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Abstract: RGB salient object detection (SOD) performs poorly in low-contrast and complex back-
ground scenes. Fortunately, the thermal infrared image can capture the heat distribution of scenes
as complementary information to the RGB image, so the RGB-T SOD has recently attracted more
and more attention. Many researchers have committed to accelerating the development of RGB-T
SOD, but some problems still remain to be solved. For example, the defective sample and inter-
fering information contained in the RGB or thermal image hinder the model from learning proper
saliency features, meanwhile the low-level features with noisy information result in incomplete
salient objects or false positive detection. To solve these problems, we design a cross-modal attention
enhancement network (CAE-Net). First, we concretely design a cross-modal fusion (CMF) module
to fuse cross-modal features, where the cross-attention unit (CAU) is employed to enhance the two
modal features, and channel attention is used to dynamically weigh and fuse the two modal features.
Then, we design the joint-modality decoder (JMD) to fuse cross-level features, where the low-level
features are purified by higher level features, and multi-scale features are sufficiently integrated.
Besides, we add two single-modality decoder (SMD) branches to preserve more modality-specific
information. Finally, we employ a multi-stream fusion (MSF) module to fuse three decoders’ features.
Comprehensive experiments are conducted on three RGB-T datasets, and the results show that our
CAE-Net is comparable to the other methods.

Keywords: salient object detection; multi-stream fusion; cross-attention unit; cross-modal fusion;
single-/joint-modality decoder

1. Introduction

Salient object detection (SOD) attempts to imitate the human’s attention mechanism,
which can discover the most attractive objects in the image at first glance, to segment out
the saliency objects in the image. SOD can be applied in many downstream computer
vision tasks, such as object tracking [1], image quality assessment [2], scene classification [3],
image fusion [4], and so on. Due to its superior performance in downstream tasks, SOD
has received more and more attention in recent years.

The RGB SOD has been studied for many years. In the beginning, researchers pro-
posed many traditional methods, which involve designing handcrafted features to estimate
saliency maps. These methods cannot explore the high-level semantic information con-
tained in the image, so it leads to unsatisfactory results. Benefiting from powerful feature
representation ability, convolutional neural networks (CNNs) [5] are receiving more and
more attention in computer vision applications. Particularly, when the fully convolutional
networks (FCN) [6] and Unet [7] were proposed in image segmentation tasks, researchers
gradually turned to embracing the deep learning-based method in SOD. Many works have
been proposed in SOD. For example, to take into account the long range correlation of deep
features between different positions, many works [8,9] employed ASPP [10], RFB [11], or
PPM [12] modules. By using these modules, the context information of salient objects can
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be fully exploited. Similarly, Pang [13] employed multi-branch features interaction to fully
explore multi-scale information. Besides, edge features were also explicitly explored by
many works to portray sharp boundaries of salient objects [14,15]. Though great progress
has been made in recent years, RGB SOD suffers interference from low-contrast or complex
background images, resulting in a poor quality saliency map. With the development of
sensor technology, we can easily afford the expenditure of depth or thermal sensors. The
depth image provides a description of the spatial arrangement information of the scene. By
introducing the depth information, we can easily distinguish objects with different depths.
However, due to the vulnerability of depth sensors to environmental changes, low-quality
depth maps exist in RGB-D datasets, resulting in the decline performance of RGB-D SOD.
Different from the depth information, the thermal infrared image depicts the radiated heat
information of objects in the scene, so it can help us easily distinguish salient objects.

RGB-T SOD faces the problems of multi-modal feature fusion. Previous works have
explored cross-modal complementary information. In [16], the multi-interactive block
is designed to fuse the previous layer’s decoded features with two modal features, re-
spectively, which are afterwards concatenated to perform cross-modal fusion. In [17],
the context-guided cross-modality fusion is designed to fuse two modal features using
element-wise multiplication and addition at each level, and then they are fed into a stacked
refinement network to decode them. Nevertheless, direct concatenation or element-wise
addition/multiplication cannot fully explore the complementary information between two
modal features. Besides, there are some poor quality examples in the RGB or thermal
infrared image, as shown in Figure 1. If we indiscriminately concatenate or add two modal
features together, the bad quality samples will mislead the saliency model, resulting in
incorrect prediction results. Therefore, we need to carefully design a module to appro-
priately merge two modal features. In addition, similar to RGB SOD, many works have
been committed to exploring multi-scale information embedded in deep features. For
example, in [17], the surrounding and global context unit was proposed to capture context
information. Considering that each level feature contains different scale information, where
high-level features contain more semantic and holistic information, and low-level features
contain more detail and local information. Properly aggregating the cross-level features
and simultaneously reducing the noise impact are worth further investigating.

