
Citation: Yu, X.; Li, Z.; Huang, X.;

Zhao, S. ADVULCODE: Generating

Adversarial Vulnerable Code against

Deep Learning-Based Vulnerability

Detectors. Electronics 2023, 12, 936.

https://doi.org/10.3390/

electronics12040936

Academic Editor: Aryya

Gangopadhyay

Received: 13 January 2023

Revised: 1 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ADVULCODE: Generating Adversarial Vulnerable Code against
Deep Learning-Based Vulnerability Detectors
Xueqi Yu, Zhen Li *, Xiang Huang and Shasha Zhao

School of Cyber Security and Computer, Hebei University, Baoding 071002, China
* Correspondence: zh_li@hust.edu.cn

Abstract: Deep learning-based vulnerability detection models have received widespread attention;
however, these models are susceptible to adversarial attack, and adversarial examples are a primary
research direction to improve the robustness of the models. There are three main categories of
adversarial example generation methods for source code tasks: changing identifier names, adding
dead code, and changing code structure. However, these methods cannot be directly applied to
vulnerability detection. Therefore, we propose the first study of adversarial attack on vulnerability
detection models. Specifically, we utilize equivalent transformations to generate candidate statements
and introduce an improved Monte Carlo tree search algorithm to guide the selection of candidate
statements to generate adversarial examples. In addition, we devise a black-box approach that
can be applied to widespread vulnerability detection models. The experimental results show that
our approach achieves attack success rates of 16.48%, 27.92%, and 65.20%, respectively, in three
vulnerability detection models with different levels of granularity. Compared with the state-of-the-art
source code attack method ALERT, our method can handle models with identifier name mapping,
and our attack success rate is 27.59% higher on average than ALERT.

Keywords: vulnerability detection; adversarial examples; code transformation; deep learning

1. Introduction

Software vulnerabilities are prevalent, as evidenced by the steady increase of vul-
nerabilities reported by the Common Vulnerabilities and Exposures (CVE) [1]. The ideal
solution is to detect and patch security problems before the software is released. Static
analysis [2–6], which detects vulnerabilities by analyzing code without software execution,
is widely used because of its high coverage of code paths and high efficiency. In parallel,
dynamic analysis [7,8], which executes the software while monitoring its behavior, is also
an effective way because of its high accuracy in discovering vulnerabilities. In this paper,
we center on static analysis-based vulnerability detectors. A recent development in static
analysis-based vulnerability detection is the integration of Deep Learning (DL) techniques.
DL-based vulnerability detectors [9–13] have attracted much attention because they do not
require human experts to define vulnerability features and can achieve low false positive
rates and low false negative rates.

Adversarial examples against DL models have been studied in many domains, such
as image processing [14–17], automatic speech recognition [18–21], natural language pro-
cessing [22–24], and source code processing [25–28]. Intuitively, there is also a significant
hazard lying under the DL models in vulnerability detection, i.e., the lack of adversarial
robustness. From the perspective of human beings, the vulnerable code often has small
differences from the non-vulnerable examples but is incorrectly classified as non-vulnerable
by DL-based vulnerability detectors. Such vulnerable code evades vulnerability detectors
and can be used to launch damaging attacks, for example, using the hidden vulnerability
as a backdoor to conduct malicious behaviors [29]. However, the adversarial examples
against DL-based vulnerability detectors have not been investigated. Existing approaches

Electronics 2023, 12, 936. https://doi.org/10.3390/electronics12040936 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040936
https://doi.org/10.3390/electronics12040936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12040936
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040936?type=check_update&version=1

Electronics 2023, 12, 936 2 of 17

to generating adversarial examples for other domains are incompetent for vulnerability
detection owing to the following three reasons.

First, unlike the continuous space of images and speeches, vulnerability detection
has a discrete space of source code, which is difficult to optimize. Moreover, small pertur-
bations of source code are often clearly perceptible; the replacement of even a character
in a statement may lead to incorrect syntax and failure to compile. Second, unlike the
loose constraints of natural languages, the source code for vulnerability detection is strictly
bounded by rigid lexical and syntactical constraints. Therefore, the adversarial perturba-
tions of source code must satisfy all these constraints; otherwise, the generated adversarial
examples would encounter compilation errors and would be directly rejected for further
analysis. Third, the approaches to generating adversarial examples in source code process-
ing [25–28], including identifier renaming [27,28,30], dead-code insertion [28], and code
structure changes [25,26], are incompetent for vulnerability detection because (i) identifier
renaming is ineffective for many vulnerability detectors, which usually maps the identifier
to symbolic names; (ii) dead-code insertion (for example, inserting a new unused variable
declaration) is ineffective for program slice-based vulnerability detectors because the in-
serted dead code is independent of vulnerable statements and would not be included in the
program slices for vulnerability detection; and (iii) code structure changes usually involve
large changes, not small perturbations.

Our aims. DL-based vulnerability detection models still have the problem of in-
sufficient robustness, and these models are susceptible to adversarial attacks. However,
the main research to improve the robustness of models is the generation of adversarial
examples. This paper aims to generate adversarial samples for DL-based vulnerability
detection models that differ in operator granularity, vector representation, and neural
network structure.

Our contributions. In this paper, we present ADVULCODE, the first framework for
the efficient generation of adversarial example code for DL-based vulnerability detection
models. The contributions of this paper include:

• We present the first automated attack framework for vulnerability detection models,
which is designed as a black-box that can work for a wide range of vulnerability
detection models;

• We devise a transformation strategy to generate candidate lists using a combination of
applying different transformation rules and repeating a single rule. This transforma-
tion strategy is effective in ensuring the quality and quantity of candidate statements;

• We improve the Monte Carlo tree search (MCTS) algorithm used in guiding the
generation of adversarial examples to enhance the efficiency of adversarial exam-
ple generation;

• We select three vulnerability detection models with different deep neural networks and
different levels of granularity, i.e., slice + token + BGRU, function + token + BLSTM,
and function + graph + GGNN, and our attack success rate reaches 16.48%, 27.92%, and
65.20%, respectively. Moreover, we further investigate the impact of transformation
rules and vulnerability lines on the generation of adversarial examples.

The remainder of this paper is organized as follows: Section 2 discusses the basic
framework of the DL-based vulnerability detectors. Section 3 discusses our selected code
transformation rules. In Section 4, we present the design of our attack; Section 5 presents
our experiments and results; Section 6 discusses limitations of the present study; Section 7
describes our future work; Section 8 reviews the related prior work; and Section 9 concludes
the present paper.

2. DL-Based Vulnerability Detection

Figure 1 illustrates the process of DL-based vulnerability detection. There are two
phases: the training phase and the detection phase. In the training phase, the input is the
source code of training programs for training a DL model, and the output is the trained
DL model. In the detection phase, the input is the source code of target programs for

Electronics 2023, 12, 936 3 of 17

vulnerability detection, and the output is the classification results of code examples in
target programs, i.e., the class and the probability that the DL model predicts the code
example as vulnerable. The training phase involves Steps 1, 2, and 3, and the detection
phase involves Steps 1, 2, and 4.

