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Abstract: We reported the analysis and modeling of some conduction mechanisms in ultrathin
aluminum oxide (Al2O3) films of 6 nm thickness, which are deposited by atomic layer deposition
(ALD). This modeling included current-voltage measurements to metal-insulator-semiconductor
(MIS) capacitors with gate electrode areas of 3.6 × 10−5 cm2 and 6.4 × 10−5 cm2 at room temperature.
The modeling results showed the presence of ohmic conduction, Poole Frenkel emission, Schottky
emission, and trap-assisted tunneling mechanisms through the Al2O3 layer. Based on extracted
results, we measured a dielectric conductivity of 5 × 10−15 S/cm at low electric fields, a barrier
height at oxide/semiconductor interface of 2 eV, and an energy trap level into bandgap with respect
to the conduction band of 3.11 eV. These results could be affected by defect density related to oxygen
vacancies, dangling bonds, fixed charges, or interface traps, which generate conduction mechanisms
through and over the dielectric energy barrier. In addition, a current density model is developed by
considering the sum of dominant conduction mechanisms and results based on the finite element
method for electronic devices, achieving a good match with experimental data.

Keywords: ALD; aluminum oxide; conduction mechanisms; current model; defects; leakage current;
MIS capacitor; tunneling

1. Introduction

The recent advances in transistors and Metal-Insulator-Semiconductor (MIS) struc-
tures have allowed the development of Metal Oxide Semiconductor Field Effect Transis-
tors (MOSFETs), Thin Film Transistors (TFTs), and Dynamic Random-Access Memories
(DRAMs). High-performance electronic devices require thin film oxides with high qual-
ity and dielectric constant to achieve high capacitances at low leakage currents [1]. The
aluminum oxide (Al2O3) film grown using the atomic layer deposition (ALD) technique
is widely used in microelectronic fabrication. This is due to its electrical properties, such
as a relatively high dielectric constant (~9), large bandgap (~8.8 eV), and high thermal
stability [2,3]. In addition, the ALD technique is commonly employed for the deposition of
Al2O3 gate dielectrics because the thin films are deposited with acceptable conformality,
density, dielectric performance, and higher thickness control, even at low temperatures [4].

However, the density of defects or states in the oxide and semiconductor/oxide in-
terface affects the electrical characteristics of MIS devices, including flat band voltage,
dielectric breakdown, and conductivity. For this, the analysis of the conduction mecha-
nisms (CMs) in oxide films by current-voltage measurements is fundamental to obtain
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parameters such as trap energy level in oxide, dielectric permittivity, oxide conductivity,
and metal/semiconductor barrier energy [5–8]. Furthermore, the finite element method
(FEM) models of semiconductor devices using the software Silvaco TCAD [9] can predict
tunneling phenomena through thin oxides, improving the modeling of the dominant con-
duction mechanisms in MIS capacitors. Recently, Molina-Reyes et al. [10] reported the
modeling of CMs through thin films of Al2O3 in MIS devices with good agreement to
experimental results, considering the combination of ohmic conduction, Poole–Frenkel
emission, and Fowler–Nordheim tunneling. Spahr et al. [11] presented a model based on
experimental results of CMs in MIS capacitors fabricated with Al2O3 as a dielectric layer
regarding different thicknesses. However, Spahr et al. did not report a total model for
the simulation results of CMs. Okubo et al. [12] developed a CM model for MIS devices
fabricated with Al2O3 (thickness of 33 nm) based on the Fowler–Nordheim mechanism.
This model includes the effect of electric dipoles generated by the electronegativity dif-
ference at the interface of the Al2O3 and SiO2 films. Pengfei et al. [13] investigated the
Fowler–Nordheim tunneling mechanism through Al2O3 films with different thicknesses
and deposition temperatures to predict the effect of those parameters over the barrier
height and current density.