RGB

T

GT

Ours

(a) (b) (c) (d)

Figure 1. Some bad quality examples of RGB or thermal infrared images. (a,b) are two samples with
bad quality thermal images, and (c,d) are two samples with bad quality RGB images. GT denotes
groundtruth, and ours indicates the saliency maps predicted by our proposed method.
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To solve these problems mentioned above, we propose a novel cross-modal attention
enhancement network (CAE-Net) for RGB-T salient object detection, which is shown in
Figure 2. Benefiting from three key components (i.e., cross-modal fusion (CMF), single-
/joint-modality decoder (SMD/JMD), and multi-stream fusion (MSF)), the CAE-Net can
fully exploit cross-modal information and suitably fuse them. Besides, it can adequately
aggregate cross-level features in a gradually refined manner. Concretely, to fuse cross-
modal features, we design a cross-modal fusion (CMF) module, where the cross-attention
unit (CAU) is constructed to enhance the one modal feature using the attention from
another modal feature, and then we employ channel attention to adaptively emphasize the
significant modal features and restrain the deficient modal features. Then, to preferably
fuse the cross-level features, we design the joint-modality decoder (JMD), where high-level
features refine low-level features to suppress noisy information and sufficiently gather
multi-scale features. Besides, we add two independent single-modality decoder (SMD)
branches to preserve more modality-specific information [18] contained in the RGB and
thermal image, respectively. Finally, we design the multi-stream fusion (MSF) module
to fully explore complementary information between different decoder branches. With
our elaborate design, the proposed model can better explore complementary information
between cross-modal features and appropriately aggregate cross-level features.

Overall, we summarize the main contributions of our paper as follows:

1. We propose a novel RGB-T salient object detection model, called a cross-modal
attention enhancement network (CAE-Net), which consists of the cross-modal fu-
sion (CMF), the single-/joint-modality decoder (SMD/JMD), and multi-stream fu-
sion (MSF).

2. To fuse the cross-modal features, we design a cross-modal fusion (CMF) module,
where the cross-attention unit (CAU) is employed to filter incompatible information,
and the channel attention is used to emphasize the significant modal features.

3. To fuse cross-level features, we design the joint-modality decoder (JMD) module,
where the multi-scale features are extracted and aggregated, and noisy information
is filtered. Besides, two independent single-modality decoder (SMD) branches are
employed to preserve more modality-specific information.

4. To fully explore the complementary information between different decoder branches,
we design a multi-stream fusion (MSF) module.
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Figure 2. The overall architecture of our model’s cross-modal attention enhancement network (CAE-
Net). Firstly, we use double stream encoder to extract multi-level features of RGB image IR and
thermal infrared image IT , respectively, producing five level-deep features {FR

i , FT
i }(i=1,··· ,5) for them.

Then, we design a cross-modal fusion (CMF) module, which consists of cross-attention unit (CAU)
and channel attention weighted fusion, to fuse two modal deep features, obtaining the fused features
{FF

i }(i=3,4,5). After that, we design the joint-modality decoder (JMD) to fuse cross-level features and
obtain decoded feature FFd

3 . We also add two independent single-modality decoder (SMD) branches
to preserve more modality-specific information, obtaining decoded features FRd

3 and FTd
3 , respectively.

Finally, we design a multi-stream fusion (MSF) module to fully fuse complementary information
between different decoder branches and obtain the final fused feature FSd

3 . S is the final saliency map,
which is obtained by applying one 1× 1 convolution on FSd

3 . Here, the supervision loss of S and
intermediate features are denoted as lsi(i=1,··· ,4), which are marked with a red arrow in this figure.
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We organize the remaining part of this paper as follows. We briefly conclude the
related works of salient object detection in Section 2. In Section 3, we describe the proposed
model in detail. In Section 4, we show the comprehensive experiments and detailed
analyses. Finally, this article is concluded in Section 5.