• Step 1: Generating code examples. We decompose training programs and target
programs into code examples. Each code example can be a function [11,13,31] or
a program slice [9,10,32], where a program slice is a number of statements that are
semantically related to each other in terms of data dependency and control dependency.
The corresponding DL-based vulnerability detectors are respectively called function-
level and slice-level vulnerability detectors;

• Step 2: Transforming code examples into vectors. In order to input the code examples
into the DL model, each code example from training and target programs needs to be
represented as a sequence of tokens [9,10,32] or Abstract Syntax Trees (ASTs) [11,33,34],
or graphs [13], and then encoded into vectors. For training programs, the vector
corresponding to each code example is labeled as “1” (i.e., vulnerable) or “0” (i.e.,
non-vulnerable) according to whether it is vulnerable or not;

• Step 3: Training a DL model. We leverage the vectors corresponding to code fragments
and their labels from training programs to learn a deep neural network, e.g., Bidi-
rectional Gated Recurrent Unit (BGRU) [10], Bidirectional Long Short-Term Memory
(BLSTM) [9,33], and Gated Graph Neural Networks (GGNN) [13];

• Step 4: Applying the trained deep learning model to detect vulnerabilities. We apply
the trained DL model in the detection phase to detect vulnerabilities in target programs,
and output the classification results of code examples in target programs.

Training
programs

Step 1:
Generating

code
examples

Step 2:
Transforming

code examples
into vectors

Step 3: Training a
deep learning model

Input

Step 4: Applying the
trained deep

learning model to
detect vulnerabilities

Target
programs

Step 1:
Generating

code
examples

Step 2:
Transforming

code examples
into vectors Classification

results of code
examples

Output

Training phase

Detection phase

Figure 1. Process of DL-based vulnerability detection.

3. Code Transformation Rules

In this section, we introduce three types of code-equivalent transformations, containing
13 transformation rules. Our transformations focus on syntactic and variable elements.
The purpose of the code transformations is to add perturbations to the code statements to
generate a list of candidate adversarial statements. These candidate adversarial statements
in different code statements can be combined to generate the final adversarial examples.

In the domains of natural language processing and images, the feature space is continu-
ous, while for code, the feature space is discrete. Therefore, there are different requirements
in the source code domain. Specifically, we consider the following three factors when choos-
ing code transformations. The first factor is preserving semantics. Semantics-preserving
transformations ensure that the functionality of the code is unchanged before and after the
transformation. We consider code transformations to be meaningful only if the function-
ality of the code is unchanged. The second factor is syntactic correctness. The perturbed
code should be syntactically correct. Otherwise, the program will encounter compilation
errors that are easily detectable. The third factor is preserving vulnerability. Unlike other
source code processing tasks, the preservation of vulnerabilities in vulnerability detection is
necessary. Vulnerable programs should still preserve vulnerabilities after code perturbation.
Otherwise, the code example that makes the vulnerability detection model fail is not an
adversarial example because the true vulnerability label has changed.

Electronics 2023, 12, 936 4 of 17

In short, we select code transformations based on these three factors. We have classified
these 13 different transformations into three types, which are briefly introduced below.

3.1. Operator Transformations

As shown in Table 1, operator transformations change operators in code, such as rela-
tional and subscript operators, into forms that are semantically identical. The replaceable
token (Rule 1) is only available in C++ and contains a total of 11 pairs of replaceable tokens.
The relational operator transformation (Rule 2) changes the expression of relations, but not
the logical result; therefore, this rule allows more flexibility in changing specific tokens. We
also add a perturbation strength parameter to allow multiple negation transformations for
relational operator transformations.

Table 1. Operator transformation rules

ID Rule Type Rule Description

1 Replaceable token Replace with replaceable token identifier or
operator only C++, e.g., &&→ and.

2 Relational operator transformation
Change relational operators, swapping

variables as needed, e.g.,
a > b→ b < a or !(a <= b).

3 Array usage transformation Transforming the way to reference array
elements, e.g., a[1] = 1→ ∗(a + 1) = 1.

4 Equivalent calculation Change the arithmetic operator, e.g.,
a + b→ a− (−b).

5 Increment and decrement
operator transformation

Transforming increment and decrement
operator in logically independent

statements, e.g.,
index = index + 1,++ index or index+ = 1.

6 Pointer-reference transformation Transforming the reference way of data, e.g.,
a.b→ &a− > b.

3.2. Data Transformations

Data transformations mainly change the data type or data representation. As shown
in Table 2, the static array definition (Rule 7) can be replaced by the dynamic malloc
method. Using typeof expression, (Rule 8) can replace the type name of a variable “a” with
“typeof(b)”, assuming that “b” and “a” are the same type and that the variable “b” appears
before “a”. We can also split the value of an integer literal into two numbers multiplied
together or convert it into other numerical bases (Rule 10).

Table 2. Data transformation rules

ID Rule Type Rule Description

7 Array definition Transforming the way an array is defined, e.g.,
a = [b]→ a = malloc(b ∗ size(a)).

8 Using typeof expression Use typeof to dynamically generate data types, e.g.,
int a = b→ typeo f (b) a = b.

9 Casting transformation Cast variables into certain data types, e.g.,
int a = b→ int a = (int) b.

10 Integer transformation Transforming an integer literal to expression or hex, e.g.,
int a = 8→ int a = 4 ∗ 2.

11 Character representation Transforming character literals to ASCII code, e.g., ′a′ → 97.

Electronics 2023, 12, 936 5 of 17

3.3. Bogus Code Transformations

Besides the operator transformations and data transformations described above, bogus
code transformations within expressions are also considered. As shown in Table 3, unlike
the traditional addition of dead code, bogus code works inside expressions and provides a
distraction while not affecting the normal function of the code. For example, adding useless
calculation expression (Rule 13) introduces some temporary variables that finally evaluate
to zero.

Table 3. Bogus code transformation rules

ID Rule Type Rule Description

12 Adding useless multiplier

Multiply an expression by a random number and
then dividing the result by that number, e.g.,

a ∗ d→ a ∗ d ∗ num/num; where num is a
random number.

13 Adding useless calculation expression
Add useless expression to multiplication and

subtraction operations, e.g., a + b→ a + b + expr;
where expr is an expression whose result is 0.

4. Attack Design
4.1. Problem Formulation

Given a DL-based vulnerability detector M and a target program pi, the output of M
is a set of code examples X = {xi,1, . . . , xi,n} generated from pi with the predicted class
M(xi,j) for each xi,j, where 1 ≤ j ≤ n and M(xi,j) ∈ {0, 1} (“0” means non-vulnerable and
“1” means vulnerable). The attacker aims to generate an adversarial program p′i from pi,
which contains some adversarial code example x′i,j (generated from p′i) whose ground truth
label is “1” (i.e., vulnerable), but whose M(x′i,j) = 0 (i.e., non-vulnerable).

Adversarial attacks can be divided into two categories: (i) white-box attack allows full
access to the subject model, including outputs, gradients and hyper-parameters; (ii) black-
box attack only allows the attackers to have access to model outputs. Because the black-box
attack does not require internal knowledge of the DL-based vulnerability detectors, it is
applicable to any learning algorithm and suitable for evading a wide range of vulnerability
detectors. In this paper, we focus on the black-box setting.

