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Abstract: The rise of social networks has greatly contributed to creating information cascades. Over
time, new nodes are added to the cascade network, which means the cascade network is dynamically
variable. At the same time, there are often only a few nodes in the cascade network before new nodes
join. Therefore, it becomes a key task to predict the diffusion after the dynamic cascade based on the
small number of nodes observed in the previous period. However, existing methods are limited for
dynamic short cascades and cannot combine temporal information with structural information well,
so a new model, MetaCaFormer, based on meta-learning and the Transformer structure, is proposed
in this paper for dynamic short cascade prediction. Considering the limited processing capability of
traditional graph neural networks for temporal information, we propose a CaFormer model based
on the Transformer structure, which inherits the powerful processing capability of Transformer for
temporal information, while considering the neighboring nodes, edges and spatial importance of
nodes, effectively combining temporal and structural information. At the same time, to improve the
prediction ability for short cascades, we also fuse meta-learning so that it can be quickly adapted
to short cascade data. In this paper, MetaCaFormer is applied to two publicly available datasets in
different scenarios for experiments to demonstrate its effectiveness and generalization ability. The
experimental results show that MetaCaFormer outperforms the currently available baseline methods.

Keywords: dynamic short cascade; social networks; meta-learning; Transformer; prediction

1. Introduction

Information dissemination in social networks is characterized by fast speed, com-
prehensive coverage and profound influence. The accurate prediction of information
dissemination trends is of great significance to individuals, governments and enterprises.
Since the speed of communication on social platforms is directly proportional to the initial
retweets, there is an interactive relationship between users [1]. It has become an important
topic to understand such an intrinsic law and to predict the subsequent information based
on the cascade of information observed in the previous period [2,3]. However, online social
media’s open and competitive nature makes the information forwarding dynamic, and
the length of the initially observed cascade varies. There needs to be more than a simple
combination of existing models to handle such dynamic cascade networks.

The connection prediction of a dynamic cascade network can be viewed as predicting
the future relationship of a set of nodes where messages are passed. Dynamic cascade
networks are not only limited to social networks [4,5], but also have a wide range of
applications for scenarios, such as paper citation [6], product recommendation [7], virus
propagation [8] and information security [9]. It also greatly facilitates the application of
deep learning in blockchain [10–12]. Many methods have been proposed for predicting
dynamic cascade networks in recent years. Dynamic graph neural networks [13] are the
classical ones that apply nodes’ aggregation and classification. However, it cannot give an
accurate solution to short cascade prediction because of sharing triangular parameters.
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Considering the problem that short cascades are difficult to predict, meta-learning [14]
has emerged as a remedy since meta-learning has the property of autonomously learning
model parameters, making it shine in the processing of small sample data. Meta-GNN [15]
first proposed to combine meta-learning with graph processing models. Many graph pro-
cessing models incorporating meta-learning were also proposed one after another [16–18].
However, most of these initial models were limited to static cascade networks and did not
fully consider the importance of dynamic cascade networks in the importance of temporal
preferences. Moreover, models such as TGAT [19], which simply pieced together meta-
learning and graph neural networks, did not achieve the expected results and were not
very general. Later, Cheng et al. [20] proposed a dynamic graph neural network incorporat-
ing meta-learning, which changed the previous problem of simple patchwork, made the
model focus on temporal preference information, and enhanced the model’s generalization
ability. Although existing methods, such as MetaDyGNN [20], have achieved good results
for dynamic short cascade prediction, the most critical temporal information in cascade
diffusion is limited in graph neural networks, which cannot fully use temporal informa-
tion. Therefore, better combining temporal and structural information in a meta-learning
environment is an urgent challenge to be solved.

To address the above issues, the novel model MetaCaFormer is presented in this
paper. In MetaCaFormer, meta-learning is designed to achieve autonomous learning
and refine each task to the training of temporal preferences of nodes. Through multiple
stages of adaptive learning, fast adaptive short cascades are constructed. Meanwhile,
we introduce the Transformer [21] model in the context of meta-learning for processing
temporal information. Since the traditional Transformer only works well for serialized
information, it has limitations for processing spatially structured information, such as
cascade graphs. So, inspired by Graphormer [22], we constructed a cascaded information
processing model called CaFormer, which consists of an encoder and a classifier that
continues the powerful capability of Transformer for processing temporal information.

