Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator
Abstract
:1. Introduction
2. The Dynamics Model of n-DOF Robotic Manipulators
3. Control Design
3.1. Disturbance Observer Design
3.2. Non-Singular Terminal Sliding Mode Controller Design
4. Controller Stability
5. Simulation Result
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kreutz, K. On manipulator control by exact linearization. IEEE Trans. Autom. Control 1989, 34, 763–767. [Google Scholar] [CrossRef]
- Poignet, P.; Gautier, M. Nonlinear model predictive control of a robot manipulator. In Proceedings of the 6th international workshop on advanced motion control, Nagoya, Japan, 30 March–1 April 2000. [Google Scholar]
- Zhao, J.B.; Wang, X.Y.; Zhang, G.X. Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr. Comput. Aided Eng. 2015, 23, 15–30. [Google Scholar]
- Hoo, S.; Xie, L.H.; Man, Z.H. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 2009, 14, 219–228. [Google Scholar]
- Zhou, J.; Wen, C.Y.; Wang, W. Adaptive control of uncertain nonlinear systems with quantized input signal. Automatica 2018, 95, 152–162. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Swernkar, P.; Gupta, S. A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Robot. Auton. Syst. 2018, 109, 68–85. [Google Scholar] [CrossRef]
- Islam, S.; Liu, X.P. Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 2010, 58, 2444–2453. [Google Scholar] [CrossRef]
- Gao, D.X.; Xue, D.Y. Terminal Sliding Mode Adaptive Control for Robotic Manipulators. In Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006. [Google Scholar]
- Utkin, V.; Guldner, J.; Shi, J. Sliding mode control in electromechanical systems. Math. Probl. Eng. 2009, 8, 451–473. [Google Scholar] [CrossRef]
- Sabanovic, A. Variable structure systems with sliding modes in motion control-a survey. IEEE Trans. Ind. Inf. 2011, 7, 212–223. [Google Scholar] [CrossRef]
- Fateh, M.M.; Aza, R.S. Discrete adaptive fuzzy control for asymptotic tracking of robotic manipulators. Nonlinear Dyn. 2014, 78, 2195–2204. [Google Scholar] [CrossRef]
- Ang, L.Y.; Chai, T.Y.; Zhai, L.F. Neural network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 2009, 56, 3296–3304. [Google Scholar]
- Cuong, P.; Wang, Y.N. Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput. Appl. 2016, 27, 525–536. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, Y.Z.; Liu, X.D. A novel adaptive high-order sliding mode control based on integral sliding mode. Int. J. Control. Autom. Syst. 2014, 12, 459–472. [Google Scholar] [CrossRef]
- Man, Z.H.; Paplinski, A.P.; Wu, H.R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control. 1994, 39, 2464–2469. [Google Scholar]
- Yu, S.; Yu, X.; Shirinzadeh, B. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005, 41, 1957–1964. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.H.; Man, Z.H. Non-singular terminal sliding mode control of rigid manipulators. Automatica 2002, 38, 2159–2167. [Google Scholar] [CrossRef]
- David, C.O.; Isaac, C.; Alexander, P. Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA Trans. 2022, 121, 268–283. [Google Scholar]
- Wang, Y.Y.; Chen, J.W.; Yan, F.; Zhu, K.W.; Chen, B. Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans. 2019, 86, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, N.; Hacioglu, Y. Robust control of a spatial robot using fuzzy sliding modes. Math. Comput. Model. 2009, 49, 114–127. [Google Scholar] [CrossRef]
- Jouila, A.; Nouri, K. An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm. J. Frankl. Inst. 2020, 357, 13259–13282. [Google Scholar] [CrossRef]
- Chen, W.H.; Balance, D.J.; Gawthrop, P.J. A nonlinear disturbance observer for two link robotic manipulators. In Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 6 August 2002; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Mohammadi, A.; Tavakoli, M.; Marquez, H.J. Nonlinear disturbance observer design for robotic manipulators. Control. Eng. Pract. 2013, 21, 253–267. [Google Scholar] [CrossRef]
- Chen, W.H.; Balance, D.J.; Gawthrop, P.J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, M. Tracking Control of Manipulator Based on High-Order Disturbance Observer. IEEE Access 2018, 6, 26753–26764. [Google Scholar] [CrossRef]
- Han, J.Q.; Wu, A.G.; Dong, N. Terminal sliding mode control for robotic manipulator based on sliding mode disturbance observer. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 2749–2757. [Google Scholar]
- Zhu, Y.; Wu, D.; Li, S. Non-singular Fast Terminal Sliding Mode Tracking Control of a 2-DOF Robotic Manipulator Using Finite-Time Extended State Observer. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; IEEE: Piscataway, NJ, USA. [Google Scholar]
Symbols | Definition | Values |
---|---|---|
Mass: link 1 | 0.5 kg | |
Mass: link 2 | 1.5 kg | |
Length: link 1 | 1 m | |
Length: link 2 | 0.8 m | |
Moment of inertia: link 1 | 5 kgm2 | |
Moment of inertia: link 2 | 5 kgm2 | |
Acceleration due to gravity | 9.81 m/s2 |
Controller | Joint 1 | Joint 2 |
---|---|---|
NDO–NTSMC | 0.0049 | 0.0017 |
NDO–PD | 0.0236 | 0.0149 |
NTSMC | 0.0677 | 0.0545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Shi, P.; Wang, P.; He, C.; Zhang, H. Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator. Electronics 2023, 12, 849. https://doi.org/10.3390/electronics12040849
Guo K, Shi P, Wang P, He C, Zhang H. Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator. Electronics. 2023; 12(4):849. https://doi.org/10.3390/electronics12040849
Chicago/Turabian StyleGuo, Keyou, Peipeng Shi, Pengshuo Wang, Chengbo He, and Haoze Zhang. 2023. "Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator" Electronics 12, no. 4: 849. https://doi.org/10.3390/electronics12040849
APA StyleGuo, K., Shi, P., Wang, P., He, C., & Zhang, H. (2023). Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator. Electronics, 12(4), 849. https://doi.org/10.3390/electronics12040849