4.2. ADVULCODE

Figure 2 illustrates the structure of ADVULCODE. The input to ADVULCODE is a
vulnerable program pi and a diff file of the vulnerable code. The output is the adversarial
examples of program pi, whose code examples are all incorrectly predicted by the DL-based
vulnerability detector M.

ADVULCODE utilises code transformations to generate candidate perturbation state-
ments. Then, we filter out statements that are from non-vulnerability-related lines, and
finally, we use the MCTS algorithm to guide the adversarial example generation. We will
elaborate on the following four steps in subsequent subsections:

• Step I: Extracting all code statements and locations from the target program pi that
match the conditions of the transformation rules;

• Step II: Generating replaceable candidate statements lists for target code statements;
• Step III: Extracting the lines of code associated with the vulnerable variables in the

data flow and control flow. Filter out non-vulnerability-related lines;
• Step IV: Generating adversarial examples using an improved MCTS algorithm.

Figure 3 uses a simple example of vulnerable code to describe the process of the whole
attack. Note that the real vulnerable code is far more complex than this.

Electronics 2023, 12, 936 6 of 17

Step I:
Extracting perturbation
statements that match

the transformation
rules

Step II:
Generating candidate

statements for
perturbation statements

Step III:
Extracting vulnerability-

related lines

Step IV:
Generating

adversarial examples

Input

A target
program pi

Adversarial
examples

of pi

Code example

DL-based vulnerability
detector

Class Probability

xi,1 1 0.85

xi,2 0 0.27

...

xi,j 1 0.79

...

OutputADVULCODE

Diff file of
 program pi

Figure 2. General overview of ADVULCODE, where the inputs are source program pi and diff files,
and the output is the adversarial examples of the program pi.

Code example (a) Extracting perturbation
statements that match the

transformation rules

(c) Extracting vulnerability-
related lines

1 void println(const char * ln)
2 {
3 if(ln != NULL)
4 printf("%s\n", ln);
5 }
6
7 void func()
8 {
9 char *data;
10 char dataBuffer[100];
11 char source[100];
12 ...
13 memset(dataBuffer, 'A', 99);
14 dataBuffer[99] = '\0';
15 ...
16 while(1)
17 {
18 data = dataBuffer - 8;
19 break;
20 }
21 ...
22 memset(source, 'C', 99);
23 source[99] = '\0';
24 memmove(data, source,
 100*sizeof(char));
25 data[99] = '\0';
26 println(data);
27 }

(b) Generating candidate
statements for perturbation

statements

(d) Generating adversarial
examples

1 void println(const char * ln)
2 {
3 if(ln != NULL)
4 printf("%s\n", ln);
5 }
6
7 void func()
8 {
9 char *data;
10 char dataBuffer[100];
11 char source[100];
12 ...
13 memset(dataBuffer, 'A', 99);
14 dataBuffer[99] = '\0';
15 ...
16 while(1)
17 {
18 data = dataBuffer - 8;
19 break;
20 }
21 ...
22 memset(source, 'C', 99);
23 source[99] = '\0';
24 memmove(data, source,
 100*sizeof(char));
25 data[99] = '\0';
26 println(data);
27 }

3 if(ln != NULL)
[if(!(ln==NULL)),if(!(!(ln!-
NULL))),if(ln not_eq NULL)]

10 char dataBuffer[100];
[char dataBuffer[2*50];,char
dataBuffer=malloc(100*size(cha
r));,char dataBuffer[0x64];,char
dataBuffer[0o144];]

11 char source[100];
[char source[0x64];,char
source[0o144];,char
source=malloc(100*size(char));]
13 ...
14 dataBuffer[99] = '\0';
[*(dataBuffer+99)='\0';,dataBuff
er[3*33]='\0';,*(dataBuffer-(-
1*99))='\0';]
16 ...
18 data = dataBuffer - 8;
[data=dataBuffer–
4*2;,data=dataBuffer+(-8);,...]
22 ...
23 ...
24 ...
25 ...

1 void println(const char * ln)

3 if(ln != NULL)
4 printf("%s\n", ln);
7 void func()
9 char *data;
10 char dataBuffer[100];
11 char source[100];
13 memset(dataBuffer, 'A',
99);
14 dataBuffer[99] = '\0';
16 while(1)
18 data = dataBuffer - 8;
22 memset(source, 'C', 99);
23 source[99] = '\0';
24 memmove(data, source,
 100*sizeof(char));
25 data[99] = '\0';
26 println(data);

1 void println(const char * ln)
2 {
3 if(!(ln==NULL))
4 printf("%s\n", ln);
5 }
6
7 void func()
8 {
9 char *data;
10 dataBuffer=
malloc(100*size(char));
11 char source[0x64];
12 ...
13 memset(dataBuffer, 'A', 99);
14 *(dataBuffer+99)='\0';
15 ...
16 while(1)
17 {
18 data=dataBuffer–4*2;
19 break;
20 }
21 ...
22 memset(source, 'C', 3*33);
23 *(Source+1*99) = '\0';
24 memmove(data, source,
 100*sizeof(char));
25 *(data-(3*33)) = '\0';
26 println(data);
27 }

Figure 3. An example illustrating the steps of attack process.

4.2.1. Step I: Extracting Perturbation Statements that Match the Transformation Rules

To extract code statements containing transformation rules, we use the code parsing
tool srcML to implement our work. We use srcML for two reasons. Firstly, srcML does
not require the code that it parses to be complete (i.e., with all dependencies and headers
available), which is friendly to vulnerability datasets because such datasets are usually
composed of vulnerability files or vulnerability functions. Secondly, the results of srcML
parsing are stored in XML format, which makes it easy to view and change the structure of
the code’s AST tree and allows for more flexible code transformations.

Algorithm 1 describes the process of extracting statements that match transformation
rules. For each program pi, we use srcML to parse it into an AST tree past (line 2). We extract
the nodes that match the transformation rules by iterating through the AST tree (line 4). For
example, to extract statements for which the pointer-reference transformation is applicable,
we locate all “<operator>” nodes in the AST tree with a value of “->” or “.”, extract
the statement nodes, and assign them to the variable stmts. In this way, we obtain all
statements that match the transformation rules. Finally, we integrate the statement location
sloc, the type of the transformation rule ttype, and the node location of the transformation
rule star for these statements (lines 6–11).

Figure 3a illustrates the process of extracting target perturbation statements. The red
boxes are points that match the rule features, and the blue boxes are the statements that are
the targets of perturbation.

Electronics 2023, 12, 936 7 of 17

Algorithm 1 Extracting perturbation statements that match the transformation rules

Input: pi (vulnerable program); T(the set of code transformation rules); ti_k(rule transfor-
mation flags for corresponding rules ti in rule T);

Output: The set R of perturbed code statements and positions in program pi that match
the code transformation rules T = {t1, . . . , ti}.

