complete process. After gaining the components Ra∗f and Rb∗f for various number of
scales in λ, the Sobel masks (SMs) are applied.

The novel feature extraction technique MSDP proposed in this work extracts multi-
scale features with small computational complexity compared to the other algorithms in
the literature. MSDP is unresponsive to blur and has low-dimensional and discriminative
features that are created on micro-patterns. The edges detected using fractional derivative
SMs are grouped under two types: masks using first-order derivation and masks of second-
order derivation. The thin edges are examined by sensing the peaks by means of first-order
derivation-based Prewitt or Sobel or Roberts operators, or by identifying the zero crossings
with second-order derivation-based Laplacian operators. Thus, in this proposed work the
adapted fractional derivative SMs are convoluted with the Ra∗f and Rb∗f components of
the original image to find the thinner edges. The SMs are shown in Figure 3 below.
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The edge detection results obtained while using the conventional Kirsch, Sobel, and
Prewitt edge operators are shown below in Figure 4. In the proposed work, Sobel operators
are used for the detection of the edges. In this proposed work, novel fractional derivative
SMs are applied for the effective extraction of thin edges from the facial images and filtering
of noise included in images.
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The fractional derivative SMs are derived as follows. The traditional integer-order
SM has gradient components in both the x and y axes. The illustration of the Gx and
Gy components of the original Sobel filter can be adapted to create the adapted Sobel
representation as shown in Figure 5. The gradient-based components of the integer-order
Sobel operator are in both the x- and y-axis. The differential form of the components is
represented in Equations (4) and (5):

Gx = 2
(

∂f(x + 1, y− 1)
∂x

+ 2
∂f(x + 1, y)

∂x
+

∂f(x + 1, y + 1)
∂x

)
(4)

Gy = 2
(

∂f(x− 1, y + 1)
∂x

+ 2
∂f(x, y + 1)

∂x
+

∂f(x + 1, y + 1)
∂x

)
(5)

The Gx and Gy components present in the real Sobel filter are updated. The adapted
Sobel filter is converted to the fractional-order domain, with the differential form obtained
from the gradient operator in Equations (4) and (5). GL fractional-order differential operator
attains four novel masks, namely the two left fractional-SMs and two right fractional masks
as shown in Figures 6 and 7. These masks are applied on the Riesz components Ra∗f and
Rb∗f. The function f is on a finite or infinite interval (a1, b1) and t ∈ (a1, b1).

Left GL derivative is represented in Equation (6):

Mag(∇α f )Dα
t f (t) = lim

h→0+
1
hα ∑∞

j=0(−1)j
(

α
j

)
f (t− jh) = |Gx|+ |Gx| (6)
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To obtain a symmetric filter GL operator is applied on the updated Sobel filter. The
right GL derivatives are represented in Equation (7):

Dα
t f (t) = lim

h→0+
1
hα ∑∞

j=0(−1)j
(

α
j

)
f (t + jh) (7)

The above differential operator does not need to only be constrained to integers. For
example, the (1 + j)th derivative of the (1 − j)th derivative yields the 2nd derivative. The
parameter h is used to define the limit. In analysis, limits are used to convert approximations
into accurate values. For example, the area inside a curved region is defined to be the limit
of approximations by rectangles. Limits are the mechanism by which the derivative, or rate
of change, of a function, is computed.

These proposed fractional derivative SMs, when applied to the Riesz components of
the facial images help in the extraction of the thin edges rather than the thick edges extracted
using the integer-order SMs. This helps in extracting even the subtle facial expressions. The
use of the Riesz components helps in the extraction of scale-invariant and rotation-invariant
features. The DOG filtering helps in the removal of noise in code image. The final feature
vectors are having scale-invariant, rotation-invariant, and noise-eliminated information
that leads to high classification accuracy.
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Creation of Multiscale, Noise Insensitive, Rotation Invariant Edge, and Texture Features
as MSDP

These four masks are applied on the Ra∗f and Rb∗f component images. As the value
α of the fractional mask varies, the convoluted output differs. The fractional-order SMs are
more sensitive to variations in edge than the normal SMs. These fractional-order masks, as
shown in Figures 6 and 7, help to capture more details regarding the texture also resulting
in high classification accuracy of the human emotions. The values of α ranges from 0.1 to 1
and λ ranges from 1 to 56 (λ = {3.5, 7, 14, 28, 56}). The value of α = 1 results in a conventional
SM. The experiment is completed with various values and the classifications are completed
with a K-Nearest Neighbor (KNN) classifier on the Japanese Female Facial Expression
(JAFFE)dataset images for choosing the optimum value for α. The cropped facial images
obtained using ‘Chehra’ are subjected to Riesz transformations. Each Riesz transformation
has 3 scales as per BAO. The Riesz transform component images are convoluted with the
four left and right fractional-order SMs. The fractional derivative SMs proposed in this
paper with the optimum value of α are convolved with facial image. Since four responses
are obtained for each pixel, the maximum response value is selected. The responses are
{ Sθ0 , Sθ1 , Sθ2 , Sθ3