Herein, we describe the modeling of some conduction mechanisms in ultrathin alu-
minum oxide (Al2O3) films deposited by ALD. The proposed modeling considered current-
voltage measurements to MIS capacitors with gate electrode areas of 3.6 × 10−5 cm2 and
6.4 × 10−5 cm2 at room temperature. Based on the modeling results, we detected ohmic
conduction, Poole–Frenkel emission, Schottky emission, and trap-assisted tunneling mech-
anisms through the Al2O3 layer. In addition, we measured a dielectric conductivity of
5 × 10−15 S/cm at low electric fields, a barrier height at the oxide/semiconductor inter-
face of 2 eV, and an energy trap level into bandgap with respect to the conduction band
of 3.11 eV. Furthermore, we reported a current density model that includes the sum of
dominant conduction mechanisms and simulation results for electronic devices.

This work is organized as follows. Section 2 includes the fabrication process of micro-
metric MIS devices with Al2O3 layer (6 nm of thickness) deposited by ALD. Section 3 shows
the dominant conduction mechanisms of Al2O3 layer, such as ohmic conduction, direct tun-
neling, Poole–Frenkel tunneling, Fowler–Nordheim emission, and Schottky emission, and
the proposed modeling of conduction mechanisms. Section 4 presents the discussions of the
modeling and experimental results. Finally, Section 5 incorporates the main conclusions.

2. Materials and Methods

Figure 1a shows a schematic diagram of the fabrication process of micrometric MIS
devices. (1) First, a (100) n-type silicon wafer with 400 µm of thickness, is cleaned using
hydrofluoric acid (HF) solution, acetone (CH3(CO)CH3), and standard RCA procedure.
(2) A thin Al2O3 layer (thickness of 6 nm) is deposited using ALD technique at 250 ◦C for
8 min, with 40 working cycles, and a pressure of 0.2 Torr; aluminum and oxygen precursors
were TMA (Trimethyl Aluminum) and water (H2O) in the vapor phase, respectively. (3) An
aluminum layer with 400 nm of thickness is deposited on top of the Al2O3 film by e-beam
evaporation technique at pressure of 1 × 10−7 torr and deposition rate of 20 Å/s. Then, the
back (lower) side of the silicon wafer was metalized with 500 nm of aluminum, using the
same deposition technique and conditions. This layer is used as the back electrode for the
MIS devices. (4) The next step was a photolithography process at the upper metal surface
to pattern the gate electrode for MIS devices. In this process, the positive photoresist was
deposited by spin-coating at 4000 revolutions per minute (rpm) for 30 s, and then it was
prebaked at 110 ◦C for 1 h. A photolithography mask was aligned to the sample, which was
exposed for 2.2 s of UV radiation. Then, the positive photoresist exposed to UV radiation
was removed with acetone. Wet etching with Al-etch (phosphoric, acetic and nitric acids,
25:7:1) solution at 40 ◦C for 2 min was applied to the exposed aluminum in order to define
geometrical patrons for gate electrodes at different areas. (5) Finally, a cleaning step was
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undertaken with acetone on both sides of the sample. Figure 1b shows a photograph of
fabricated Al2O3 MIS devices.
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Figure 1. (a) Schematic diagram of fabrication process of MIS devices, and (b) photograph of
fabricated MIS devices.

3. Results

The gate current-gate voltage (Ig-Vg) measurements were performed with the Keithley
4200-SCS Semiconductor Parameter Analyzer for MIS devices with gate electrode areas of
3.6 × 10−5 cm2 (60 µm × 60 µm) and 6.4 × 10−5 cm2 (80 µm × 80 µm). For each fabricated
structure, different measurements were developed in order to ensure reproducibility and
confirm the high quality of the deposited ultrathin film of Al2O3. A gate voltage (Vg) sweep
was performed from 0 V to 5 V and inversely with a current compliance of 1 × 10−3 A, as is
shown in Figure 2a. Figure 2b depicts curves the measurements of gate current density (Jg)
versus electric field (E) of the MIS devices. In these results, the gate current is higher for MIS
devices with larger gate electrode areas. In addition, a breakdown voltage (Vbd) occurs for
higher gate voltage or electric field and higher gate electrode area, which has a dependence
on traps density in the semiconductor/oxide interface [14]. At Vbd, a considerable amount
of the atomic bonding of the Al2O3 is opened creating traps in its volume, allowing the flow
of electrons to the gate electrode [15]. After the breakdown voltage, an increment of Ig or Jg
occurs, rising the current compliance that is established by the measurement equipment.
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The current density-electric field (J-E) corresponding to Ig-Vg measured data of MIS
devices were analyzed and modeled considering the dominant conduction mechanisms
through ultrathin Al2O3 film, in which were found: ohmic conduction (OC) for low electric
fields, Poole–Frenkel emission (PFE) and Schottky emission (SE) for moderate electric fields,
and trap-assisted tunneling (TAT) for high electric fields.