1: R← ∅; {A set containing the target perturbation code and locations}
2: past ← srcml(pi); {the AST tree parsed from pi}
3: for each rule ti ∈ T do
4: stmts← Get all statements from past that match rule ti;
5: for each statement si ∈ stmts do
6: if ti_k ∈ si then
7: ttype ← Get the rule type of the ti_k transformation;
8: sloc ← Get the location of statement si;
9: star ← Get the target node of statement si;

10: R← R ∪ {{si + sloc : [ttype, star]}};
11: end if
12: end for
13: end for
14: return R;

4.2.2. Step II: Generating Candidate Statements for Perturbation Statements

In this step, after determining the target statements and locations of the perturbation,
we need to generate candidate statements for the target statements. We select 13 transfor-
mation rules, and for each statement there can be multiple transformation rules applicable.
To ensure the quality of the generated adversarial examples, we consider controlling the
generation of candidate statements in terms of both breadth and depth. We set two pa-
rameters k and m to control the depth and breadth, respectively. Briefly, k means that our
transformations will loop k times, and m means that, after we have applied the rule m times,
we save the current transformed statement once.

As shown in Algorithm 2, for single-rule transformations, we apply all transformation
rules for the target code statement individually (lines 2–9). For multi-rule combination
transformations (lines 10–31), we control the generation of perturbation statements by
setting the parameters k and m. At each iteration of the transformations, the perturba-
tion target node (line 22) is extracted again based on the transformed statements, and
the statements are saved once the rule has been applied m times (line 19), and then the
transformation is continued for all the perturbed transformation nodes. The cycle repeats
until the whole transformation loop has been iterated k times. The final transformation
results are a set of candidate statements (line 26).

Figure 3b illustrates the process of generating candidate statements for the target
statements. The green boxes indicate the target statements, followed by a list containing
candidate statements.

Electronics 2023, 12, 936 8 of 17

Algorithm 2 Generating candidate statements for perturbation statements

Input: S (statements with transformation type, perturbation position, perturbation node);
k (number of iterations of code transformations); m (number of rule tokens for code
transformations); n (number of candidate statements)

Output: The set of candidate statements T for the statement set S = {S1, . . . , Si}
1: T ← ∅;
2: for each target code statement si ∈ S do
3: Ri ← The set of all target transformation rules in si;
4: for ri,j ∈ Ri do
5: candidate← Get the statement after si has applied the rule ri,j;
6: sloc ← Get the location of statement si;
7: T ← T ∪

{
{si + sloc : [candidate]}

}
;

8: end for
9: end for

10: for each target code statement si ∈ S do
11: while each candidate statement n do
12: Ri ← The set of all token transformation rules in si;
13: stmp ← si;
14: fm ← 0;
15: while k > 0 do
16: for ri,j ∈ Ri do
17: if m− fm == 0 then
18: fm ← 0;
19: candidate← stmp ∪ candidate ;
20: end if
21: stmp ← Get the new stmp after stmp has applied the rule ri,j;
22: Ri ← The set of all token transformation rules in stmp;
23: end for
24: k← k− 1;
25: end while
26: candidate← stmp ;
27: sloc ← GetLoc(si);
28: T ← T ∪

{
{si + sloc : [candidate]}

}
;

29: n← n− 1;
30: end while
31: end for
32: return T;

4.2.3. Step III: Extracting Vulnerability-Related Lines

The focus of DL-based vulnerability detection models is on vulnerabilities. To locate
the lines of code associated with the vulnerability, we choose the same slicing extraction
method as in the SySeVR [10] article to extract the lines associated with the vulnerability. In
summary, this is achieved by using the modified lines in the diff file. The modified lines in
the diff file of the code represent the conditions under which the vulnerability is triggered or
the cause of the vulnerability. The modified lines in the diff file are used to locate variables
associated with the vulnerability, which we call vulnerability variables. After obtaining the
vulnerable lines, we use the Joern code parsing tool to parse the vulnerability code pi to
obtain the data flow and control flow of the vulnerability lines, and to locate the lines of
code that have data dependency or control dependency on the vulnerability lines. These
lines of code are called vulnerability-related lines.

Figure 3c shows the extracted vulnerability-related lines. Note that the code used
here is relatively simple, so the vulnerability-related lines here already include all of the
candidate statement lines, but the real situation will be different.

Electronics 2023, 12, 936 9 of 17

4.2.4. Step IV: Generating Adversarial Examples

In this subsection, we utilize the improved MCTS algorithm to guide the generation of
adversarial examples. For each program pi, we have a set of target statements Si ∈ pi, in
which there are n target statements si,j ∈ Si, and each target statement si,j has a candidate
statement set C. We have to select the right combination of candidate statements among the
many target statements si,j to make the transformed code examples capable of misleading
the vulnerability detection model M, i.e., to generate adversarial examples. We can consider
the generation of adversarial examples as a game strategy, and the winning condition is
successfully making the vulnerability detection model misclassify.

In a search tree, the nodes represent perturbation target statements, and the edges
represent the transformations to be performed on perturbation target statements. If the vul-
nerability detection model predicts incorrectly at a node, then we have found an adversarial
example, and the path from the root node to that node represents the full transformations
of that example.

As shown in Algorithm 3, first a node object is initialized for each code example as
the root of the search tree (line 2). The MCTS search algorithm is primarily divided into
four steps (lines 5–10), which are selection, simulation, expansion, and backpropagation.
The search is ended by a successful attack (i.e., a model prediction error) or by reaching the
maximum number of iterations of the search. After a round of selection and expansion, the
best child of the current node is selected as the subsequent root node to continue the search
for the best child (line 11). If the attack is successful, the code example of the current node
and the path travelled (line 14) are saved. Figure 3d shows the final generated adversarial
example, with the red boxes indicating the perturbed statements.

Algorithm 3 Generating adversarial examples

Input: M (DL-based vulnerability detector); pi (vulnerable program); Si,j (the set of state-
ments for perturbation in pi); xi,j (vulnerable code example, i.e., M(xi,j) = 1);

Output: An example of adversarial code for an vulnerable program pi
1: T ← ∅;
2: R← init(xi,j, Si,j);{Initialize the root node of the search tree}
3: r ← R;
4: while no success_attack(r) and no stop_iteration(r) do
5: for i← 1 . . . 2n do
6: ν← selection(r, i);
7: µ← simulation(ν);
8: expansion(ν, µ, m);
9: backpropagation(µ);

10: end for
11: r ← SelecttheBestChildNode(r);
12: end while
13: if success_attack(r) then
14: Pathr ← r;
15: exam← r;
16: T ←

{
xi,j, exam, Pathr, Success

}
;

17: else
18: T ←

{
xi,j,∅,∅, Failed

}
;

19: end if
20: return T;

Different from the regular MCTS algorithm, we set two parameters here to limit the
depth of the algorithm’s simulated search and the number of cycles of MCTS. The number
of cycles of MCTS is controlled by the length of the candidate statement list n (line 5), which
we fix at twice the length of the list. For the depth of the simulation search, we control it by
the parameter m (line 8). During the simulation phase, we select three simulation paths at

Electronics 2023, 12, 936 10 of 17

the same time. As shown in Figure 4, we select the one with the highest score as the next
node, which reduces the error caused by too much randomness.

cur

select

simulation

s1 s2 s3

maxpath

Figure 4. The improved MCTS simulation process.