}
. The formula for selecting the Maximum value among the Responses

(MV) is mentioned in Equation (8):

MV(a, b) = max(Si(p, q)|0 ≤ i ≤ 4) (8)

Here, Tθi(p, q) mentions the response at the pixel position (p, q). Then, the DOG filter
is convoluted with the maximum response image as:

D = DOG((p, q);σ1,σ2) =
1

2πσ1
2 e
− p2+q2

2σ1
2 − 1

2πσ22 e
− p2+q2

2σ2
2 (9)

where σ1 is the standard deviation that is higher than σ2. The degree of blurring is governed
by the Gaussian function’s standard deviation. A modest standard deviation (i.e., 0.5) blurs
less, whereas a big standard deviation (i.e., >2) blurs greatly. In some situations, a rank
filter (median) could be more beneficial if the goal is to achieve noise reduction:

f(a, b) = MV(a, b)∗D (10)

The DOG filter convoluted with the code image obtained using maximum responses
eradicates the random noise and aids in creating sharp edge information that advances
the classification accuracy. The sharp edge information helps to effectively capture the
structural information of the face. In MSDP, both the textural and shape information
are taken into account and this captures even the subtle expressions. The histogram is
calculated from the grids created over the code image. Thus, for each sample in the dataset,
one code image using four fractional order masks is obtained for each Riesz component.
Two Riesz components are used in MSDP. When there are 3 scales for each Riesz component,
3 × 2 = 6 code images are obtained. The output varies based on the values of α and λ as in
Figure 8. The best combination of values that results in higher accuracy are chosen using
the BAO algorithm.

3.3. Bat Algorithm-Based Optimization of Parameters with Pearson Mutation

The Bat algorithm-based optimization is a bio-inspired algorithm [20,21]. The original
Bat algorithm has a random huge step-length issue that results in less-than-ideal answers
in the search space and thus is unable to address higher dimensional issues. This research
concentrates on leveraging the Pearson distribution, which provides lower step lengths
throughout the step-by-step process, to solve higher dimensional problems and minimize
the step length size. The output produced by the MSDP algorithm differs based on the
values of α and λ, as shown in Figure 8. The parameters of the Riesz transformations and
the fractional derivative-based Sobel operator are obtained as optimized parameters in
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this proposed approach using Bat algorithm-based optimization with Pearson Mutation. It
discovers the best number of scales for frequency λ and the value of α. This optimization
algorithm is functional on the training set images. The training set is divided into two
individual folds. Here, the accuracy is considered by using one-fold as the training set. The
optimal parameters are obtained by applying different parameters and testing the accuracy
on the testing set. The total number of scales λ and the range of α are initialized. The fitness
function used while applying the Bat algorithm-based optimization is calculated as the
accuracy obtained using CNN. If the accuracy obtained is the best using some parameters,
then that value of λ and α is assigned as the new λ and new α. The algorithm used for
finding the optimized parameters is shown in Algorithm 1. In contrast to other values, the
best value is the leader during the search process, and it requires the mutation operator
to advance. Consequently, PM is implemented to increase population diversity in BAO.
The new value is created via a Pearson perturbation using the optimal position as the
base, according to the PM operator. The local optimum may also include some significant
information, thus only one dimension is selected for mutation. The general form of the
Pearson VII function is given in Equation (11):

Pearson
(
vi, vj

)
=

11 +

(
2
√
‖vi−vj‖2

√
2(1/ω)−1

σ

)2
ω (11)
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P is the peak height at v0, the center in Equation (11) [21], and v is a self-regulating
parameter value. Here, the tailing factor and peak width are denoted by σ andω, respec-
tively. From Gaussian to Lorentzian, the shapes of different functions can be created by
adjusting the parameters σ and ω. Therefore, there is a fine tuning of the values when this
Pearson mutation-based coefficient is used for updating the values of parameters and this
results in finding the optimum values with faster convergence. Here, the two vectors vi, vj
and their distance-calculating formula take the place of v. Then, P is changed to represent 1
and v0 is removed. By adjusting its characteristics, the Pearson VII function can be used in
place of any other function. Therefore, the Pearson VII function can be employed in place
of any other function:

Wj =
(
∑N

i=1 Pij

)
/N (12)
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where Pij indicates the jth position of the ith parameter value. N is the population size. Wj

is the weight calculated. The updated new jth position vector of the parameter value is
calculated as:

Vj = Pij + Wj·Pearson(ω,σ) (13)

This Equation (13) is applied for updating the parameter values of α and λ.

Algorithm 1 Bat algorithm-based optimization of parameters with Pearson Mutation.