3.1. Ohmic Conduction (OC)

Ohmic conduction is a bulk-limited conduction mechanism that considers the charge
transport of both carriers, free electrons present in the conduction band, and holes in the
valence band through the tunneling process. There exists a linear behavior of current density
as a function of the electric field, according to Ohm’s law, which occurs in semiconductor
devices. Due to a large oxide bandgap, a carrier charge generated for thermal excitation
could be presented [16]. In addition, OC is reported for a small electric field; thus, its
current density is small too. Figure 3a shows a schematic representation of band energy for
this mechanism. The current density because of ohmic conduction is given by:

JOC = σE = nqµE (1)

where σ is the conductivity of oxide film, E is the electric field, q is electron charge, µ is
electron mobility, and n is the electron density in conduction band determined by:

n = NCexp
(
− (EC − EF)

kBT

)
(2)

where NC is the effective state density in the conduction band, kB is Boltzmann constant, T is
the temperature in Kelvins, EC is conduction band energy, and EF is the Fermi energy level.
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Figure 3. (a) Band energy diagram for ohmic conduction mechanism, and (b) comparison of J-E
curves from measured data and ohmic conduction model at low electric fields.

Figure 3b compares J-E measured and modeled curves for MIS devices with a gate elec-
trode area of 3.6 × 10−5 cm2 and 6.4 × 10−5 cm2 for small electric fields. For E < 1.75 MV/cm,
the current density has a linear behavior because the ohmic conduction is dominant; the
model gets a good match with measured data. According to the results, an average con-
ductivity of 7.7 × 10−16 S/cm was extracted, which is similar to that reported in [17] for
an electron mobility (µ) of 2.4 × 10−4 cm2/V·s. For E > 1.75 MV/cm, the current density
increases due to other conduction mechanisms, such as Poole–Frenkel or Schottky emission.
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3.2. Poole–Frenkel Emission (PFE)

PFE is a bulk-limited conduction mechanism that depends on the dielectric film’s
trap energy levels. PFE involves the emission of electrons by thermal excitation present in
traps with an energy level into the conduction band of the dielectric film. The Coulombic
potential energy of electrons moving from traps into oxide can be reduced by an applied
electric field, which increases the probability of an electron thermally excited out of the
trap into the conduction band of the dielectric film, as is shown in Figure 4a. The current
density due to this conduction mechanism is calculated by:

JPFE = qµNCE·exp

 q
(

φT −
√

qE/(πεoxε0)
)

kBT

 (3)

where φT is the trap energy level into the oxide, ε0 is the vacuum permittivity, and εox is
the optical dielectric constant. Moreover, Figure 4b shows a comparison of experimental
data and PFE model plotted as Ln(J/E) versus E1/2, at 300 ◦K, according to Equation (3),
evidencing a linear behavior. The average value for the energy trap (φT) is extracted from
the slope of the linear regression, which is obtained by:

φT = −slope· kBT
q

+
√

q/(πεoxε0) (4)
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vs E1/2 from measured data and Poole–Frenkel Emission model.