5. Experiments and Results
5.1. Research Questions

We gear our experiments towards answering the following three Research Ques-
tions (RQs):

• RQ1: Is ADVULCODE more effective than existing code adversarial example genera-
tion methods?

• RQ2: How do the vulnerability-related lines impact adversarial example generation?
• RQ3: How does the selection of transformation rules impact adversarial example

generation?

5.2. Datasets and Evaluation Metrics

For the vulnerability dataset, we need to have a diff file to locate the vulnerability-
related lines, and we directly select the SARD and NVD datasets from SySeVR [10].

To evaluate the effectiveness of ADVULCODE in generating source code adversarial
examples, we use the widely used comprehensive evaluation metric F-score (F1) and the
attack success rate metric (ASR). We define TP as predicting positive samples as positive
samples, FN as predicting positive samples as negative samples, FP as predicting negative
samples as positive samples, and TN as predicting negative samples as negative samples.
F1 is the harmonic mean of precision and recall, defined formally as:

F1 =
2 ∗ precision ∗ recall

precision + recall
, (1)

where precision is calculated by TP
TP+FP , and recall is calculated by TP

TP+FN . ASR is the
number of adversarial examples divided by the total number of examples.

5.3. Implementation

We select three DL-based vulnerability detection models with different combinations
of granularity and network: the slice + token + BGRU model SySeVR [10], the function
+ token + BLSTM model Benchmark [12], and the function + graph + GGNN model
Devign [13]. The slice-level model converts each vulnerable code program into many code
slices, marks the code slices with labels based on the vulnerable lines, and uses the marked
slices as model input. The function-level model splits the vulnerable code program into
functions, marks each function in its entirety and uses the marked functions as model input.

Electronics 2023, 12, 936 11 of 17

We conduct experiments on an Intel (R) Core (TM) i9-9820X machine with a frequency of
3.30 GHz and GeForce RTX 2080.

5.4. Experiments for Answering RQ1

To evaluate the effectiveness of our method, we choose the ALERT [30] method
as a baseline. We choose ALERT for the following reasons. Firstly, there are currently
no adversarial example generation methods for vulnerability detection models, and, in
other tasks of source code processing, many attack methods do not work for vulnerability
detection. For example, attacks against authorship attribution models require the dataset
to be compilable, whereas vulnerability datasets often comprise vulnerable functions or
vulnerability source code that lacks dependencies. Secondly, ALERT is currently the state-of-
the-art adversarial example generation method for pre-trained models of code, and ALERT
is designed to attack two pre-trained models of code, CodeBERT, and GraphCodeBERT,
both of which can be used for vulnerability detection. Therefore, we choose ALERT for
comparison with our method.

The experimental results are shown in Table 4, where we observe that our method is
better than ALERT. The “-” in the table indicates how much the F1 score has decreased
compared to the model before the attack. We find that the F1 scores of the three models
decreased by 22.91%, 12.05%, and 31.14%, respectively, after the attack with our method. In
addition, we can observe that, for both the slice + token and function + graph models, the
success rate of the ALERT attack is zero. This is because these two vulnerability detection
models map all identifier names in the code pre-processing phase. The identifier names are
standardized into the same form, such as func_0, func_1, or variable_0, causing the ALERT
method ASR to be zero. For the function + token model, however, our method has a 1.10%
improvement in attack success rate compared to ALERT. Overall, the ASR of our method
is 27.59% higher than ALERT on average.

Insight 1. Our approach is able to handle models with identifier name mapping and achieve ASR
of 16.48% and 65.20%, respectively. Compared to ALERT, our method improves the ASR by an
average of 27.59%. Overall, our method is better than ALERT.

Table 4. Comparing with the existing attack method on the NVD and SARD datasets (unit: %)

Model
AdVulCode ALERT

F1 ASR F1 ASR

Slice + token + BGRU [10] 60.73 (−22.91) 16.48 83.64 (−0) 0
Function + token + BLSTM [12] 84.30 (−12.05) 27.92 83.94 (−12.41) 26.82
Function + graph + GGNN[13] 21.66 (−31.14) 65.20 52.80 (−0) 0

5.5. Experiments for Answering RQ2

To further determine the impact of vulnerability-related lines on the model predictions,
we consider two generation schemes in the adversarial examples of the vulnerability
detection model: transforming only vulnerability-related lines and transforming only non-
vulnerability-related lines. We discuss the F1 scores and ASR of the model for these two
situations to analyze the impact of the vulnerability-related lines on the generation of
adversarial examples.

Table 5 illustrates our experimental results, where Vul in the table indicates that
only vulnerability-related lines are considered for the transformation attack, and Non-vul
indicates that only non-vulnerability-related lines are considered for the transformation
attack. We observe that, in these three vulnerability detection models, the F1 scores for
considering only the vulnerability-related lines are 60.73%, 84.30%, and 21.66%, respectively,
which are lower than those for considering only the non-vulnerability-related lines. The
ASR of the attacks considering only the vulnerability-related lines is much higher than

Electronics 2023, 12, 936 12 of 17

that of the attacks considering only the non-vulnerability-related lines, which indicates the
greater influence of the vulnerable-related lines on the vulnerability detection models.

Insight 2. The ASR of the attacks considering only the vulnerability-related lines is significantly
higher than that of the non-vulnerability-related lines, while the F1 scores are 18.47%, 9.63%, and
20.94% lower than those of the non-vulnerability-related lines. Thus, the vulnerability-related lines
play a major role in the generation of adversarial examples.

Table 5. Comparing the impact of vulnerability-related and non-vulnerability-related lines on
adversarial example generation (unit: %)

Model Attack Method F1 ASR

Slice + token + BGRU
Vul 60.73 16.48

Non-vul 79.20 5.17

Function + token + BLSTM
Vul 84.30 27.92

Non-vul 93.93 8.49

Function + graph + GGNN
Vul 21.66 65.20

Non-vul 42.60 28.34

5.6. Experiments for Answering RQ3

To evaluate the performance of the attacks after removing the corresponding trans-
formation rules, we count all the rules of adversarial example transformations and select
the three most frequently used transformations for elimination experiments. As shown in
Figure 5, we find that integer transformation (Rule 10) accounts for the most, followed by
pointer-reference transformation (Rule 6) and arithmetic relational operator transformation
(Rule 2). We proceed to perform elimination experiments on these three rules to verify their
impact on adversarial example generation.

1.23%

12.93%

2.63%
1.16%0.59%

15.22%

6.57%

2.90%3.60%

35.97%

0.48%

8.62%8.09%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5 6 7 8 9 10 11 12 13

rule type id

Rule type statistics

Figure 5. Statistics on the percentage of adversarial example transformation rules.