Procedure BAO_PM (α, λ)
Input: A range of values for α and λ of MSDP
Output: Optimized values of α and λ
Parameters:
α—Set of values of α

λ—Set of values of frequencies
new_α—Optimized value for α of MSDP
new_λ—Optimized value for λ

αi—ith value of α

λj—jth value of λ

CNN acc—Accuracy obtained with CNN using αi and λj
CNN acc is considered as the fitness parameter and objective function of this algorithm

1. Set the values of α and λ;
2. Evaluate the preliminary population;
3. While the finish condition is not attained;
4. Create new solutions by altering αi and λj;
5. Calculate Pearson

(
vi, vj

)
= 11+

 2

√
‖vi−vj‖2

√
2(1/ω)−1

σ

2

ω

6. Calculate Wj =
(

∑N
i=1 Pij

)
/N;

7. Calculate Vj = Pij + WjPearson(ω,σ);
8. Update αi and λj using Pearson Mutation;
9. Obtain CNN acc;
10. If CNN acc > best_accuracy;
11. Set new_α = αi;
12. Set new_λ = λj;
13. Set best_accuracy = CNN acc;
14. Rank the best_accuracy as globally best accuracy;
15. Update αi and λj;
16. End;
17. End While;
18. Store new_α and new_λ;
19. Assign the values of α and λ as new_α and new_λ;
20. Return new optimized values of α and λ;
21. End Procedure.

3.4. Feature Vector Construction from the Histogram of Grids

M grids are formed on the code images. Each grid is considered as gi, 1 ≤ i ≤ M.
The size of each grid is the optimum size for creating a better feature vector that has a low
dimension and all information about the micro-patterns. For each grid gi, the histogram Hi
is normalized before forming the feature vector. Thus, the feature vector of all the grids
is grouped to form the final Monogenic Sobel Directional Feature Vector MSDPFV1 as in
Equation (14):

MSDPFV1 =< Hi1, Hi2 . . . . . . .Hm (14)

where m denotes the count of overall equal-sized grids formed in the final transformed
code image. This process results in features with a compact length. The resultant feature
vector is invariant to scaling, translation, and rotation. The fractional-order SMs help in
identifying sharp edges, where the DOG filter aids in removing the random noise present
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in the images. Thus, this MSDP helps in identifying even the micro-patterns as the feature
vector is formed by using the histograms of grids in code images as shown in Figure 9.
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3.5. The Proposed Pearson Kernel-Based Supervised Principal Component Analysis (PKSPCA)

The different grouping of the features is found and this leads to very large feature
sets. These feature sets have repetitive features, which lead to poor performance. Therefore,
compact feature vectors are represented using PKSPCA and this eradicates both noisy and
repetitive features which results in the best performance. The projected novel PKSPCA aids
in dropping a substantial amount of time during calculation [22]. PKSPCA is an enhanced
form of the Supervised Principal Component Analysis method. In the proposed procedure,
novel Pearson Kernel is projected that helps in attaining a better performance than other
kernels namely linear, polynomial, and Gaussian. PKSPCA is a supervised type of Principal
Component Analysis. It computes the principal components having maximal confidence.
The Herbert Schildt Independence Criterion (HSIC) is maximized. Here, X is the attribute
space and Y is the space for the response variable:

X =
[

x1 , x2 . . . . . . xN ]T (15)

Y =
[
y1 , y2 . . . . . . yN ]T (16)

D = {(x1, y1), (x2, y2), (x3, y3) . . . (x4, y4)} (17)

The empirical HSIC can be calculated by assuming that F and G are separable repro-
ducing kernel Hilbert spaces (RKHS), which include all continuously bounded real-valued
functions of X and Y, respectively:

HSICem(D, F, G) = (N − 1)2Tr(KHLH) (18)

where K and L are kernel matrices of F and G based on the kernel functions k() and l(),
respectively, and Tr(•) signifies the trace of a square matrix.

Kij = k
(
xi, xj

)
and Lij = l

(
yi, yj

)
(19)

H is known as the matrix for mean subtraction and H = I − eeT

N where I is the identity
matrix having order N and e represents a column vector with order N. The subspace
UTX is maximizing the dependency between UTX and Y. The HSIC is a measurement of
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the dependency among X and Y and it is used to solve the problem of optimization by
maximizing Tr(KHLH).

Here:
K =

(
UTX

)T(
UTX

)
(20)

UTU = I (21)

The optimization problem now becomes as max
U Tr(UTXHLHXTU) and UTU = I. In the

PKSKPCA X is replaces by Φ(X) and define U = Φ(X)α. Now the objective function becomes:

max
U Tr(αTK∗HLHK∗α) (22)

where K∗ and L are kernel matrices having order N computed using the proposed Pearson
General Kernel. The Pearson function proposed is used as Pearson kernel which is a general
kernel. This leads to the usage of the same Pearson Kernel for all the datasets, rather than
testing other kernels in state-of-the-art. The proposed PKSPCA reduces the amount of time
in selecting the kernels and the total computations:

k
(

xki, xlj

)
=

11 +

(
2
√
‖xki−xlj‖2

√
2(1/ω)−1

σ

)2
ω (23)

The optimization problem is solved and the solution is α̂ which has M eigen vectors of
(K∗HLHK∗, K∗) according to the first M eigen values. The kernel matrices K∗ and L are
computed by using a PGK with respect to X and Y, namely where k is the kernel function.
After that, the answer to objective function can be analytically expressed to obtain F of order
M N, or the newly created low-dimensional radio map. As a result, the PKSPCA-extracted
low dimensional features, or F, from the samples can be expressed as follows:

