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Abstract: Aiming at the problems of model uncertainties and other external interference in trajectory
tracking control of n-degree of freedom manipulators, a non-singular terminal sliding mode controller
with nonlinear disturbance observer (NDO–NTSMC) trajectory tracking method is proposed. A
nonlinear disturbance observer (NDO) is designed to forecast and compensate the system external
interference, and a nonlinear gain is designed to make the observer error achieve the expected
exponential convergence rate so that the feedforward compensation control is realized. Then, a
non-singular terminal sliding mode controller (NTSMC) built on nonlinear sliding surface is designed
to surmount the singularity fault of classic terminal sliding mode controller (TSMC). Therefore, the
time required from any initial state to reach the equilibrium point is finite. In addition, the redesign of
the sliding surface ensures the tracking accuracy rate of uncertain systems. Then, based on Lyapunov
principle, we complete the stability analysis. Finally, the method is applied to a 2-DOF robotic
manipulator model compared with other methods. In the simulation, the manipulator needs to track
a continuous trajectory under the condition of joint friction disturbance. The simulation result shows
that the torque output of the designed method is chattering-free and smooth, and the tracking effect
is precise. Simulation results indicate that the proposed controller has the advantages of excellent
tracking performance, strong robustness, and a fast response.

Keywords: robotic manipulator; trajectory tracking; disturbance observer; sliding mode control;
finite time convergence

1. Introduction

As the robotic manipulator becomes increasingly significant in industry and research,
perfect precision for trajectory tracking in these works has become an attractive research
topic in recent years. The trajectory tracking of manipulators is one of the most important
and difficult problems in the field of manipulator control. As a typical nonlinear and highly
coupled MIMO system, the control of the manipulator not only plays an important role in
practical application, but also has a significant impact on the control theory of similar MIMO
systems. However, there are unknown variables including payload variation, time-varying
joint friction, and external disturbance, which makes it difficult for the manipulators
to achieve precise trajectory tracking control. In addition, the parameter variation and
interference of the control system also have an adverse effect on the tracking control
performance of the manipulator. To solve the trajectory tracking difficulties, a lot of
advanced control techniques have been applied, such as feedback linearization [1], model
predictive control [2], PID control [3], robust control [4], output adaptive control [5], classic
sliding control [6–10], fuzzy control [11], and neural network control [12,13]. In these
control methods, sliding mode control (SMC) [14,15] is recognized as an efficient and
robust method, which can deal with nonlinear systems with bounded external interference
and substantial uncertainties.

In traditional sliding mode control, a linear sliding surface is used. By designing the
sliding mode surface, sliding mode control divides the system into the initial approaching
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movement to the surface and the sliding mode movement in the surface. According to the
system current state, it switches system state constantly to force the system trajectory as ex-
pected. Although it is extensively applied in the motion control of nonlinear systems, there
exists two main disadvantages: chattering problems and sensitivity to the noise. Though
the system state eventually approaches the given trajectory, the chattering phenomenon
exists in its movement towards the equilibrium point. In addition, the final steady-state
error cannot reduce to 0 in a limit time. To overcome this problem, Man et al. [16] proposed
a terminal sliding mode (TSMC) built on a nonlinear sliding mode surface so that the
system state variables could converge in a limited time. However, this method had the
singularity problem and could not suppress the chattering phenomenon. Considering this
issue, non-singular terminal sliding mode (NTSMC) was proposed [17–19]. By selecting
fractional parameters in the control laws, this new control approach overcomes the sin-
gular problem. The sliding mode control system has the advantages of simplicity and
robustness, but the chattering phenomenon cannot be fundamentally eliminated due to its
own switching characteristics. Moreover, this control method is essentially a model-based
control method, but in the actual control of the robotic manipulator system, the system
uncertainty depends on the real-time system states and system inputs. Its dynamics model
is very complicated and uncertain, which makes it difficult for the control system to achieve
precise tracking using only a single sliding mode method. Considering this aspect of the
problem, various advanced control methods combining sliding mode control were previ-
ously studied. Yagiz et al. [20] proposed a terminal fuzzy sliding mode control strategy
applied to the manipulator. In the work [21], Jouila et al. combined terminal sliding mode
and RBF neural network control to approach the model of the manipulator. However, these
control methods combined with intelligent control are computationally expensive to be
applied to real-time due to their complex design, parameter adjustment, or large amount of
training. In addition, these methods cannot estimate and compensate for the disturbance.
In order to strengthen the anti-disturbance ability, various disturbance rejection control
methods have been extensively studied. To eliminate the system parameter perturbation,
model uncertainties, and external disturbance, Chen et al. [22–25] designed a nonlinear dis-
turbance observer and applied it to a 2-DOF rigid robotic arm system. Han [26] combined a
disturbance observer with a terminal sliding mode controller (DO–TSMC), and put forward
a finite time convergence of robotic arm sliding mode control method. Zhu [27] proposed a
new sliding mode controller based on extended state observation (PD–ESO–SMC), which
can realize real-time error measurement and compensation of interference without relying
on the precise model.