The results of our experiments are described in Table 6. We observe that, of the three
transformation types, integer transformation (Rule 10) accounts for the largest proportion
of adversarial examples generated, and also has the largest impact on adversarial example
generation. Compared to pointer–reference transformation (Rule 6) and relational operator
transformation (Rule 2), the attack success rate for integer transformation is reduced by
9.64%, 16.71%, and 31.58% on the three vulnerability detection models, respectively. We also
observe that, in the Function + token + BLSTM model, the F1 score after removing these
three rules is 90.37%, 91.78%, and 92.88%, respectively, indicating that the difference in the
influence of these three rules on this model is not very large. In Function+ graph+ GGNN,
the F1 score after removing rule 2 is lower than that of rule 6 and rule 10 by 7.38% and

Electronics 2023, 12, 936 13 of 17

8.82%, respectively. It also indicates that rule 2 is not a major disturbing factor in this model
compared with rule 6 and rule 10.

Insight 3. The transformation rules have different impacts on different models. In short, the
relational operator transformation rule has relatively little impact on the adversarial example
generation of the Function + graph + GGNN model. Integer transformation is the main factor
affecting adversarial example generation.

Table 6. Comparing the performance of attacks after removing the corresponding transformation
rule (unit: %).

Transform Type
Slice + Token + BGRU Function + Token + BLSTM Function + Graph + GGNN

F1 ASR F1 ASR F1 ASR

Relational operator transformation (Rule 2) 66.79 12.73 90.37 17.19 29.94 49.02
Pointer-reference transformation (Rule 6) 69.07 10.51 91.78 12.14 37.32 39.03

Integer transformation (Rule 10) 77.79 6.84 92.88 11.21 38.16 33.62

6. Limitations

Although our experimental results demonstrate the effectiveness of our method, there
are still several limitations in generating adversarial examples. Firstly, the transformation
rules in our method are limited by the programming language. We only consider the C and
C++ languages; moreover, not every transformation can be applied to all programming
languages. Secondly, for the selection of datasets, we selected datasets from SySeVR, where
there are relatively few real datasets, and artificial datasets with too much similarity may
also reduce the success rate of our attacks. Third, in the graph-based vulnerability detection
model, our attack method is time-consuming, which can be attributed to the fact that our
method is based on work before data pre-processing. Finally, for preserving vulnerabilities
before and after perturbation, we assume that the two programs are semantically equivalent
and their vulnerabilities are preserved. While this is reasonable in our setting, there is no
guarantee that vulnerabilities will be strictly preserved in all cases. For example, when we
transform array definitions, this can also lead to code errors in some cases, such as when
memory is exhausted. We acknowledge this limitation, but it does not affect the general
validity of our results.

7. Future Work

To the best of our knowledge, the present study is the first to automatically generate
adversarial examples by small code transformations for DL-based vulnerability detectors.
As can be seen from our limitations, there are ways to make our approach more complete.
A follow-up study may be needed in the future, focusing on making the whole frame-
work more compatible with DL-based vulnerability detection models. Firstly, extended
programming language support is necessary, and we will consider extending its trans-
formation rules to Java or python languages. Secondly, our graph-based vulnerability
detection model is a major drawback in terms of time consumption since our approach
performs the transformation before the code is pre-processed. Thus, with the graph-based
vulnerability detection model, we regenerate the graph for each transformation, which can
be time-consuming. We plan to optimize the graph-based vulnerability detection model
attack by performing the transformation of nodes directly on the graph nodes. Finally, in
terms of datasets, we used relatively few real datasets in the existing dataset, and we will
also consider expanding the real dataset.

8. Related Work
8.1. Prior Studies on Vulnerability Detection for Source Code

Source code vulnerability detection includes code similarity-based [2,3,35–37], rule-
based [4,5,38,39], and machine learning-based [6,40–42] methods. The similarity-based

Electronics 2023, 12, 936 14 of 17

method detects vulnerabilities by comparing the similarity of the target code with the
vulnerable code. For example, Woo et al. [36] could detect vulnerabilities caused by
cloned vulnerable code, but this method could not address vulnerabilities that rely on
the C preprocessor. The rule-based approach detects vulnerabilities by matching defined
vulnerability patterns. For example, the Flawfind [38] tool used this method to detect
vulnerabilities but required experts to manually extract vulnerability features. Machine
learning-based methods can be divided into traditional machine learning-based and DL-
based. Traditional machine learning-based methods also rely on experts to manually
extract vulnerability features. Manual feature extraction is not only time-consuming but
is also not easy to fully extract features [9]. DL-based vulnerability detection does not
require manually defining vulnerability features, and their features can be divided into the
following three categories.

In terms of operational granularity, they can be divided into function [12,13,31] or
program slices [9,10,32,43,44]. Lin et al. [13] transformed the entire function into token
sequences as model input. Wu et al. [44] processed the source code into fine-grained
slices to be embedded in the neural network. In terms of vector representation, it can be
used as a vector representation using sequence-based [9,10,32], AST-based [11,33,34], or
graph-based [13,45,46] methods. Li et al. [10] transformed source code into sequence form
as input, and Zou et al. [13] represented source code as a vector representation of a graph as
model input. In terms of neural network structure, there are Bidirectional Gated Recurrent
Unit (BGRU) [10], Bidirectional Long Short-Term Memory (BLSTM) [9,33], or Gated Graph
Neural Networks (GGNN) [13]), etc. As shown in Table 7, we summarize the target models
at which we aimed.

Although DL-based vulnerability detectors have attracted much attention, generating
adversarial vulnerable code examples has not been studied until now. In this paper, we
design an attack framework that can work on these different vulnerability detection models
with different characteristics.

Table 7. Summary of target DL-based vulnerability detection methods.

Model Granularity Vector Representation Network Structure

SySeVR [10] Slice Token BGRU
VulDeePecker [32] Slice Token BLSTM
Benchmark [12] Function Token BLSTM
Devign [13] Function Graph GGNN

8.2. Prior Studies on Generating Adversarial Examples

Adversarial example research has shown that perturbing the input can result in
misclassification. Currently, there are studies of adversarial examples in image process-
ing [14,15], automatic speech recognition [18–20], natural language processing [22–24], and
source code processing [25–28]. However, these adversarial example studies are different
from the field of source code processing. Because source code is discrete, it is also limited by
strict lexical and syntactic constraints. The study of adversarial examples for vulnerability
detection tasks is more challenging. This is because DL-based vulnerability detection is
limited in terms of operational granularity and vector representation to add perturbations
to the source code.

There is work in the area of source code processing on adversarial sample research
for tasks such as code generation, authorship attribution, etc. Zhang et al. [27] treated the
selection counter perturbation as a sampling problem and generated adversarial examples
by sampling the identifiers. Yang et al. [30] and Yefet et al. [28] used identifier renaming
and dead code insertion as code perturbations. Because these methods are based on iden-
tifier perturbations, it is difficult for these attack methods to find perturbation points on
the statement structure. Quiring et al. [26] generated adversarial examples by changing
the entire code style, and this perturbation can lead to an inability to locate the vulnerable
lines of the vulnerable code. The ALERT studied by Yang et al. [30] is a state-of-the-art

Electronics 2023, 12, 936 15 of 17

study of adversarial examples for pre-processing tasks, but it has attacked downstream
tasks of vulnerability detection, so we use ALERT as a baseline for comparison. As shown
in Table 8, we compare our approach with other task methods in terms of identifiers, state-
ment structure, and the operational granularity of the supported DL-based vulnerability
detection models.