F = α̂TK∗ (24)

PKSPCA projects data onto a higher dimensional feature space, where is the data are
linearly separable, using a Pearson kernel function. The basic components of the principal
subspace are the eigen vectors. The JAFFE dataset can be used for finding the optimal
number of eigen vectors (d) and the optimal number of principal components (p). The num-
ber of principal components p is varied for different values as p = {5, 15, 25, 35, 45, 55}
and the experiments are repeated. The value of p that obtains the best accuracy is chosen
as the optimal value of p. For the JAFFE dataset, the optimal value of p is 35. Then, for
p = 35 the experiments are repeated to find the optimal value of d, where d = {1, 2, . . . , 10}.
The optimal value of d is 7, as explained in Appendix A. The feature vector of reduced
dimensions is then given as input into a CNN for the classification of emotions.

3.6. Classification

The Fully Connected layer is a non-linear function in CNN [13]. The feature vectors
are specified as input to CNN. The flattened output obtained is given to a feed-forward
neural network and backpropagation is executed on each iteration of training. After several
epochs, the model classifies the emotions using the Softmax technique. In a CNN, as
convolution and pooling are executed in training, neurons of the hidden layers identify
abstract depictions of the input thereby decreasing its dimensionality. This function is
more advantageous than sigmoidal functions thereby reducing the amount of computation
required in classification [12]. Rectified linear activation unit (ReLU) involves a comparison
among the input and the value 0. Pooling layers reduce the length of the feature maps.
Thus, it minimizes the total number of parameters and the number of computations. The
pooling layer produces a summarized version of the features in the feature map. The
SoftMax function is the activation function present in the output layer of CNN to perform
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prediction. Hyperparameters of CNN are the kernel size, total number of kernels, stride
length, and the size of pooling which affects the CNN performance and speed. LeNet
architecture is used in the proposed approach for the prediction of emotions as shown in
Figure 10.
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4. The Analysis and Validation of Results Obtained Using the Proposed Method

The suggested approach with MSDP and BAO with PM uses MATLAB 2018a for its
experimental analysis.

4.1. Datasets

Six datasets, namely JAFFE, Cohn Kanade (CK+), Multimedia Understanding Group
(MUG), Static Facial Expressions in the Wild (SFEW), Oulu-CASIA NIR&VIS facial expres-
sion database (OULU-CASIA), and Man Machine Interface (MMI), [23–32] were used for
the experiments.

In the JAFFE dataset, there are 213 facial expression images extracted from 10 persons.
The sizes of the images are 256 × 256. The images are labeled in the dataset. The pictures
are assembled under seven emotion groups namely anger, happiness, fear, disgust, sadness,
surprise, and neutral.

In the CK+ dataset, two versions of the datasets are available namely, CK and CK+.
The facial images of CK+ are more expressive than CK. The sizes of the facial expression
images are 640 × 490. There are 593 sequences of images available in CK+. The images
are extracted from 123 persons. In the experiments, only the images with the best facial
expressions were used. In each series, the neutral emotion is represented first. A total of
1281 images were used in the experiments.

In the MUG dataset, there are image sequences in which the neutral emotion image is
the first image of the sample sequence. There are 60 images in each and every sequence.
The facial expression images are represented using 896× 896 pixels. In each sequence, there
are 1462 number of images gathered from 86 subjects. In each category, 81 pictures were
used in the experimental analysis. The pictures are gathered under different environmental
situations. These images are captured under an unconstrained setting at a resolution of
720 × 576. From this dataset, 958 images were chosen for training and 436 images were
chosen for testing. Two-fold cross-validation was used in the experiments and subject-
independent testing was performed.

In SFEW, the images are taken under unconstrained conditions. The size of each facial
image is 720 × 576. There were 958 images in training and 436 images in testing. Subject-
independent tests were performed. The images that were generated in highly controlled
lab environments are images captured under constrained environments. The images taken
under unconstrained situations have natural head movements, varied illumination, age,
gender, and occlusion.
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In the Oulu-CASIA (Oulu, the Machine Vision Group, Chinese Academy of Science and
Institute of Automation) the images are captured from 80 persons. Among the 480 sequences,
five to six best images were chosen for the experiments. Under each class, 500 images were
chosen. There are 312 series of images captured from 30 persons. Among the sequence of images,
three to four images of superior expressions were designated. The last image in the sequence
expressed a neutral emotion. The experiments that were conducted were subject-independent.

4.2. Experimental Analysis

In the state-of-the-art descriptors, Gabor, Monogenic Directional Pattern (MDP) [3],
and Multiscale and Rotation invariant Phase Pattern (MRIPP) [5] have good classification
accuracy but the high computational complexity is a major drawback. All the other
feature descriptors in the literature have comparatively smaller accuracy, especially under
unconstrained situations. The SFEW dataset is very challenging as it is captured under
unconstrained situations.