In this paper, we establish a new non-singular terminal sliding mode controller with
nonlinear disturbance observer (NDO–NTSMC) for manipulators. The major benefits of
this article are summarized as follows:

The development of a non-singular terminal sliding mode controller with a nonlinear
disturbance observer tracking method, which takes the place of the discontinuous sign
function with the estimate of model uncertainties to avoid the chattering problem. It also
can be applied to observe and compensate external disturbance.

The superiority of the raised tracking control method is confirmed by comparing the
simulation experimental results of a 2-DOF manipulator with (1) non-singular terminal
sliding mode control method without observer (NTSMC) and (2) classical PD controller
with disturbance observer (NDO–PD).

The rest of this article is organized as follows: the dynamics model of the n-DOF rigid
robotic manipulators system is establishment in Section 2. Then, in Section 3, a nonlinear
disturbance observer is developed to manipulate the problem of external interference. In
addition, the system controller is built up with the non-singular terminal sliding mode
method. Next in Section 4, we discuss the stability of the controller designed above.
We illustrate the satisfactory performance of the proposed method by providing several
numerical contrast simulations in Section 5, which apply the control strategy to a 2-DOF
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robotic manipulator system. Lastly, conclusions and further extensions are presented in
Section 6.

2. The Dynamics Model of n-DOF Robotic Manipulators

For the n-degree of freedom rigid robotic manipulator, considering the model inde-
terminacy, parameter change, and other external disturbances, the general form of the
dynamics established by the Lagrange method is as follows:

(M0(q) + ∆M(q))
..
q + (C0(q,

.
q) + ∆C(q,

.
q)) + (G0(q) + ∆G(q)) = τ + ρ(

.
q) + d(t) (1)

where M0(q) ∈ Rn×n is the nominal positive inertia matrix, C0(q,
.
q) ∈ Rn×1 denotes

the nominal centrifugal–Coriolis matrix. G0(q) ∈ Rn×n is the gravity nominal vector.
∆M(q), ∆C(q,

.
q), and ∆G(q) for the model indeterminacy. τ ∈ Rn is the joint input torque.

ρ(q) ∈ Rn is the joint friction torque. q,
.
q,

..
q ∈ Rn are on behalf of the joint’s position,

angular velocity, and angular acceleration, respectively. d(t) ∈ Rn is the unknown external
interference torque. According to (1), the dynamic function of the manipulators is replaced
as follows:

M(q)
..
q + C(q,

.
q) + G(q) = τ + f (q,

.
q) (2)

where f (q,
.
q) = −(∆M

..
q + ∆C + ∆G) + ρ(

.
q) + d(t) is defined as the total interference,

which the disturbance observer aims to estimate the observable part. The other invisible
part can be compensated by the sliding mode controller. For the dynamic model matrices
M(q) and C(q,

.
q), there are some properties that hold:

Property 1. The matrix M(q) ∈ Rn×n is positive definite and symmetric;

Property 2. The matrix (M(q)− 2C(q,
.
q)) is skew symmetric.

Define the tracking error e,
.
e: {

e = q− .
qd.

e =
.
q− .

qd
(3)

where qd is the desired trajectory position of the joint.
Considering the subsequent control strategy, we made the following assumptions in

this article:

Assumption 1. The actual angular position q and velocity q of the manipulator joints are
measurable, continuous, and bounded;

Assumption 2. Total disturbance f is continuously differentiable, it is assumed to be
unknown but bounded and its upper bound defined as ‖ f ‖ < Γ.