2. Related Works

In recent years, a large number of works have been proposed for salient object detec-
tion. Here, we briefly introduce RGB saliency models, RGB-D saliency models, and RGB-T
saliency models.

2.1. RGB Salient Object Detection

In the beginning, researchers employed hand-crafted features and a variety of prior
knowledge to determine saliency. For instance, the center-surrounding discrepancy mech-
anism [19] was employed to distinguish salient objects. Afterward, traditional machine-
learning models were developed. In [20], multiple types of features were combined, which
consist of multiscale contrast, spatial color distribution, and center-surrounded histogram,
by learning conditional random field. In [21], the saliency score is predicted by fusing a
multi-level regional feature vector through supervised learning. The convolutional neural
network (CNNs) [5] has been widely used in many applications due to its powerful rep-
resentation learning ability. Particularly, when Unet [7] and fully convolutional networks
(FCN) [6] are proposed in image segmentation tasks, CNN-based models dominated in
saliency detection. For example, Wu et al. [8] designed a cascaded partial decoder, where
low-level features are refined by initial saliency maps, which are predicted by exploiting
high-level features. Besides, many researchers have tried their best to recover boundary
details of saliency maps [15]. In [22], a boundary-aware loss function and refinement
module are used to depict boundaries and purify coarse prediction maps, which effectively
cause the boundaries to be clearer. In [14], fine detail saliency maps are predicted by inte-
grating salient object features and edge features, which are produced by exploiting global
features and edge features. Wan et al. [23] designed a deeper feature extraction module to
enhance the deep feature representation, in which a bidirectional feature extraction unit is
designed. Liu et al. [9] employed a parallel multiscale pooling to capture different scale
objects. Xu et al. [24] proposed a center-pooling algorithm, where the receptive field is
dynamically modified, to take into account the different importance of different regions.
In [25], dense attention mechanisms were employed in the decoder to guide the low-level
features concentrated on the defect regions.

Though researchers have great progressed RGB saliency detection, complex scenes, such
as clutter background and low contrast, will degrade the performance RGB saliency models.

2.2. RGB-D Salient Object Detection

In recent years, we can easily obtain the depth information of scenes with the devel-
opment of hardware such as laser scanner and Kinect. With the help of a depth map, the
challenge of complex scenes for saliency models can be overcome via understanding spatial
layout cues. Many researchers have worked to promote the progress of it. The final saliency
map is produced by employing the center-dark channel map in [26]. Recently, many
CNN-based models have been proposed. For example, in [27], the residual connection is
used to fuse the RGB and depth complementary information. The author combined depth
features with multi-scale features to single out salient objects. Wang et al. [28] designed
two streams to generate saliency maps for depth and RGB, respectively. Then, the switch
map, which is learned by the saliency fusion module, fuses two saliency maps. In [29],
RGB is processed by the master network, the depth becomes a full exploit because of the
sub-network, and the depth-based features are incorporated into the master network. The
two modal high-level features, including the depth features and RGB features, are fused
by a selective self-mutual attention module in [30], and the depth decoder features are
fused into RGB branch by introducing the residual fusion module. Multi-level features
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are fused by a densely cooperative fusion (DCF), and collaborative features are learned
by joint learning (JL) in [31]. In [32], attention maps were generated from depth cues to
intensify salient regions. Besides, in [33], the multi-modal features are fused by employing a
cross-modality feature modulation, which consists of spatial selection and channel selection.
Wen et al. [34] designed a bi-directional gated pooling module to strengthen the multi-scale
information, and gated-based selection to optimize cross-level information. Generally, the
encouraging performance is presented by existing RGB-D saliency models, but inaccurate
depth maps still degrade their performance.