With improved resolutions, there is a rise in accuracy for JAFFE images as shown in
Table 1. The dimensions are also improved, but it is suggestively smaller than the other
MDP and multi-scales Gabor descriptors. Additionally, MSDP consumes little computa-
tional complexity. Tables 2–7 show the performance of the proposed method by indicating
the number of samples accurately classified and also the number of samples misclassi-
fied. During the classification of the images from the JAFFE dataset using the proposed
approach, the neutral and sad expressions created confusion while predicting other images
as seen in the confusion matrix in Table 2. In the case of the CK+, dataset anger and neutral
emotions have comparatively lesser classification accuracy as shown in Table 3. In the MUG
dataset, the expressions such as disgust, happiness, and surprise are confused among other
emotions as shown in Table 4. In the SFEW dataset, the main challenge is that the images
are captured under unconstrained conditions and there is misbalancing among the samples
of different classes. So, larger training data are needed to improve the accuracy as shown
in Table 5. The proposed MSDP attains better accuracy for SFEW than the other existing
descriptors because of its ability to detect the sharp edges and because of its scale-invariant
and rotation-invariant properties. The SFEW dataset achieves lower classification accuracy
compared to the other existing datasets. However, SFEW achieves a higher accuracy using
MSDP compared to the other existing descriptors in the literature, as shown in Table 5.
The disgusted facial expression is mostly confused with other facial expressions. In the
Oulu-CASIA dataset and MMI, fear and sadness facial expressions create confusion with
the other facial expressions as seen in the confusion matrices presented in Tables 6 and 7.

When images of size 132 × 132 are used, the proposed method attains improved
classification accuracy for all the images at a dimension of 1500 which is lower compared
to the other conventional techniques in the literature. The MSDP achieves the best accuracy
at a feature-length of 1500. Here, the MSDP code uses the images where the row size ×
column size is 132 × 132. The MSDP creates the code images of size 120 × 120. Then, the
histograms are formed using grids of sizes 24 × 24 and bin size 10 is used for the histogram
formation. For one code image, the feature vector length is 250. Experiments are conducted
on JAFFE as shown in Table 1 and the optimal grid sizes are selected. The optimum number
of scales of Riesz transform obtained using the BAO algorithm is three. So, the number of
Riesz components is six. Therefore, the total number of code images are six and the total
length = 250 × 6 = 1500.

Table 1. Classification accuracy variation at different resolutions of the JAFFE image.

Resolution Accuracy of MSDP for JAFFE (%)

250 × 250 99.1
200 × 200 98.9
132 × 132 98.8
120 × 120 98.7
100 × 100 98.2



Electronics 2023, 12, 836 16 of 25

Table 2. Matrix representing the confusions in JAFFE dataset.

Em
(Emotions)

Anger
(Ang)

Disgust
(Dis)

Fear
(Fear)

Happy
(Hap)

Neutral
(Neu)

Sad
(Sad)

Surprise
(Surp)

Ang 99.67 0.33
Dis 99.8 0.2
Fear 93.44 1.0 3.53 2.03
Hap 0.5 96.8 2.2 0.5
Neu 98.2 1.8
Sad 3.67 96.33
Surp 0.8 99.2

Table 3. Matrix representing the confusions in CK+ dataset.

Em Ang Dis Hap Fear Neu Sad Surp

Ang 98 0.5 1.5
Dis 99.3 0.10 0.60
Hap 0.3 99.2 0.5
Fear 99.74 0.26
Neu 0.4 99 0.6
Sad 100
Surp 0.46 99.54

Table 4. Matrix representing the confusions in MUG dataset.

Em Ang Dis Fear Hap Neu Sad Surp

Ang 95.17 0.83 3.3 0.43 0.27
Dis 0.31 95.56 0.23 0.24 3.66
Fear 1.6 97.44 0 0.51 0.34 0.11
Hap 0.17 0.51 99.08 0.24
Neu 0.23 99.77
Sad 0.61 0.38 0.18 98.82
Surp 1.77 2.23 96.00

Table 5. Matrix representing the confusions in SFEW dataset.

Em Ang Dis Fear Hap Neu Sad Surp

Ang 63.7 1.3 4.3 4.7 14 7 5
Dis 6 64.4 0.6 7 4.9 9.1 8
Fear 14 81 2.5 2 0.5 0
Hap 2 21.0 0.9 54.8 0 19 3
Neu 2 10.4 20 43 15.6 9
Sad 16.4 4.3 16.4 14.2 40.7 8
Surp 5.1 2.7 14 0.9 0 77.3

Table 6. Matrix representing the confusions in Oulu-CASIA dataset.

Em Ang Dis Fear Hap Neu Sad Surp

Ang 97.67 2.33
Dis 91.67 5 3.33
Fear 13 0 77.94 6 11.03 3.03
Hap 0.3 99 0.7
Neu 0.1 9.8 88.1 1.1 0.9
Sad 2.6 8 0.4 5.67 83.0 0.33
Surp 0.61 2.39 97.0
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Table 7. Matrix representing the confusions in MMI dataset.