3. Control Design

The objective of the controller is to converge the tracking error e in a finite time. The
structure drawing of the control system is shown below in Figure 1, which mainly consists
of the following parts: (1) The disturbance observer is set to carry out real-time estimation
and torque compensation for the observable part of the total interference. The actual torque
input of the manipulator is the corrected control torque; (2) d the nonsingular terminal
sliding mode surface is designed. The equivalent input τ0 and uncertainty compensation
u1, u2 are determined as:
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Figure 1. Control system structure.

3.1. Disturbance Observer Design

According to Equation 2, a robotic manipulator system is highly nonlinear and has
strong coupling. Therefore, it is very difficult to realize decoupling by establishing an
accurate dynamics model, especially in the case of external disturbance, modeling errors,
and parameter perturbation. Think of the external disturbance as one part so that we can
use the nonlinear disturbance observer (NDO) to evaluate it. The principle is to use the
D-value between the estimate output and the real-time output to correct the estimate value.
Thus, the disturbance observer is defined as:

.
f̂ = −L(q,

.
q) f̂ + L(q,

.
q)(M(q)

..
q + C(q,

.
q) + G(q)− τ) (4)

f̂ denotes the derivative of the disturbance observation, L(q,
.
q) ∈ Rn×n is the observation

gain matrix, and the observer error is defined as ζ = f − f̂ , then
.
ζ =

.
f −

.
f̂ . Due to the

observational noise, it is hard to obtain the acceleration information from the differential
signal in practice, but the angular acceleration value of the state is required, so the nonlinear
observer is further designed by these following steps:

Step 1
Firstly define the auxiliary parameter vector:

z = f̂ − p(q,
.
q) (5)

where z ∈ Rn denotes the parameter vector showing the observer state, p(q,
.
q) is the

function vector to be defined, which has the following nonlinear relationship with the
observation gain matrix L(q,

.
q):

L(q,
.
q)M(q)

..
q =

dp(q,
.
q)

dt
(6)

Step 2
Invoking (5) and (6), the structure of the NDO can be obtained:{ .

z = −L(q,
.
q)z + L(q,

.
q)(C(q,

.
q) + G(q)− τ)

f̂ = z + p(q,
.
q)

(7)

where it is given by Equation (6).
Step 3

From the function of observer error
.
ζ =

.
f −

.
f̂ , it is assumed that it changes slowly

with respect to the dynamic characteristics of the observer, thus,
.
f = 0. Following from

(5)–(7), the observer error equation:

.
ζ + L(q,

.
q)ζ = 0 (8)
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Theorem 1. When the NDO designed for the robotic manipulators control system adopts the
structure shown in Equation (7) and the observer error is Equation (8), the asymptotically stability
of the observer can be guaranteed. Moreover, it can be selected to reach the expected exponential
convergence rate. According to reference [24], the Lyapunov convergence proof of this theory is
as follows.

Proof of Theorem 1. Define the nonlinear observation gain matrix p(q,
.
q) as:

dp(q,
.
q)

dt
= rγ̃−1 ..

q (9)

where γ̃−1 ∈ Rn×n is a invertible matrix. Combine Equations (6) and (10) to obtain the
nonlinear observation gain matrix L(q,

.
q):

L(q,
.
q) = rγ̃−1M(q)−1 (10)

According to Property 1, a matrix M(q) must exist that satisfies the condition:

M(q) = (γ̃−1)
T

M(q)γ̃−1 (11)

meaning that
M(q)−1 = γ̃M(q)γ̃−1 (12)

By inserting (12) into (10), we obtain:

L(q,
.
q) = rM(q)−1γ̃−1 (13)

It is obvious that M(q) is positive definite. Define the Lyapunov function:

V(e, q) = eT M(q)e (14)

By deriving and simplifying the equation, we can see:

dV(e, q)
dt

= −e[rγT + rγ−M(
.
q)]e (15)

In order to ensure that matrix V is negative definite (dV < 0), the principal minors of
each order of matrix [rγT + rγ−M(

.
q)] are required to be greater than 0. This condition can

be satisfied by designing matrix γ. Also, the global asymptotic stability of the observer at
the equilibrium point (e = 0) can be guaranteed. Assume that k1 is the minimum eigenvalue
of M(q) for all the positions q, and k2 is the maximum.