The encoder processes the neighboring nodes, edges and spatial importance and feeds
them to the classifier for classification. Finally, the potential future link prediction of the
nodes is obtained. To verify the effectiveness of MetaCaFormer, experiments are conducted
in this paper on two datasets with different scenarios. The results show that MetaCaFormer
models can give better predictions.

In summary, the main contributions of this paper are listed as follows.

(1) Considering the way Graphormer processes graph-structured data, this paper cre-
atively proposes a cascaded graph processing model named CaFormer by combining
an improved Transformer structure as an encoder and a multilayer perceptron as the
classifier. The model’s perception of temporal information is enhanced, making it
more applicable to the processing of dynamic cascade data.

(2) This paper organically integrates adaptive meta-learning with CaFormer to create a
method called MetaCaFormer to solve the problem that short cascades are challenging
to predict in dynamic networks, making the model more sensitive to short cascades
and more capable of prediction.

(3) In this paper, sufficient comparison experiments are conducted with existing base-
line methods. The experimental results show that MetaCaFormer always gives the
best prediction, and sufficient ablation experiments are also conducted to prove the
effectiveness of each component of MetaCaFormer.

The rest of the paper is as follows: In Section 2, related research on dynamic cascade
networks is reviewed. The definition of some concepts and a detailed description of the
workflow of the MetaCaFormer model are given in Section 3. Section 4 describes this
paper’s experiments and the data set and parameter settings. Section 5 further explains
and discusses the experimental results and presents the model’s advantages in this paper.
Section 6 provides a summary and an outlook for the future.
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2. Related Work

In this section, current research in graph structure processing and few-shot learning in
graph structures are presented separately to help the reader understand each approach’s
contribution more clearly. A detailed comparison is shown in Table 1

Table 1. Comparison of existing methods with MetaCaFormer.

Method Structure Time Dynamic Few-Shot Learning Advantage Limitation

GCN [23] X
Perception of global
information. Limited evaluation.

GRN [24] X X
Convert graph data to
sequence form.

Need for more understanding
of global information.

GAT [25] X
Assigning weights to
neighboring nodes. Ignore time information.

GROVER [26] X X
Improved attention
mechanism. Limited assessment capacity.

GraphTransformer [27] X X
Sparsity of the graph is
guaranteed.

Limited ability to handle
structured data.

Graphormer [22] X X Improved Transformer. Limited ability to handle
dynamic data.

DyRep [28] X X
Introduction of recurrent
neural networks for node
representation.

Ignore structural information.

GraphSAGE [29] X X X Convert to snapshot form. Low evaluation performance.

EvolveGCN [13] X X X
Apply to dynamic network
node aggregation
classification.

It has limitations in short
cascades.

TGAT [19] X X X
Superimposed attention
mechanism.

There are restrictions on short
cascade predictions.

TGN [30] X X X
Efficient parallelism can be
maintained.

Insufficient data processing
capability for short cascades.

Meta-GNN [15] X X X
Combined with
Meta-learning. Limited performance.

Meta-Graph [31] X X X
Meta-learning and graph
neural network fusion. Limited by simple overlay.

G-Meta [17] X X X Submap Modeling. Limited ability to handle
dynamic data.

TAdaNet [32] X X X

Multiple graph structure
information combined with
meta-learning for adaptive
classification.

Insufficient assessment
capacity.

MetaTNE [33] X X X
Introducing embedded
conversion functions. Limited by static network.

META-MGNN [34] X X X
Combining meta-learning
and GCN. Limited by static network.

MetaDyGNN [20] X X X X
Effective fusion of
meta-learning and graph
neural networks.

Limited by the graph
network’s ability to process
temporal information.

MetaCaFormer X X X X
Adequate combination of
structural and temporal
information.

Limited ability to forecast
macro.