Our approach to adversarial example generation differs from the above methods in
two ways. First, we consider the use of equivalent transformation rules that do not change
the semantics of the code, which are small perturbation changes. Second, we consider the
presence of vulnerable lines, which also allows us to reduce the overall level of perturbation
of the source code while targeting the vulnerable line transformations. Finally, we also
improve the MCTS algorithm to guide the generation of adversarial examples.

Table 8. Comparison of adversarial example generation methods.

Method Identifiers Statement Structure Granularity 1

Zhang et al. [27] ! # Function, Slice
Yang et al. [30] ! # Function, Slice

Quiring et al. [26] ! ! Function
Yefet et al. [28] ! # Function

Our approach # ! Function, Slice
1 This is operational granularity of DL-based vulnerability detection models.

9. Conclusions

We present the first DL-based adversarial example generation method for vulnerability
detection models, adopting an equivalent transformation approach to attack vulnerability
detection models in a black-box setting. The method is divided into four main steps:
extracting perturbation statements, generating candidate statements, extracting vulnerable-
related lines, and replacing candidate statements to generate adversarial examples. For
the generation of candidate statements, a strategy is devised to control the degree of
perturbation of the candidate statements and the number of generated candidate statements.
For the selection of perturbation candidate statements, we use the improved MCTS search
algorithm to guide the generation of adversarial examples. The entire attack is treated as a
game strategy, with the most effective perturbation added to the target code example. As
a result, our attack method can effectively generate adversarial examples. Experimental
results demonstrate the effectiveness of the attack method. In addition, the limitations we
discuss in Section 6 provide open questions for future research.

Author Contributions: Conceptualization, X.Y. and Z.L.; methodology, X.Y. and Z.L.; validation, X.Y.;
formal analysis, X.Y. and Z.L.; investigation, X.Y. and Z.L.; resources, X.Y. and X.H.; data curation,
X.Y.; writing—original draft preparation, X.Y.; writing—review and editing, X.Y., Z.L., X.H. and S.Z.;
supervision, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Hebei Province under
Grant No. F2020201016. Any opinions, findings, or conclusions expressed in this work are those of
the authors and do not reflect the views of the funding agencies in any sense.

Data Availability Statement: The SARD and NVD datasets used to support the findings were
derived from the SySeVR article available at https://github.com/SySeVR/SySeVR/tree/master/
Program%20data (accessed on 7 March 2022).

Acknowledgments: We thank the reviewers for their constructive comments to help us improve the
paper.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/SySeVR/SySeVR/tree/master/Program%20data
https://github.com/SySeVR/SySeVR/tree/master/Program%20data

Electronics 2023, 12, 936 16 of 17

References
1. Common Vulnerabilities and Exposures. Available online: http://cve.mitre.org/ (accessed on 21 July 2021).
2. Kim, S.; Woo, S.; Lee, H.; Oh, H. VUDDY: A Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the 2017

IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA, 22–24 May 2017; pp. 595–614.
3. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Qi, H.; Hu, J. VulPecker: An Automated Vulnerability Detection System Based on Code Similarity

Analysis. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC), Los Angeles, CA, USA,
5–9 December 2016; pp. 201–213.

4. Checkmarx. Available online: https://www.checkmarx.com/ (accessed on 14 November 2020).
5. HP Fortify. Available online: https://www.ndm.net/sast/hp-fortify (accessed on 19 November 2020).
6. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic Inference of Search Patterns for Taint-style Vulnerabilities. In

Proceedings of the 2015 IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA, 17–21 May 2015; pp. 797–812.
7. Manès, V.J.M.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and engineering of fuzzing: A

survey. IEEE Trans. Softw. Eng. 2019, 47, 2312–2331. [CrossRef]
8. Chen, C.; Cui, B.; Ma, J.; Wu, R.; Guo, J.; Liu, W. A systematic review of fuzzing techniques. Comput. Secur. 2018, 75, 118–137.

[CrossRef]
9. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A deep learning-based system for vulnerability

detection. In Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, 18–21 February 2018.

10. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z. SySeVR: A framework for using deep learning to detect software vulnerabilities.
arXiv 2018, arXiv:1807.06756.

11. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y. POSTER: Vulnerability Discovery with Function Representation Learning from
Unlabeled Projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS),
Dallas, TX, USA, 30 October–3 November 2017; pp. 2539–2541.

12. Lin, G.; Xiao, W.; Zhang, J.; Xiang, Y. Deep Learning-Based Vulnerable Function Detection: A Benchmark. In Proceedings of
the 21st International Conference on Information and Communications Security (ICICS), Beijing, China, 15–19 December 2019;
pp. 219–232.

13. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; pp. 10197–10207.

14. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw. Learn.
Syst. 2019, 30, 2805–2824. [CrossRef] [PubMed]

15. Peng, W.; Liu, R.; Wang, R.; Cheng, T.; Wu, Z.; Cai, L.; Zhou, W. EnsembleFool: A method to generate adversarial examples based
on model fusion strategy. Comput. Secur. 2021, 107, 102317. [CrossRef]

16. Lang, D.; Chen, D.; Huang, J.; Li, S. A Momentum-Based Local Face Adversarial Example Generation Algorithm. Algorithms
2022, 15, 465. [CrossRef]

17. Lang, D.; Chen, D.; Li, S.; He, Y. An Adversarial Attack Method against Specified Objects Based on Instance Segmentation.
Information 2022, 13, 465. [CrossRef]

18. Qin, Y.; Carlini, N.; Cottrell, G.W.; Goodfellow, I.J.; Raffel, C. Imperceptible, Robust, and Targeted Adversarial Examples for
Automatic Speech Recognition. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach,
CA, USA, 9–15 June 2019; pp. 5231–5240.

19. Mun, H.; Seo, S.; Son, B.; Yun, J. Black-Box Audio Adversarial Attack Using Particle Swarm Optimization. IEEE Access 2022,
10, 23532–23544. [CrossRef]

20. Chen, G.; Zhao, Z.; Song, F.; Chen, S.; Fan, L.; Wang, F.; Wang, J. Towards Understanding and Mitigating Audio Adversarial
Examples for Speaker Recognition. arXiv 2022, arXiv:2206.03393.

21. Han, S.; Xu, K.; Guo, S.; Yu, M.; Yang, B. Evading Logits-Based Detections to Audio Adversarial Examples by Logits-Traction
Attack. Appl. Sci. 2022, 12, 9388. [CrossRef]

22. Li, J.; Ji, S.; Du, T.; Li, B.; Wang, T. TextBugger: Generating Adversarial Text Against Real-world Applications. In Proceedings of
the 26th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 24–29 February 2019.