Hence:
dV(e, q)

dt
≤ −k1‖e‖2 (16)

V(e, q) = eT M(q)e ≤ k2eTe = k2‖e‖2 (17)

Combine the two equations:

dV(e, q)
dt

≤ −k2
k1

k2
‖e‖2 ≤ − k1

k2
V(e, q) (18)

Calculate the definite integral. Therefore, the convergence rate of the observer is:

V(t) ≤ V(t0)e−(k1/k2)(t1−t0) (19)

The convergence speed is bounded by k1/k2. However, for a robotic manipulator, k2 is
fixed. Therefore, it can be achieved by selecting the function gain r to reach the desired
exponential convergence rate.
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If the feedforward gain matrix of the observer in Figure 1 is selected as the unit matrix,
the system dynamics Equation (2) becomes:

..
q = M(q)(τ + f (q,

.
q)− f̂ (q,

.
q)− C(q, q)− G(q)), (20)

which yields:
..
q = M(q)−1(τ + ζ − C(q,

.
q)− G(q)) (21)

After the compensation, the disturbance force is reduced from f to ζ, which can effectively
reduce the disturbance torque and suppress chattering. �

3.2. Non-Singular Terminal Sliding Mode Controller Design

To solve singularity difficulties caused by TSMC, the non-singular terminal sliding
mode function is defined as:

s = e + C1
.
eβ/α (22)

where C1 = diag[c11c12 . . . c1n],1 < β/α < 2,β, α are all positive odd numbers. The sliding
surface is designed to:

τ = τ0 + u1 + u2 (23)

where:
τ0 = C(q,

.
q) + G(q) + M(q)

..
qd (24)

u1 = − α

β
M(q)C1

−1diag(
.
e2−β/α

) (25)

u2 = −Γ · [s
TC1diag(

.
eβ/α−1

)M(q)−1]
T
‖s‖∥∥∥sTC1diag(

.
eβ/α−1

)M(q)−1
∥∥∥2 ×

∥∥∥C1diag(
.
eβ/α−1

)M(q)−1
∥∥∥ (26)

where τ0 represents the equivalent torque. u1 is terminal convergence term. u2 is compen-
sation term. Γ is the upper bound of total disturbance, including observable parts such as
joint friction and unobservable parts such as model uncertainty, parametric motion, and
other unknown interferences, so it is defined as Γ = χ0 + χ1‖q‖+ χ2

∥∥ .
q
∥∥2, where χ0, χ1,

χ2 are unknown positive constants that relate to the real-time joint position.

4. Controller Stability

Theorem 2. For the robotic manipulator in the form of Equation (11), the control law is selected
in the form of Equation (13). In addition, the nonsingular terminal sliding surface shown in
Equation (12) is used. The system is asymptotically stable.

Proof of Theorem 2. Define Lyapunov function as:

Λ =
1
2

sTs (27)

substituting (12) and (14) into (3), one obtains:

..
e(t) =

..
q− ..

qd
= M(q)−1(τ + ζ − C(q, q)− G(q))− ..

qd
= M(q)−1(τ0 + u1 + u2 + ζ − C(q, q)− G(q))− ..

qd
= M(q)−1(C(q, q) + G(q) + M(q)

..
qd + u1 + u2 + ζ − C(q, q)− G(q))− ..

qd
= M(q)−1(M(q)

..
qd + u1 + u2 + ζ)− ..

qd
= M(q)−1(u1 + u2 + ζ)

(28)
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and according to (16), we can obtain:

.
e + β

α C1diag(
.
eβ/α−1

)M(q)−1u1

=
.
e + β

α C1diag(
.
eβ/α−1

)M(q)−1(− α
β M(q)C1

−1diag(
.
e2−β/α

))

=
.
e− diag(

.
eβ/α−1

)diag(
.
e2−β/α

)
= 0

(29)

thereafter, by inserting (19) and (20) into (18), it is not difficult to calculate as:
.

Λ = sT .
s = sT(

.
e + β

α C1diag(
.
eβ/α−1

)
..
e)

= sT
[ .
e + β

α C1diag(
.
eβ/α−1

)M(q)−1 (u1 + u2 + ζ(q,
.
q)
]

= sT
[

β
α C1diag(

.
eβ/α−1

)M(q)−1(u2 + ζ(q,
.
q))
]

= sT

{
β
α C1diag(

.
eβ/α−1

)M(q)−1·
[
−Γ·

[
sTC1diag(

.
eβ/α−1

)M(q)−1
]T
||s‖

||sTC1diag(
.
eβ/α−1

)M(q)−1 ||2
× ||C1diag(

.
eβ/α−1

)M(q)−1 ||+ ζ(q,
.
q)