2.1. Diagram Structure Processing

As cascading data become more widespread, the application of deep learning meth-
ods [35] to cascading data is gradually being explored. The concept of a graph neural
network (GNN) [36] was proposed to enable deep learning to utilize scenarios related to
graph data effectively. One of them, the graph convolutional neural network (GCN) [23],
proposes to apply the Laplacian matrix to learn the topological structure and node feature
information of graphs. The ability to perceive global information is improved. Graph
recurrent networks (GRNs) [24] generally use bidirectional recurrent neural networks and
long- and short-term memory networks as network architectures. The graph data are also
converted into sequences, changing continuously during training. Later, Petar et al. [25]
combined the attention mechanism with graph convolution to propose a graph attention
network (GAT), which can calculate the importance of its neighboring nodes when each
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node updates its state and assign different weights to each neighboring node to improve
the computational efficiency of the model. However, the graph neural network structure
is relatively simple, and although it is more efficient, it has limitations in the prediction
accuracy of complex graph networks. Later it was considered that Transformer could be
applied to handle graph structure data. In [26], GNN was combined with Transformer
to modify the generation of Q, K, and V matrices in the attention layer to produce node
and edge representations. Dvivedi et al. [27] proposed to use the adjacency matrix as an
attention mask and the Laplace eigenvector as a location encoding in transformer to ensure
the sparsity of the graph. Graphormer [22] proposed to transform the graph data into three
forms based on Transformer—center encoding, space encoding and edge encoding—which
significantly improves the prediction accuracy. These methods improve the processing
of graph-structured data to a certain extent, but actual forwarding data, such as social
platforms, are often dynamic, and such methods usually do not cope well in the face of
dynamic data.

To cope with these problems, methods such as ternary closure law [37], Hawkes
process [38], and temporal random wandering [39] have been continuously proposed to be
applied to the processing of temporal information of dynamic graph structures. Methods
such as DyRep [28] propose using recurrent neural networks to represent node information,
but more is needed to facilitate the extraction of structural information. Subsequent work
usually transforms the graph structure into a snapshot form in temporal order, after which
the temporal information [13,40,41] and the structural information are learned rationally to
output node features. GraphSAGE [29] converts the graph into snapshot form and uses the
feature information of neighboring nodes to generate node representations of unknown
nodes efficiently. EvolveGCN [13] combines recurrent neural networks and GCNs to
perform node representation adaptively. TGAT [19] combines GraphSAGE and GAT to
incorporate attention mechanisms to facilitate node representation in dynamic networks.
TGN [30] proposed to allow models to learn from data sequences, maintaining efficient
parallel processing. However, these models usually take the whole graph or snapshots as
input, do not consider few-shot learning in a graph structure, and do not perform well in
the face of short cascaded data.

2.2. Exploration of Few-Shot Learning in Graph Structure

For the problem of complex short cascade processing, many solutions have emerged,
with methods such as transfer learning [42], semi-supervised learning [43], domain adap-
tive [44,45] and few-shot learning [46–50]. Among them, few-shot learning is the most
widely used method, whose main idea is to learn the underlying logic and shared pa-
rameters to fit a new task based on previously learned information quickly. It mainly
includes two approaches: metric learning-based approaches [51] and meta-learning-based
approaches [52,53]. Meta-GNN [15] was the first method to propose the application of
MAML [54] to graph structure processing. However, this approach is limited for small
samples. Attention has also turned to deep graph learning [55–58]. Meta-Graph [31] com-
bines meta-learning with graph convolutional networks to propose connected predictions
across multiple graphs. G-Meta [17] models subgraphs for classification and prediction.
TAdaNet [32] proposes to apply multiple graph structure information combined with
meta-learning for adaptive classification. MetaTNE [33] introduces an embedding transfor-
mation function that compensates for the direct use of meta-learning. META-MGNN [34]
proposes to combine meta-learning and GCN for learning graph structure representation.
However, the above methods, although considering small samples, are only applicable in
static graph networks and do not effectively handle structural and temporal information in
dynamic graphs. MetaDyGNN [20] proposes a method combining MAML and TGAT; due
to the limitations of graph neural networks, it does not achieve better results in temporal
processing information, resulting in a continuous degradation of performance over time.
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3. Method

In dynamic cascade networks, predicting the future trends of nodes with only a few
links is a more complex process. In this section, the definitions and explanations of some
main concepts will be given first, followed by a detailed description of the proposed
method in this paper. The meaning and introduction of the relevant symbols are shown
in Table 2.