Em Ang Dis Fear Hap Neu Sad Surp

Ang 94.87 0 1.4 0.33 0.4 3
Dis 92.87 4 3.13
Fear 12 82.74 0.8 1.03 3.03
Hap 1.3 98 0.7
Neu 1.1 15 8.8 74.1 0.1 0.9
Sad 0.6 7 0.4 6.57 85.2 0.33
Surp 0.61 3.39 0.7 95.3

The conventional Gabor achieves good accuracy at a feature vector length of
46,240 [26–30,33]. SFEW comparatively achieves lower accuracy as the images are ob-
tained under different environmental circumstances [33–38]. The prevailing techniques,
such as Local Ternary Pattern (LTP), Local Phase Quantization (LPQ), and SIFT, are affected
by illumination disparities. In total, 36 angles and 13 different sizes of the window are in-
volved in the formation of the rotated LPQ filters in RI-LPQ which increases the complexity.
(Scale Invariant Fourier Transform) SIFT and Histogram of Oriented Gradients (HOG) are
very sensitive to the variations in scale and rotations. MSDP achieves a greater performance
than the prevailing techniques [36–40]. The MSDP is using the gradient information while
forming the code images and also calculates the histograms from the finer patterns while
creating the features. Rather than Maximum Response-based Directional Texture Pattern
(MRDTP) [3] and MRIPP, MSDP attains good accuracy as the Riesz transformation and
prevents the sensitivity to scaling and rotation variations. The Difference of Gaussian
(DOG) filter helps in removing the noise and thereby enhancing the accuracy as seen in
Table 8.

While creating the features using convolution with filters, the number of convolutions
determines the total complexity. This complexity is compared with the complexity of the
other feature extraction techniques. The descriptors such as Histogram of Gabor Phase
Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) [38–40]
use the Gabor filters for extracting the patterns from the images. These descriptors use
nearly 40 and 80 convolutions per image. The Monogenic Directional Pattern uses three
convolutions and Laplace of Poisson with three frequency scales, and eight convolutions
with Kirsch mask. In MSDP there are four convolutions. The existing HGPP forms 90 maps
of features per image. LGBPHS generates 40 maps for an image, and MDP creates 9 maps
of features. MSDP creates one feature map. The MSDP has very low complexity and creates
a feature vector of low dimension that achieves a very high accuracy for JAFFE as shown
in Figure 11.

Table 8. Accuracy obtained by different feature descriptors.

Accuracy (%)

JAFFE CK+ MUG SFEW MMI Oulu-CASIA

LDP 97.5 97.7 96.2 34.2 83.3 88.1
LBP 96.1 96.4 93.4 36.3 84.6 86.4

Gabor 98.3 96.1 94.2 35.9 84.1 88.2
LDTP 98.5 96.3 95.4 34.2 82.3 88.2
LDN 98.0 96.2 96.1 34.0 81.5 89.0
LPQ 96.1 96.2 97.2 34.0 82.0 88.0
SIFT 98.2 97.4 93.4 36.1 82.2 86.1
HOG 99.2 98.4 96.3 36.2 82.3 88.3

RI-LPQ 88.0 88.4 87.3 52.9 76.3 87.4
HGPP 88.0 84.2 84.1 28.9 78.4 86.4

MRDNP 97.0 97.0 95.1 35.3 82.3 87.0
MDP 97.0 97.0 95.2 35.4 82.3 87.1

Proposed 97.6 99.2 97.4 60.7 89.0 90.6
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extraction methods.

The comparison reveals that the proposed Pearson Kernel-based Principal component
analysis outperforms the existing approaches [41–48] in the literature as in Figure 12.
OVO-SVM applies b(b− 1)/2 classifiers which are higher than the b classifiers used in
OVA-SVM. The entire problem is divided into smaller problems in OVO-SVM and therefore
the total time needed for computation declines. The OVO-SVM classifier achieves higher
accuracy for emotion prediction. In DNN architecture, 300 hidden nodes are used. DNN
requires enormous training time. The proposed approach uses LeNet architecture that
achieves comparatively higher accuracy. There are several methods such as RELM, AKELM,
RAKELM, MVAKELM, and MVCAELM [1,5,14,15] based on Extreme Learning Machine
that achieve a good performance in less amount of time. The proposed technique using
LeNet architecture achieves the best performance as seen in Figure 13.
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The proposed BAO with PM operator is compared with other optimization algorithms
while applying on JAFFE is shown in Figures 14 and 15. The Bat Algorithm (BA) and
the proposed BAO-PM are compared with Whale Optimization Algorithm (WOA), Gray
Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
Gravitational Search Algorithm (GSA), and Ant Bee Colony (ABC) algorithm [49]. The
BAO-PM utilizes a lower amount of time when compared to the other algorithms as it
uses random fly technique and Pearson mutation that results in faster convergence. The
best individuals are periodically sent from each subprocess to the main process using a
centralized migration strategy. The main process then chooses the best individual from
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the entire population to broadcast to the subprocess, forcing the subpopulation to carry
out the best evolution. The optimized parameters thus obtained using BAO-PM result in
higher accuracy.
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The comparison of results in Table 9 with the state-of-the-art methods [44–58] indicates
that the proposed approach achieves a better performance for all the six datasets. The
multitask network in [41] identifies some attributes such as gender, age of the person,
and posture of the head. This proposed method identifies the emotions only using the
facial expression data. In the future enhancement of the proposed work, this novel feature
vector MSDP will be concatenated with some other feature descriptors and the results will
be analyzed. PSO is used for the optimization of the hyper-parameters. The recognition
results are compared in Table 9. The proposed work achieves better accuracy than the recent
techniques such as EmoNet and visual transformers [57,58]. The proposed work achieves
better performance as there is less chance of overfitting, reduced noise in data, better
discrimination, and better data visualization. The suggested feature extraction method
selects only the pertinent data required for this task automatically.