The average extracted value for φT is 1.52 eV, which is related to energy below the
conduction band due to defects in the oxide, such as oxygen vacancies and dangling bonds.
On the other hand, the average oxide relative permittivity (εox) extracted from the same
expression is 7.57, which is an admissible value for Al2O3 in the amorphous phase [18,19].
For this conduction mechanism in its own materials, first, electrons are transferred from
the conduction band of n type silicon to this trap energy level in the Al2O3 band gap via a
tunneling process. Then, those electrons are transferred to the conduction band of Al2O3
by a thermal excitation process.



Electronics 2023, 12, 903 6 of 10

3.3. Schottky Emission (SE)

SE is an electrode-limited conduction mechanism that is present if the electrons can
gain enough energy through thermal activation to overcome the energy barrier (qφB) and
get into the dielectric, as is shown the energy band diagram in Figure 5a. The energy barrier
height at the semiconductor-dielectric interface may be lowered by the image force, which
is called the Schottky effect. The equation for Schottky emission is determined by:

JSE = A∗T2·exp

−q
(

φB −
√

qE/(4πεoxε0)
)

kBT

 (5)

where A* is the effective Richardson constant obtained by A* = 4πqk2m*/h3 = 120m*/m0.
Here, m0 is the free electron mass, m* is the effective electron mass in the oxide layer, T is
the absolute temperature, kB is the Boltzmann constant, and h is the plank constant.
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for measured data and Schottky model.

Figure 5b shows the measurement results of J/T2 as a function E1/2 compared with the
Schottky model. These results show a linear fit for electric field of 1 MV/cm to 2 MV/cm,
which indicates the presence of this mechanism for the measured electric field range.
According to Equation (4), the average barrier energy level (φB) level can be extracted from
the slope of linear regression, which is reported by:

φB = −slope· kBT
q

+
√

q/(4πεoxε0) (6)

The average extracted value for φB at 300 K is 2 eV.

3.4. Trap Assisted Tunneling (TAT)

TAT is a bulk-limited conduction mechanism in which electrons will go through the
dielectric film assisted by trap energy levels generated into the oxide due to high electric
fields. Those traps split the energy barrier into two parts, allowing consecutive tunneling
through thinner energy barriers and increasing the probability of the total tunneling process.
The TAT process can be elastic if the electron is trapped and then tunnels through the barrier
and no kinetic energy is lost. Thus, the particle momentum is conserved (Figure 6a-(i)). It
can be inelastic if the electron is trapped in a trapping center and then relaxes (loses energy)
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to another trap center (Figure 6a-(ii)). The current density of this inelastic TAT mechanism
is approximated by:

JTAT =
2CtNtqφt

3E
·exp

(
−

8π
√

2qm∗

3hE
∅3/2

t

)
(7)

where Nt is the traps density into the oxide, Ct is a slowly varying function of electron
energy and φt is the trap energy level. Figure 6b shows the measured and modeled curves
Log(JE) versus 1/E to plot the TAT conduction mechanism. According to Equation (7), the
energy trap level, φt, can be extracted from the slope of linear fitting, which is given by:

φt =

(
− slope·3h

8π
√

2qm∗

)2/3

(8)

where the average value for φt at 300 K is 1.36 eV, which is the energy trap that could be due
to state density caused by oxygen vacancies present in the valence band of the dielectric
film [20].
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Figure 6. (a) Band energy diagram for TAT and (b) comparison of JE vs. 1/E results from measured
data and current density due to the TAT model.

Based on the J-E measured data to extract electrical properties of Al2O3 layer and
according to the predominant conduction mechanism, an approximation of the total current
model (sum of ohmic conduction, Poole–Frenkel emission, trap-assisted tunneling, and
Schottky emission) can be estimated as:

JModel = JOC

(
1+A1tan h(E)

2

)
+ JPFE

(
1−A2tan h(E)

2

)
+JTAT

(
1+A3tan h(E)

2

)
+ JSE

(
1−A4tan h(E)

2

) (9)

where E is the electric field, (1 ± Axtanh(E))/2 is a function used to unify separated CM
models, A1, A2, A3 and A4 are fitting parameters.