Table 2. Descriptions of key notations.

Notations Descriptions

G Static social network
V Users/Nodes
E The set of edges

e =
(
vi , vj, te

)
∈ E The edge of node vi and node vj at time te

N (vi) The set of neighbors of node vi
Tv = (Sv, Qv) The tasks Tv of node V include support set Sv and query set Qv

Eψ, Cψ Encoder, Classifier
A The matrix capturing the similarity between Q and K

Attn(·) Self-Attentive computing
SPij The shortest path from vi to vj
cij edge encoding
w weight

z−, z+ The incoming degree and outgoing degree of node vi
LN(·) Layer Normalization

MHA(·) Multi-head attention.
MLP(·) The multilayer perceptron
L Loss calculation
pe The possibility of connectivity between nodes vi and vj

Ψ, ω Parameter

3.1. Definition
3.1.1. Dynamic Cascade Network

Let G = (V, E) be a dynamic cascade network, where V denotes the set of nodes and E
denotes the set of edges. Each edge e =

(
vi, vj, te

)
∈ E denotes the edge of node vi and node

vj at time te. And at different times, nodes vi and vj can have multiple different connected

edges. Define h(l)i as the representation of the l-th level vi and N (vi) as the set of neighbors
of node vi. A node that joins the dynamic cascade network after a given timestamp t is
defined as a new node. The new node has timestamp t′ > t.

3.1.2. Short Cascade Prediction

The presence of a new node in the dynamic cascade network G = (V, E) indicates
that the message has been further propagated, and the more nodes the message reaches
proves that the message is more popular. Let Vnew ⊂ V , which denotes the set of nodes
appearing after timestamp t. The subsequent links are predicted based on the first K sets of
nodes and their links. Since short cascade prediction is to be achieved, K is controlled to be
an integer within 10 to achieve the effect of fewer observation cascades.

3.1.3. Parameter Adjustment

This paper also fuses meta-learning so that the model can learn the parameters au-
tonomously. Divide the node set into support set Sv and query set Qv, and set the initialized
global parameters θ to feed into the CaFormer model. In the following, the parameters are
updated by feedback after multi-step split training by the meta-learning model until the
model achieves the best results.

3.2. Our Proposal

In this section, the MetaCaFormer framework based on meta-learning and Transformer
is proposed, and the brief flow is shown in Figure 1. The cascaded subgraph is first divided
into a support set and a query set, and then the support set is fed into the CaFormer model
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for training. Meanwhile, the meta-learner gives CaFormer an initial parameter, and with
continuous training, the parameter is continuously iterated until a mature new model is
generated after finding the optimal parameter. Finally, the model is tested with a query
set to obtain the experimental results. The internal structure of the primary model and the
relationship between the components are shown in Figure 2.

Figure 1. MetaCaFormer Brief Process.

Figure 2. The framework of MetaCaFormer.

3.2.1. Task Formulation

Unlike previous data partitioning, the meta-learning framework divides the training
data into tasks. Within each task, the training and test data are named the support and
query sets. Meta-learning trains the parameter learning rules in the training task. The
parameters can be quickly adapted to the new task in the testing stage. Each task can be
viewed as a binary classification with the nodes’ positive or negative linkage. As shown in
Figure 3, the time span of each node v is divided into n equally spaced time intervals, i.e.,
Iv =

{
I1
v , I2

v , . . . , In
v
}

. The division support set Sv =
{
S1

v ,S2
v , . . . ,Sn−1

v
}

, where S i
v is the set

of links in the i-th interval. The query set Qv is the set of links in the last interval In
v . The

task of node v is defined as

Tv = (Sv, Qv) (1)

In this paper, K links are sampled as the support set of each node. Such a process
ensures that the number of links in different time intervals is approximately equal. To
achieve short cascade prediction, K will be set to a smaller integer, and the remaining links
are used as the query set.
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Figure 3. Task formulation.