Table 9. Analysis of results with some prevailing methods.

Technique Dataset Classification Accuracy (%)

Hamester et al. [13] JAFFE 95.8
Liu et al. [50] JAFFE 91.8

Turan et al. [51] JAFFE 91.8
Wang et al. [52] JAFFE 95.8

Proposed JAFFE 97.6
Yang et al. [53] CK+ 97.3

Zhang et al. [54] CK+ 98.9
Zhao et al. [55] CK+ 97.8

Zheng et al. [56] CK+ 97.6
Dosovitskiy et al. [57] CK+ 96.8

Cui et al. [58] CK+ 99.1
Proposed CK+ 99.2

Yang et al. [53] MUG 95.4
Zhang et al. [54] MUG 96.3

Proposed MUG 97.4
Zhang et al. [54] SFEW 38.9
Turan et al. [51] SFEW 39.5
Gera et al. [59] SFEW 58.9

Proposed SFEW 60.7
Yang et al. [53] Oulu-CASIA 88.0

Zhang et al. [54] Oulu-CASIA 86.9
Proposed Oulu-CASIA 90.6

Yang et al. [53] MMI 87.4
Zhang et al. [54] MMI 88.7
Zhao et al. [55] MMI 75.3

Zheng et al. [56] MMI 67.7
Proposed MMI 89.0

The proposed work uses a novel feature extraction technique rather than applying
machine learning techniques directly on the raw images because of the following advan-
tages. The technique of turning unprocessed raw images into numerical features that can be
used for processing while retaining the data from the original dataset is known as feature
extraction. It produces superior outcomes compared to machine learning/deep learning
that are applied directly to the raw image. The amount of redundant data in the dataset
can be reduced by feature extraction. In the end, the data reduction speeds up the learning
and generalization phases of the machine learning process while also making it easier
for the machine to develop the model. Less duplicated data are created in the proposed
approach that uses MSDP for feature extraction which leads to less chances for decisions to
be based on noise. Overfitting is also reduced. Accuracy is enhanced compared to existing
models [50,53,55], when the features are classified using the LeNet architecture of CNN. In
the proposed work, more accurate modelling is possible with less misleading data. It cuts
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down on training time as algorithms can train more quickly when there are less data. The
summary of the hyper-parameters is shown in Table 10.

Table 10. Summary of Parameters.

Technique Dataset

(Cg, Cp, Cw) (0.3, 0.6, 0.8)
Nr 40

Ng 25 or consider the generation in which
accuracy is high

Nsol 32
Epoch 10

Activation function ReLU
Classifier Softmax
Optimizer Stochastic Gradient Descent

Loss function calculation Cross entropy

JAFFE, CK+, MUG, OULU-CASIA, and MUG datasets were the five datasets used
in the cross-database tests. Each group in Table 11 is given a name based on the test set
database that was used. When the JAFFE dataset is used as the test set, all the remaining
samples from the other datasets are used as training samples. The JAFFE database, which
consists solely of Japanese female participants, is severely skewed in terms of gender
and ethnicity. The JAFFE database’s results fell short of expectations. The accuracy of
SFEW is low in the cross-database experiment as the images were captured under highly
unconstrained environments and are difficult to compare with other datasets.

Table 11. Accuracy obtained using cross-database experiments.

Dataset Accuracy (%)

JAFFE 50.1
CK+ 89.2

SFEW 50.2
MMI 68.5
MUG 70.2

OULU-CASIA 67.6

The results are shown in Table 12. The JAFFE dataset is split into training and testing
samples for this reason using the leave-one-out method. The test set is built using a sample
image from each subject-expression pair, and the training set is built using the remaining
images. There are 143 total samples used, of which 70 are used for testing. The similarity
metrics are determined according to Table 12. The hyper parameter values are chosen
using the grid search algorithm. The ratios EK/PGKK are spread between 0.989 and 1.000
in Table 12, which indicate a high degree of similarity between the kernel matrices EK
and PGKK. According to the estimated similarity measures, the PGK kernel and the other
existing kernels are quite similar for certain values. The PGK kernel transforms from linear
to RBF as the values of σ, ω, change.

Table 12. The similarity measure (EK/PGKK) for JAFFE images.