]}
= − β

α ||s||· ||C1diag(
.
eβ/α−1

)M(q)−1 ||· (χ0 + χ1||q||+ χ2||
.
q||2) +

β
α sTC1diag(

.
eβ/α−1

)M(q)−1·ζ(q,
.
q)

≤ − β
α ||s||· ||C1diag(

.
eβ/α−1

)M(q)−1 ||· (χ0 + χ1||q||+ χ2||
.
q||2) +

β
α ||sT ||· ||C1diag(

.
eβ/α−1

)M(q)−1 ||·||ζ(q,
.
q) ‖

= − β
α ||s||· ||C1diag(

.
eβ/α−1

)M(q)−1 ||·
[
(χ0 + χ1||q||+ χ2||

.
q||2) − ||ζ(q,

.
q)||
]

< 0 (||s||)

(30)

Eventually, as we can see, the Lyapunov derivative is negative, which means the system is
asymptotically stable and theorem 1 is proved. Meanwhile, the tracking error index is (β/α− 1) > 0,
which solves the singularity difficulty of TSMC at the point when e = 0,

.
e 6= 0. From the function of

the control law (14), the uncertainties compensation control item replaces the switching control item,
and the chattering phenomenon is suppressed in this way.

5. Simulation Result
To test and verify the effectiveness and superiority of the above control algorithm, the redesigned

control method is utilized to the tracking simulation of a 2-DOF robotic manipulator. The diagram-
matic sketch is as shown in Figure 2. The physical parameters of the manipulator for simulation are
shown in Table 1.
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Table 1. Physical parameters of the robotic manipulator.

Symbols Definition Values

m1 Mass: link 1 0.5 kg
m2 Mass: link 2 1.5 kg
l1 Length: link 1 1 m
l2 Length: link 2 0.8 m
J1 Moment of inertia: link 1 5 kgm2

J2 Moment of inertia: link 2 5 kgm2

g Acceleration due to gravity 9.81 m/s2

The dynamic parameter matrix of the of the robotic manipulator are:

q =

[
q1
q2

]
, τ =

[
τ1
τ2

]

M(q) =
[

m11 m12
m21 m22

]
,

C(q,
.
q) =

[
−m2l1l2 sin(q2)

.
q2

1 − 2m2l1l2 sin(q2)
.
q1

.
q2

m2l1l2 sin(q2)
.
q2

2

]
where:

m11 = (m1 + m2)l2
1 + m2l2

2 + 2m2l1l2 cos(q2) + J1
m12 = m21 = m2l2

2 + m2l1l2 cos(q2)
m22 = m2l2

2 + J2

Consider the joint friction as the observable external disturbance, ηv1 = ηv2 = 0.5 N ·m are
viscous friction factors. µc1 = µc2 = 10.0 N ·m are coulombic friction factors. Define the joint
disturbance torques as:

ρ(t) =
[

ρ1
ρ2

]
=

[
ηv1

.
q1 + µc1sgn(

.
q1 )

ηv2
.
q2 + µc2sgn(

.
q2)

]
(31)

The desired trajectory signal is as follows:

qd =

[
qd1
qd2

]
=

[
sin(0.2πt)
sin(0.2πt)

]
(32)

The experiment simulation is developed by modeling in MATLAB/SIMULINK. The disturbance
observer obtained in (6) and the nonsingular terminal sliding mode control shown in (13) are used.
Then, the parameters used are chosen as follows: observer function vector gain r = 250. The
feedforward gain matrix is taken as E2. Nonsingular terminal sliding surface coefficient matrix

C1 =

[
0.9 0
0 0.9

]
,β = 5, α = 3, χ0 = 10, χ1 = 20, χ2 = 30. The simulation settings: differential

equation solver is ode45. The simulation time is 10 s. The solution step is variable-step. The initial
state of this system: joint angle q1(0) = q2(0) = 0.5rad, joint angular velocity

.
q1(0) =

.
q2(0) = 0.

To better test the superiority of the control system (NDO–NTSMC), we compare the two
methods of non-singular terminal sliding mode controller without observer (NTSMC) and the classic
PD controller with observers (NDO–PD), which are introduced as follows. All simulations are
performed under the same simulation conditions.