3.2.2. CaFormer

As shown in Figure 4, the CaFormer model fθ is composed of two parts, encoder Eψ

and classifier Cψ. To facilitate the model to process each node information, the neighboring
nodes, edges and spatial importance of each node are encoded and fed into the network,
thus outputting a representation of each node. In the next, a pair of nodes is fed into the
classifier to determine the existence of edges e =

(
vi, vj, te

)
.

Figure 4. CaFormer model.

Encoder Eψ: Each encoder Eψ contains two parts, a self-attentive module and a feedfor-

ward neural network. The input of the self-attentive module is H =
[
h>1 , · · · , h>n

]> ∈ Rn×d,
where d is the hidden dimension and hi ∈ R1×d is the hidden representation at position
i. H is transformed into three matrices Q, K and V, and set A is the matrix capturing the
similarity between Q and K, i.e.,

A =
QK>√

dK
(2)

and
Attn(H) = softmax(A)V (3)
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The function φ
(
vi, vj

)
: V × V → R denotes the spatial relationship between node

vi and its neighbor node vj in the cascade graph. If there is a connection between them,
let φ

(
vi, vj

)
be the shortest path between node vj and its neighbor node vj. If there is no

connection, the value is assigned to −1. Random Fourier is applied to encode the time, and
a learnable scalar is set for each output value as a bias of the self-attention force, i.e.,

Aij =

((
hi‖Φ

(
te − ti,j

))
WQ

)((
hj‖Φ

(
te − ti,j

))
WK
)T

√
d

+ bφ(vi ,vj)
(4)

where bφ(vi ,vj)
is the learnable scalar, te is the timestamp of the interaction between vi and

its neighbor node vj, ‖ is the concatenation operator, and WQ, WK are the mapping matrices.
As important features in the cascade graph, the edges should also be considered. For

each node pair, the shortest path SPij = (e1, e2, . . . , eN) from vi to vj is found, and the
average of the edge features and the learnable dot product in the path is calculated. The
edge encoding cij is merged into the self-attentive module, i.e.,

Aij =

((
hi‖Φ

(
te − ti,j

))
wQ
)((

hj‖Φ
(
te − ti,j

))
wK
)T

√
d

+ bφ(vi ,vj)
+ cij (5)

and

cij =
1
N

N

∑
n=1

xen

(
wE

n

)T
(6)

where xen is the feature of the nth edge en of the path SPij, wE
n is the nth weight embedding.

Cascade graph is a kind of directed graph. In this paper, the degree of entry and exit
of each node are extracted as the importance code added to the node features, i.e.,

h(0)i = xi + z−
deg−(vi)

+ z+
deg+(vi)

(7)

where z− denotes the incoming degree of node vi, and z+ denotes the outgoing degree of
node vi.

Based on Transformer, the application of layer normalization (LN) before the feedfor-
ward neural network (FFN) is described specifically as

h′(l) = MHA
(

LN
(

h(l−1)
))

+ h(l−1) (8)

and
h(l) = FFN

(
LN
(

h′(l)
))

+ h′(l) (9)

where LN(·) denotes layer normalization, and MHA(·) denotes multi-head attention.
Classifier Cψ: After a series of processing by the encoder, the representations of nodes

vi and vj at timestamp t, h(l)i and h(l)j can be obtained, and the probability of connection of
nodes vi and vj is predicted as

pe = cω

(
h(l)i , h(l)j

)
= σ2

(
MLP

(
h(l)i ‖h

(l)
j

)) (10)

where σ2 is the sigmoid function, ‖ is the concatenation operator, and MLP(·) is the
multilayer perceptron. Minimize the loss of each edge e to train the model, i.e.,

Le = −ye log pe − (1− ye) log(1− pe) (11)

If e belongs to the set of edges E, ye = 1; otherwise ye = 0.
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3.2.3. Meta-Learner

In real life, the forwarding cascade of social platforms is often short. This paper
combines meta-learning to learn parameters autonomously to meet the demand for accurate
prediction of short cascades. The meta-learner consists of three parts, encoding adaptation,
classification adaptive and optimization.