23. Zhao, T.; Ge, Z.; Hu, H.; Shi, D. MESDeceiver: Efficiently Generating Natural Language Adversarial Examples. In Proceedings of
the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [CrossRef]

24. Gao, H.; Zhang, H.; Yang, X.; Li, W.; Gao, F.; Wen, Q. Generating natural adversarial examples with universal perturbations for
text classification. Neurocomputing 2022, 471, 175–182. [CrossRef]

25. Rabin, M.R.I.; Wang, K.; Alipour, M.A. Testing Neural Program Analyzers. arXiv 2019, arXiv:1908.10711.
26. Quiring, E.; Maier, A.; Rieck, K. Misleading Authorship Attribution of Source Code using Adversarial Learning. In Proceedings

of the 28th USENIX Security Symposium, Santa Clara, CA, USA, 14–19 August 2019; pp. 479–496.
27. Zhang, H.; Li, Z.; Li, G.; Ma, L.; Liu, Y.; Jin, Z. Generating Adversarial Examples for Holding Robustness of Source Code

Processing Models. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12
February 2020.

28. Yefet, N.; Alon, U.; Yahav, E. Adversarial Examples for Models of Code. arXiv 2019, arXiv:1910.07517.

http://cve.mitre.org/
https://www.checkmarx.com/
https://www.ndm.net/sast/hp-fortify
http://doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.1016/j.cose.2018.02.002
http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://www.ncbi.nlm.nih.gov/pubmed/30640631
http://dx.doi.org/10.1016/j.cose.2021.102317
http://dx.doi.org/10.3390/a15120465
http://dx.doi.org/10.3390/info13100465
http://dx.doi.org/10.1109/ACCESS.2022.3152526
http://dx.doi.org/10.3390/app12189388
http://dx.doi.org/10.1109/IJCNN55064.2022.9892490
http://dx.doi.org/10.1016/j.neucom.2021.10.089

Electronics 2023, 12, 936 17 of 17

29. Thomas, S.L.; Francillon, A. Backdoors: Definition, Deniability and Detection. In Proceedings of the 21st International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID), Heraklion, Greece, 10–12 September 2018; pp. 92–113.

30. Yang, Z.; Shi, J.; He, J.; Lo, D. Natural Attack for Pre-trained Models of Code. arXiv 2022, arXiv:2201.08698.
31. Duan, X.; Wu, J.; Ji, S.; Rui, Z.; Luo, T.; Yang, M.; Wu, Y. VulSniper: Focus Your Attention to Shoot Fine-grained Vulnerabilities.

In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019;
pp. 4665–4671.

32. Zou, D.; Wang, S.; Xu, S.; Li, Z.; Jin, H. µVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.
IEEE Trans. Dependable Sec. Comput. 2019, 18, 2224–2236. [CrossRef]

33. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y.; de Vel, O.Y.; Montague, P. Cross-Project Transfer Representation Learning for
Vulnerable Function Discovery. IEEE Trans. Ind. Inform. 2018, 14, 3289–3297. [CrossRef]

34. Liu, S.; Lin, G.; Qu, L.; Zhang, J.; De Vel, O.; Montague, P.; Xiang, Y. CD-VulD: Cross-Domain Vulnerability Discovery based on
Deep Domain Adaptation. IEEE Trans. Dependable Sec. Comput. 2020, 19, 438–451. [CrossRef]

35. Jang, J.; Agrawal, A.; Brumley, D. ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, USA, 21–23 May 2012; pp. 48–62.

36. Woo, S.; Hong, H.; Choi, E.; Lee, H. MOVERY: A Precise Approach for Modified Vulnerable Code Clone Discovery from Modified
Open-Source Software Components. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
USA, 10–12 August 2022; pp. 3037–3053.

37. Bowman, B.; Huang, H.H. VGRAPH: A Robust Vulnerable Code Clone Detection System Using Code Property Triplets. In
Proceedings of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 7–11 September 2020;
pp. 53–69. [CrossRef]

38. Flawfinder. Available online: http://www.dwheeler.com/flawfinder (accessed on 11 October 2020).
39. Gens, D.; Schmitt, S.; Davi, L.; Sadeghi, A. K-Miner: Uncovering Memory Corruption in Linux. In Proceedings of the 25th

Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018.
40. Yamaguchi, F.; Lottmann, M.; Rieck, K. Generalized Vulnerability Extrapolation Using Abstract Syntax Trees. In Proceedings of

the 28th Annual Computer Security Applications Conference (ACSAC), Orlando, FL, USA, 3–7 December 2012; pp. 359–368.
41. Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A. Predicting Vulnerable Software Components. In Proceedings of the 2007 ACM

Conference on Computer and Communications Security (CCS), Alexandria, VA, USA, 2 November–31 October 2007; pp. 529–540.
42. Grieco, G.; Grinblat, G.L.; Uzal, L.C.; Rawat, S.; Feist, J.; Mounier, L. Toward Large-scale Vulnerability Discovery Using Machine

Learning. In Proceedings of the 6th ACM on Conference on Data and Application Security and Privacy (CODASPY), New
Orleans, LA, USA, 9–11 March 2016; pp. 85–96.

43. Salimi, S.; Kharrazi, M. VulSlicer: Vulnerability detection through code slicing. J. Syst. Softw. 2022, 193, 111450. [CrossRef]
44. Wu, T.; Chen, L.; Du, G.; Zhu, C.; Cui, N.; Shi, G. Inductive Vulnerability Detection via Gated Graph Neural Network. In

Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD),
Hangzhou, China, 4–6 May 2022; pp. 519–524. [CrossRef]

45. Hin, D.; Kan, A.; Chen, H.; Babar, M.A. LineVD: Statement-level Vulnerability Detection using Graph Neural Networks. arXiv
2022, arXiv:2203.05181.

46. Chakraborty, S.; Krishna, R.; Ding, Y.; Ray, B. Deep Learning Based Vulnerability Detection: Are We There Yet? IEEE Trans. Softw.
Eng. 2022, 48, 3280–3296. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TDSC.2019.2942930
http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1109/TDSC.2020.2984505
http://dx.doi.org/10.1109/EuroSP48549.2020.00012
http://www.dwheeler.com/flawfinder
http://dx.doi.org/10.1016/j.jss.2022.111450
http://dx.doi.org/10.1109/CSCWD54268.2022.9776051
http://dx.doi.org/10.1109/TSE.2021.3087402

	Introduction
	DL-Based Vulnerability Detection
	Code Transformation Rules
	Operator Transformations
	Data Transformations
	Bogus Code Transformations

	Attack Design
	Problem Formulation
	AdVulCode
	Step I: Extracting Perturbation Statements that Match the Transformation Rules
	Step II: Generating Candidate Statements for Perturbation Statements
	Step III: Extracting Vulnerability-Related Lines
	Step IV: Generating Adversarial Examples

	Experiments and Results
	Research Questions
	Datasets and Evaluation Metrics
	Implementation
	Experiments for Answering RQ1
	Experiments for Answering RQ2
	Experiments for Answering RQ3

	Limitations
	Future Work
	Related Work
	Prior Studies on Vulnerability Detection for Source Code
	Prior Studies on Generating Adversarial Examples

	Conclusions
	References