3.5. Numerical Simulations

Figure 7 illustrates a schematic diagram of the cross-section of the MIS structure that
is generated and simulated with Atlas tool from Silvaco TCAD. This structure consists
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of a n-type silicon substrate (300 µm of thickness) with doping of 1 × 1015 atoms/cm3,
an Al2O3 film with 6 nm of thickness, and an aluminum layer (400 nm of thickness) for
the gate electrode. In addition, we included a semiconductor/oxide interface charge of
1 × 1012 eV−1cm−1, which is a value commonly reported [9]. To analyze the MIS structure
and compute the current density, we used the SRH (Shockley–Read–Hall), Lombardi
(CVT), and Quantum models, considering an integration area along the semiconductor/
oxide interface.
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Figure 8 depicts the results of the measured current density, the total current density
(JTOTAL) calculated by Equation (8), and the simulated current density (JSIM) as a function of
the electric field for MIS capacitors with Al2O3 layer (6 nm of thickness) deposited by ALD.
These results show a good match between the measured data with the proposed model
and simulations models for a wide range of electric fields before the breakdown occurs,
lower than 6 MV/cm.

Finally, Table 1 summarizes the main physical and electrical parameters extracted by
the analysis of dominant CMs in our MIS capacitors, as well as the fitting parameter used
in the proposed current density model.

Table 1. Extracted parameters from Ig-Vg measurement to AL2O3 MIS capacitors.

Parameter Symbol Value

Conductivity σ 7.7 × 10−16 S/cm
Electron mobility µ 2.4 × 10−4 cm2/V·s

Effective electron mass me 0.4
Dielectric constant εi 7

Bandgap Eg 8 eV
Breakdown Electric Filed Ebd 5 MV/cm

Trap energy, PFE φT 1.52 eV
Trap energy, TAT φt 1.36 eV
Barrier energy, SE φB 2 eV
Fitting parameters A1, A2, A3, A4 0.1, 0.01, 0.1 and 0.01
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4. Discussion

The results obtained from the analysis of the I-V measurements to Al2O3 MIS Capac-
itors using different conduction mechanisms, such as ohmic conduction, Poole–Frenkel
emission, Schottky emission, or trap-assisted tunneling, were consistent according to values
reported in different works [10,14,17,20]. The energy due to traps present in the bulk of
Al2O3 considering its conduction band (φT) was 1.52 eV, which is similar to that reported
in [13], where the authors fabricated MIS devices with the same materials and deposi-
tion techniques. The φT is strongly linked to an excess of oxygen atoms and ions, which
are generated during the deposition of ultrathin Al2O3films on n-type silicon wafer by
ALD [13], since there are OH groups at the interface with the semiconductor, and the
presence of an ultrathin SiOx layer. On the other hand, the trap energy extracted by TAT
analysis is because of electron trapping by the defect density related with oxygen vacancies
in the Al2O3 bulk, which could be amorphous or crystalline [21], generated during the
deposition process. In addition, the height of the barrier extracted by Schottky emission
analysis, φB, is 2 eV, which is similar to that reported in [22], at 250 ◦C as the maximum
deposition temperature. This parameter brings information about the defect’s density in
the metal/dielectric interface in the MIS capacitor.

5. Conclusions

The modeling of some conduction mechanisms in ultrathin Al2O3 films deposited by
ALD was presented. This modeling considered electrical measurements at room temper-
ature of MIS capacitors, which registered the presence of Poole–Frenkel emission, Trap
Assisted Tunneling, ohmic conduction, and Schottky emission. The trap energy level ap-
plying Poole–Frenkel emission and TAT mechanism was between 1.36 eV and 1.52 eV. State
density associated with oxygen vacancies in the bandgap of Al2O3 indicated their presence
in the oxide. In addition, the energy level due to barrier height extracted by Schottky
emission (2 eV) is related to the presence of defect density due to dangling bonds in the
metal/oxide interface of MIS capacitors. On the other hand, the proposed total current
density model for ultrathin Al2O3 film agreed well with numerical simulations for a range
wide of electric fields.
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