The encoding adaptation step is to fine-tune the global parameters Ψ of the encoder
for each time interval. The model is trained with the support set Sv. The global parameters
Ψ are updated adaptively according to the loss of the set Sk

v in each support set Sv, and the
node preferences for the kth time interval are obtained. For each edge e =

(
vi, vj, te

)
∈ Sk

v ,
the node vi is represented as

hL
i

(
tk, te

)
= Eψ

(
vi,Nvi

(
tk
)

, te

)
(12)

where tk denotes the timestamp at the beginning of kth time interval. The loss is calcu-
lated as

L
(

ψ, ω, Sk
v

)
= − ∑

e∈{Sk
v∩E}

log(pe)− ∑
e∈{Sk

v\E}
log(1− pe) (13)

pe = hω

(
hL

i

(
tk, te

)
, hL

j

(
tk, te

))
(14)

where pe denotes the possibility of connectivity between nodes vi and vj.
After that, the global parameter Ψ is adjusted according to the gradient descent to

obtain the dedicated parameters for the kth time interval node vi, i.e.,

ψk
v = ψ− β

∂L
(

ψ, ω, Sk
v

)
∂ψ

(15)

where β is the learning rate.
In the classification adaptive step, the global parameter ω of the classifier is fine-tuned

according to the adaptive parameter ψk
v, which is updated by gradient descent to fit each

set Sk
v, i.e.,

ωv = ω + h0
v ·Wω (16)

ωk
v = ωv − η

∂L
(

ψk
v, ωv, Sk

v

)
∂ωv

(17)

where Wω is the projection matrix and η is the learning rate.
In the optimization step, the adaptive parameters of each node are first fused such that

ψ∗v =
n−1

∑
k=1

ak
vψk

v, ω∗v =
n−1

∑
k=1

ak
vωk

v (18)

and
ak

v = softmax
(
−L
(

ψk
v, ωk

v, Sv

))
(19)

where ak
v is the weight of θk

v derived over the entire support set, which accelerates the
convergence of the meta-learning training phase. θk

v is the mapping of the global parameter
θ for the node over the kth time interval, i.e.,

θk
v =

{
ψk

v, ωk
v

}
(20)

Finally, the loss in the query set Qv is minimized back propagation to update the
global parameters θ and the mapping matrix Wω:

θ ← θ − γ∇θ ∑
v∈V
L(ψ∗v , ω∗v , Qv) (21)
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Wω ←Wω − γ∇Wω ∑
v∈V
L(ψ∗v , ω∗v , Qv) (22)

where γ is the learning rate.

4. Experiments
4.1. Datasets

In order to evaluate the MetaCaFormer, this paper conducted experiments on two
datasets, the Reddit post dataset and the DBLP paper citation dataset. The data statistics
are shown in Table 3.

In the social platform reposting scenario, this paper uses the Reddit dataset from
JODIE [2]. The Reddit dataset captures one month of user posts in subreddits, retaining the
10,000 most active users and the 1000 most active subreddits. Meanwhile, 672,448 interactions
were generated, where nodes denote users and posts, and connections denote timestamps.

In the paper citation scenario, this paper uses the DBLP dataset [59]. DBLP is a co-
author network that is considered to generate a new link whenever a citation occurs. In this
dataset, each node represents the author and its article, and the link represents the newly
generated cited article in the corresponding year.

To facilitate the experiments, this paper uses a data treatment similar to that of
MetaDyGNN [20], i.e., dividing 60%, 20%, and 20% of each cascade into a training set, a
validation set and a test set, respectively, in chronological order. The training set includes
existing nodes and associated connected edges. The validation set includes the nodes and
their associated edges that appear in the validation interval for the first time. The test set
contains nodes and associated edges that appear only after the validation interval.

Table 3. Datasets information statistics.