2.3. RGB-T Salient Object Detection

The thermal infrared image can provide temperature field distribution of scenes, so
it plays a positive role when the depth map cannot differentiate salient objects and back-
grounds. In the beginning, traditional methods were proposed. In [35], the reliability was
described for each modality by introducing a weight, and the weight was integrated into a
graph-based manifold ranking method to achieve the adaptive fusion of different source
data. Tu et al. [36] segmented RGB and thermal images into multi-scale superpixels. Then,
these superpixels were used as graph nodes, and the manifold ranking was performed to
obtain saliency maps. In [37], superpixels were used as graph nodes, and then the hierarchi-
cal features were used to learn graph affinity and node saliency. With the development of
CNNs, deep learning-based methods were broadly employed. Zhang et al. [38] employed
multi-branch group fusion to fuse the cross-modal features and designed a joint-attention
guided bi-direction message passing to integrate multi-level features. In [39], feature repre-
sentations were explored and integrated using cross-modal multi-stage fusion. Then, the
bi-directional multi-scale decoder was proposed to learn the combination of multi-level
fused features. Tu et al. [16] built a dual decoder to conduct interactions of global contexts,
two modalities, and multi-level features. Huo et al. [17] established the context-guided
cross-modality fusion to explore the complementary information of two modalities, and
the features were refined using a stacked refinement network by spatial and semantic
information interaction. In [40], multi-level features were extracted and aggregated with
the attention mechanisms, and edge loss was used to portray boundaries.

Although much work has been performed on RGB-T SOD, there are still many prob-
lems that have not been fully explored. The majority of RGB-T SOD models employ
concatenation or element-wise addition/multiplication to fuse the cross-modal features,
but these fusion methods do not take into account the distinct significance of two modal
features, leading to suboptimal results. Moreover, by employing vanilla Unet to decode
cross-level features, the saliency models cannot sufficiently excavate the global context
information embedded in deep features, and it is easily interfered by noise in low-level
features. To solve these problems, we propose a novel cross-modal attention enhancement
network (CAE-Net), where the cross-modal complementary information is fully explored
and fused and the cross-level features are effectively aggregated.

3. The Proposed Method

In this section, the architecture of our proposed cross-modal attention enhancement
network (CAE-Net) is introduced in Section 3.1. The cross-modal fusion (CMF) and single-
/joint-modality decoder (SMD/JMD) are described in Sections 3.2 and 3.3, respectively. We
present the multi-stream fusion (MSF) in Section 3.4. The loss functions are illustrated in
Section 3.5.

3.1. Architecture Overview

The architecture of the proposed cross-modal attention enhancement network (CAE-
Net) is shown in Figure 2. Firstly, we use a double stream encoder to extract the multi-level
features of the RGB image IR and thermal infrared image IT , respectively. Here, we use
VGG16 [41] as the backbone of the encoder, where we specially remove the last pooling
layer and three fully connected layers of it. After deploying the encoder, we can obtain
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five level-deep features {FR
i , FT

i }(i=1,··· ,5) for two modal inputs, respectively, and their
resolution are 1, 1/2, 1/4, 1/8, and 1/16 of the original input image, respectively. Then,
we design a cross-modal fusion (CMF), which consists of a cross-attention unit (CAU) and
channel attention weighted fusion, to adequately explore the cross-modal complementary
information, obtaining the fused features {FF

i }(i=3,4,5). After that, we design the joint-
modality decoder (JMD) to fuse the cross-level features, obtaining decoded feature FFd

3 . The
JMD can effectively extract multi-scale information and filter the noisy information in the
low-level features. Furthermore, we add two independent single-modality decoder (SMD)
branches to preserve more modality-specific information, obtaining decoded features FRd

3
and FTd

3 , respectively. Finally, we design a multi-stream fusion (MSF) module to fully fuse
the complementary information between different decoder branches, obtaining the final
fused feature FSd

3 . Then, one 1× 1 convolution followed by a sigmoid function is applied
on FSd

3 to generate the final saliency map S.

3.2. Cross-Modal Fusion

Digging out complementary information between two modal features is a major
problem in RGB-T SOD. Here, we design the cross-modal fusion (CMF) module shown in
Figure 3 to tackle this problem. The majority of existing methods just simply concatenate or
element-wise add two modal features together. However, these methods cannot avoid the
performance degradation caused by the misleading information in two modal inputs (i.e.,
the low-quality input image and the noisy information). Hence, we employ an attention
mechanism to suppress the noisy information contained in two modal features. Different
from frequently used self-attention, we design the cross-attention unit (CAU-R/CAU-T)
shown in Figure 3 to filter one modal feature using the attention generated from another
modal feature, where it can help enhance the shared features of two modalities. Concretely,
using CAU-R as an example, we separately feed the thermal features FT

i into a channel
attention [42] and spatial attention [43] module to produce channel attention and spatial
attention values of FT

i , respectively. Then, we sequentially multiply the RGB features FR
i

with these two attention values. To avoid the RGB features being diluted by bad quality
thermal samples, we introduce the residual connection for FR

i . Following this way, we
obtain cross-attention enhanced RGB features FRe

i . Similar to CAU-R, we also deploy a
CAU-T to enhance the thermal features FT

i . The whole process is formulated as follows,{
FRe

i = FR
i ⊕ (FR

i � CA(FT
i )� SA(FT

i ))