Common Kernels for EK PGK Parameters (σ,ω) (EK/PGKK)

Linear 22, 24 0.999–1.000
Polynomial (d = 2) 2−3, 24 0.989–0.999

Polynomial2 (d = 3) 2−4, 25 0.988–0.999
Polynomial3 (d = 4) 2−6, 26 0.988–0.999

Radial Basis Function (σ = 0.5) 210, 26 0.999–1.000
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High classification accuracy is attained by the proposed MSDP compared to the other
existing descriptors, which also have a very low time complexity as shown in Table 13.
MSDP outperforms all other currently used descriptors in terms of accuracy. Additionally,
it has a computational complexity of O (5 MN), where M and N are the number of rows
and columns in the image. MSDP has a significantly lower level of complexity than
MRDTP, MRDNP, MDP, MRIPP, and E-Gabor. Due to its great precision and low processing
complexity, MSDP is thus ideally suited for usage in real-time applications. By employing
Difference of Gaussian filters, the suggested MSDP improves the image and removes any
noise that may be present. In addition to being scale- and rotation-invariant, the retrieved
features make this feature extraction method superior to others that are currently in use. It
is possible to recognize very subtle expressions with the capacity to extract thin edges. The
signal to noise ratio is the main drawback of the Sobel operator. Some of the results may be
erroneous because the gradient magnitude of the edges decreases as the noise levels rise.
This is an MSDP restriction that will be remedied in the future by using derivatives based
on fractional orders on other, better edge-detection algorithms.

Table 13. Computational complexity of different techniques.

Techniques Computational Complexity

E-Gabor [2] O
(

M2N2 + MN
H2 + MN

L2

)
MRDNP [3] O (MNKK + MN)

MRDTP [3] O
(

MNKK + MN + 8 MNP2
)

,
MMRG [4] O (MNKK + 3 MN)
MRIPP [5] O (9 MN)

Proposed MSDP O (5 MN)

5. Conclusions

In the proposed work, Riesz transformation and Sobel filters are used for the formation
of the features. MSDP applies the Riesz transformation with the finest parameters chosen
using the Bat algorithm-based optimization technique. Then, the fractional derivative-based
Sobel filters are applied and the code images are formed. The code image is designed by
obtaining the pixel information from the maximum value. Thus, the edge information of the
facial expression image is encoded into a feature vector. This novel MSDP achieves higher
classification accuracy compared to the existing techniques. MSDP has comparatively low
computational complexity and length. The novel Bat optimization algorithm with Pearson
mutation operator obtains the best parameters for MSDP. The novel PKSPCA achieves
effective dimension reduction. The proposed technique achieves higher classification
accuracy for the SFEW images with high blur and occlusions. The suggested work attains
high accuracy compared to the other techniques in the literature. The proposed technique
achieves higher classification accuracy on six datasets as seen in the results. The future
works will focus on micro-expressions, and the prediction of dynamic emotions in videos.
JAFFE and SFEW outcomes are not better in cross-database experiments using proposed
MSDP, which will be overcome in future works.

Author Contributions: Conceptualization, A.S.A. and S.A.; methodology, A.S.A.; software, S.A.;
validation, K.S.A.; writing—original draft preparation, A.S.A. and S.A.; writing—review and editing,
A.S.A., S.A. and K.S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: JAFFE and CK are publicly available datasets. Other datasets are
available from particular authors on request https://computervisiononline.com/dataset/1105138659
(accessed on 21 October 2017). The MUG dataset is available from https://mug.ee.auth.gr/fed/

https://computervisiononline.com/dataset/1105138659
https://mug.ee.auth.gr/fed/


Electronics 2023, 12, 836 23 of 25

(accessed on 21 October 2017). The Oulu-CASIA dataset is available from https://paperswithcode.
com/dataset/oulu-casia (accessed on 21 October 2017). The MMI dataset is available from https:
//mmifacedb.eu/ (accessed on 21 October 2017). The SFEW dataset can be obtained from https:
//computervisiononline.com/dataset/1105138659 (accessed on 21 October 2017).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calculation of Optimal Number of Eigen Vectors and Principal
Components for PKSPCA

The experiments are completed using the JAFFE dataset. The features are extracted us-
ing MSDP and the PKSPCA is applied on the feature vectors. CNN is used for classification.
Here, the classification accuracy is obtained for different values of principal components as
in Table A1.

Table A1. Accuracy obtained using number of eigen vectors as d = 3 and different number of principal
components (p).

Number of Principal
Components (p) 5 15 25 35 45 55

Accuracy in% 89.4 90.2 95.4 97.6 97.6 97.6

As shown in Table A1, when the principal components’ number is 35, the accuracy
based on PKSPCA is 97.6%, and the accuracy is unaffected by the principal components
that have grown in number.

Table A2 also displays the accuracy based on PKSPCA with varied d and a principal
component number of 35. Optimal accuracy is obtained when d = 7 as after that there is no
significant increase in accuracy. The highest recognition rate based on PKSPCA is 97.7%
when the principal components number is 35 and d = 7.

Table A2. Accuracy obtained using p = 35 and different number of eigen vectors (d).

Number of Eigen Vectors (d) 1 2 3 4 5 6 7 8 9 10

Accuracy in % 86.4 90.2 92.2 94.4 94.8 94.9 97.6 97.6 97.6 97.7
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