Dataset Reddit DBLP

Node 10,984 28,085
Dynamic edge 672,448 286,894

Timestamp continuous 27 snapshots

4.2. Baseline Methods

Three methods are introduced in Section 2, static graph networks, dynamic graph
networks, and graph networks with small sample learning. The authors selected a few
representative methods in each category as the baseline. MetaCaFormer is compared with
the following baselines. GraphSAGE [29] proposes to convert the graph into a snapshot
and use the feature information of neighborhood nodes to generate representations for
unknown nodes efficiently. GAT [25] combines an attention mechanism with a graph
convolutional network to compute the importance of its neighboring nodes when each
node updates its state using the attention mechanism, assigning different weights to each
neighboring node and later aggregating the neighboring nodes to obtain the node repre-
sentation. EvolveGCN [13] introduces recurrent neural networks (RNNs) to update the
node representation of GCNs by operating RNNs in discrete snapshots, sharing trainable
parameters among all nodes. TGAT [19] combines GraphSAGE and GAT to encode con-
tinuous time and incorporates attention to combine the neighborhood node information
with temporal information. The final node representation is obtained. Meta-GNN [15] was
the first approach to propose the application of MAML [54] to graph structure processing.
TGAT+MAML [19,54] combines TGAT with meta-learning in a simple way and divides the
task according to meta-learning, using meta-learning to learn parameters autonomously
while learning node properties. MetaDyGNN [20] proposed a dynamic graph network
framework in a meta-learning environment to model the prediction of links to new nodes
on the graph. Changing the previous problem of the simple patchwork using a hierarchical
meta-learner also gives the model a more comprehensive grasp of global information.
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4.3. Experimental Settings

Assuming that the first K = 2, 4, 6, 8 links in the validation and test sets are known,
the predictions are converted into a classification issue to predict the future connectivity of
nodes by outputting a positive or negative weight for each node. In order to fully reflect
the effectiveness of MetaCaFormer, a detailed comparison is made of three different evalua-
tion metrics. ACC, as the most common evaluation metric in dichotomous classification
problems, can reflect the percentage of samples correctly predicted by the classifier to
the total number of samples and can be used as an indicator to evaluate the good or bad
performance of the classifier. However, when faced with unbalanced data, one must focus
on more than just the ACC score. AUC is calculated by ranking the relative prediction
probabilities of all instances, so the influence of unbalanced classes can be eliminated, and
the classifier can be better evaluated. Macro-F1 is a macro-level evaluation metric, and the
F1 of each class is calculated separately and averaged as macro-F1, which is more suitable
for the cascade prediction scenario in this paper. Therefore, under careful consideration,
we select ACC, AUC and Macro-F1 as the evaluation metrics in this paper to evaluate the
MetaCaFormer model and compare the baseline methods.

For the baseline methods, all the baseline methods compared in this paper will output
a positive or negative weight, and the prediction is treated as a kind of binary classification
problem or ranking problem. Other parameters are consistent with those used in related
papers. We use the same evaluation procedure for all baseline models and record the best
results for comparison.

In this paper, the Adam optimizer is used for training, epochs are set to a maximum of
30, embedding dimension is 64, the batch size is 64, and encoder is two layers in CaFormer.
In meta-learning, the time interval is 3, the dropout is 0.5, the meta-learning rate is 0.001,
the coding adaptive learning rate is 0.0002, and the classification adaptive learning rate
is 0.025.

Our experiments were run on a Windows Server 2019 server with 60G RAM containing
a single GPU (NVIDIA A100-SXM4) and CPU (Intel Xeon Processor (Icelake) 2.59 GHz).

5. Results and Discussion
5.1. Comparison Results

This section evaluates the MetaCaFormer in the Reddit post dataset and the DBLP
paper citation dataset and compares it to the baseline model. When K = 8, the results
are shown in Table 4. In terms of AUC, MetaCaFormer improves about 1% over the best
baseline approach in the Reddit post dataset and about 2% in the DBLP paper citation
dataset. It can be seen that MetaCaFormer can still give stable and accurate prediction
results in the observation cascades.