NTSMC: In order to reflect the observer’s ability to track external disturbance, and the perfor-
mance improvement of the controller, in the NTSMC method, only NTSMC is tested. The control
function and the sliding surface keep up with (13) and (14);

NDO–PD: To better show the tracking effect of the NTSMC, a PD controller based on the
disturbance observer is developed. The PD control law is taken as:

τPD =

[
τPD1
τPD2

]
=

[
kPe1 + kD

.
e1

kPe2 + kD
.
e2

]
(33)

where the proportions and differential gains are kP = 400, kD = 100. For the disturbance observer, its
parameter is consistent with NDO–NTSMC.

The simulation results are shown below. The observation effect of the disturbance observer
on the joint friction is shown in Figure 3. The output torque of the controller is shown in Figure 4.
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Figure 5 shows the tracking performance comparison effect. Finally, Figure 6 mainly shows the
tracking error comparison result.
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Figure 5. Controller trajectory tracking effect: (a) position trajectory of joints; (b) velocity trajectory
of joints (with partial enlarged detail).
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Figure 6. Controller trajectory tracking error.

It is discovered from Figure 3 that the joint friction simulates the external step disturbance
signals, which is applied to the joints at 0.062 s and lasts for about 2.441 s. Though the amplitude of
the disturbance accounts for about 20% of the amplitude of the controller output, the observer still
has a fast response speed (0.175 s) and a small overshoot (13.5%), which shows that the designed
observer has a good effect on tracking time-varying external disturbances.

From the comparison result of the output torque of the three controllers in Figure 4, the NDO–
NTSMC responds quickly to disturbances such as joint rotation direction change and interference
torque. Additionally, the output torque is smooth and chattering-free, which shows that it can
effectively compensate for these challenges. From the local magnification, the NTSMC output torque
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has obvious chattering phenomenon when the direction of joint rotation changes (at 2.5 s, 7.5 s). The
NDO–PD controller output saturates at beginning, but the output of the NDO–NTSMC converges
faster and the overshoot is smaller. It shows that NTSMC performance is better when the model is
inherently nonlinear.

Figures 5 and 6 show the tracking performance result of the controller system. From Figure 5,
the trajectory tracking effect of NDO–NTSMC converges faster in position and velocity tracking. The
system has better anti-interference with the disturbance observer. The controller NDO–PD responds
fast at the initial moment, but, at the same time, the amplitude of the output is too large to produce
an overshoot phenomenon. Furthermore, there is a large steady-state error after stabilization. In
Figure 6, we can see this in more detail. Compared with the other two controllers, the steady error
of the NDO–NTSMC is reduced by 40%, which effectively improves the tracking precision of the
system. Therefore, the effectiveness of the NDO–NTSMC controller is verified.

With the concept of mean square value E(RMS) in mathematical statistics as a measure of the
tracking error, the function is as follows:

E(e) =

(
1
N

n

∑
i=1

e2
i

)1/2

(34)

where N is the total number of samples. Since the value of the desired trajectory is different from the
angle of the robotic arm at beginning, this produces a large error. The sampling starts from 2.0 s, and
the number of samples N = 580.

The result is shown in Table 2. Compared with NDO–PD, the E values of NDO–NTSMC are
decreased by 79.2% and 88.6%, respectively, while compared with NTSMC, these values are decreased
by 92.8% and 96.9%, respectively. It indicates the superiority of the NDO–NTSMC method in tracking
accuracy. The simulation result verifies the effectiveness of the proposed controller.

Table 2. RMS of tracking errors using three different controllers.

Controller Joint 1 Joint 2

NDO–NTSMC 0.0049 0.0017
NDO–PD 0.0236 0.0149
NTSMC 0.0677 0.0545

6. Conclusions
In this paper, a non-singular terminal sliding mode controller with disturbances observer has

been raised for robotic manipulators trajectory tracking under model uncertainties and external distur-
bance. In particular, it can maintain an acceptable tracking effect when facing external time-varying
disturbance. At the same time, the nonlinear sliding mode surface solves the singularity difficulty of
the terminal sliding mode control. According to the Lyapunov function, it shows that the control
system has the ability of global asymptotically stability. Finally, the availability of the NDO–NTSMC
method has been proved by the simulation. This method also shows us that the complex of a dis-
turbance observer and sliding mode controller is a promising direction, and it expands the practical
application of sliding mode control theory. It should be noted that the method proposed in this article
can also be promoted in other nonlinear uncertain MIMO systems such as unmanned aerial vehicles
(UAVs) and humanoid robots.
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