The experimental results show that when meta-learning is simply superimposed
with graph neural networks, such as Meta-GNN and TGAT+MAML, the prediction effect
for short cascades is not obvious. Even in the Reddit dataset, the superimposed meta-
learning method is not as good as the method with only graph networks. Meanwhile,
the comparison with MetaDyGNN shows the performance of our proposed CaFormer for
processing temporal information and demonstrates the key role of temporal information in
cascade processing.

To further demonstrate the effectiveness of MetaCaFormer in short cascade prediction,
a complete comparison was conducted in this paper at three states of K = 2, 4, 6. For
more obvious observations, only the MetaDyGNN with the best results was retained as
our baseline method. The results are shown in Figure 5, and the experiments show that
MetaCaFormer gives optimal results in all states.
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Table 4. Performance comparison results.

Dataset Reddit DBLP

Model/Result ACC AUC Maco-F1 ACC AUC Maco-F1

GraphSAGE [29] 88.92% 93.12% 87.98% 72.15% 76.65% 71.32%
GAT [25] 88.76% 92.96% 88.34% 73.38% 76.94% 72.31%

EvolveGCN [13] 59.21% 61.64% 57.02% 57.88% 63.15% 56.53%
TGAT [19] 93.15% 94.43% 92.96% 77.21% 81.02% 76.45%

Meta-GNN [15] 85.97% 91.06% 85.21% 74.98% 79.85% 74.52%
TGAT+MAML [19,54] 87.85% 91.56% 87.42% 73.53% 77.46% 72.62%
MetaDyGNN [20] 95.97% 97.46% 95.68% 83.02% 87.57% 82.04%

MetaCaFormer 97.95% 98.21% 96.88% 85.26% 89.92% 84.09%

Figure 5. Performance comparison results.

5.2. Ablation

For dynamic cascade networks, temporal information plays a decisive role in the
prediction effect. However, in the past baseline methods, only graph neural networks are
often applied to process the cascade graph structure. Although graph neural networks
have apparent effects on the processing of graph structures, they do not capture the
temporal information well, which is a drawback for dynamic cascade networks. There-
fore, we propose to apply the CaFormer model based on the Transformer structure in
dynamic cascade networks. It can effectively avoid the problem of time information
loss and make the structural information of the cascade graph better combined with
time information.To verify the validity of the CaFormer, the meta-learning part of Meta-
CaFormer was removed, and only the simple CaFormer was kept to create the variant
experiment MetaCaFormer-noMAML. As shown in Figure 6, MetaCaFormer-noMAML
is better than TGAT, proving that CaFormer has a powerful processing capability for
dynamic cascade networks.

We construct a variant of CaFormer+ MAML by piecing together CaFormer and
meta-learning, as shown in Figure 7. The experiment shows that CaFormer+ MAML is
better than the simple CaFormer for short cascade processing but not as good as Meta-
CaFormer. It demonstrates the effectiveness of an adaptive framework that incorporates
meta-learning.
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Figure 6. performance of variants.

Figure 7. performance of variants.

6. Conclusions

This paper proposes a novel MetaCaFormer based on meta-learning and Transformer
for dynamic short cascade prediction. Our proposed CaFormer model inherits the power-
ful processing capability of Transformer for temporal information while considering the
neighboring nodes, edges and spatial importance of nodes. It solves the problem of the
limited processing capability of traditional graph neural networks for temporal information
and effectively integrates temporal and structural information. At the same time, it also
incorporates meta-learning, which enables it to adapt to short cascade data quickly and
improves the prediction ability for short cascades. MetaCaFormer gives better prediction
results than other baseline methods in both Reddit and DBLP datasets. Therefore, this
study can be a heuristic method for researchers to design short cascade prediction models
and provide a new solution to the short cascade prediction problem.

MetaCaFormer is proposed to satisfy the need to accurately capture and predict only
a few forwarding behaviors in dynamic cascade networks. In future work, dynamic short
cascade prediction can be extended to epidemic transmission and recommender systems,
where accurate prediction is meaningful for individuals and society to study.
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However, MetaCaFormer also has shortcomings, and its focus on each node will also
limit its prediction ability for macroscopic scenarios. Future research will also focus on how
to predict macroscopic scenarios better.
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