FTe
i = FT

i ⊕ (FT
i � CA(FR

i )� SA(FR
i ))

, (1)

{
CA(F) = σ(MLP(Relu(MLP(GMPs(F)))))
SA(F) = σ(Conv7×7(GMPc(F)))

, (2)

where CA and SA are channel attention and spatial attention, respectively, GMPs is global
max pooling along the spatial dimension, GMPc is global max pooling along the chan-
nel dimension, Relu is nonlinear activation function, MLP is fully connected layer, σ is
activation function, and Conv7×7 is convolution layer with 7× 7 kernel. More details of
channel attention and spatial attention can be found in [42,43]. � is element-wise multi-
plication and ⊕ is element-wise addition. FRe

i and FTe
i are the enhanced RGB and thermal

features, respectively.
After refining the two modal features, we attempt to appropriately fuse them. The

existing methods indiscriminately fuse two modal features using concatenation or element-
wise addition, but they do not take into account the different importance of two modal
features. When encountering a bad quality sample, it will present a failure saliency predic-
tion. With the help of channel attention, we can explicitly estimate the dynamic importance
of RGB feature FRe

i and thermal feature FTe
i . Concretely, we concatenate these two features

along the channel dimension, and then we feed them into the channel attention module
to obtain a channel-wise importance weight for indicating which modal feature is more
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valuable. After that, we multiply this weight with the concatenated features, and then we
employ a 1× 1 convolution to reduce the channel number of concatenated features. The
above calculation process is expressed as follows,

FF
i = Conv1×1(cat

(
FRe

i , FTe
i )� CA(cat(FRe

i , FTe
i ))) , (3)

where cat means concatenation operation, and Conv1×1 means a 1× 1 convolution and a
BN layer [44]. FF

i means the fused features of two modalities at the i-th level.
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Figure 3. The architecture of the cross-modal fusion (CMF).

3.3. Single-/Joint-Modality DECODER

The Unet [7] has been widely used in SOD research. However, considering that the
low-level features contain a lot of noisy information, directly concatenating low-level
encoder features with decoder features is not a optimal method. Under the guidance of
high-level features, we can filter the noisy information contained in low-level features.
Furthermore, multi-scale modules (PPM [12], ASPP [10], and RFB [11]) have been proved
to be powerful in context information extraction. Different from [8], we use the RFB in
the feature decoding phase. This is because, after concatenating the encoder feature with
the previous layer decoder feature, the RFB can learn a more accurate and robust feature
representation. In addition, considering that only one joint-modality decoder (JMD) may
put more bias on one of the two modal features, we also add two single-modality decoder
(SMD) branches to preserve more specific information in two modal features. Namely, the
SMD can help each modal encoder extract effective and specific information. Concretely,
using the SMD shown in Figure 4 as an example, firstly, we fed the fifth level feature FR

5
into RFB [11] to capture global context information, thus obtaining the decoded feature
FRd

5 . Then, we multiply the fourth level encoder feature FR
4 with FRd

5 to filter the noisy
information in the low-level feature. Next, we concatenate the filtered feature with FRd

5 and
feed it into RFB to obtain FRd

4 , which is enriched with multi-scale information. The third
level decoder is similar to the above process. However, it should be noted that, in the third
level feature decoding process, we also added one skip connection from FRd

5 to avoid the
high-level feature being diluted. The above calculation processes are formulated as,

FRd
5 = RFB(FR

5 )

FRd
4 = RFB(cat(FR

4 � Conv3×3(UP×2(FRd
5 )), Conv3×3(UP×2(FRd

5 ))))

FRd
3 = RFB(cat(FR

3 � Conv3×3(UP×2(FRd
4 )), Conv3×3(UP×2(FRd

4 )), Conv3×3((UP×4(FRd
5 ))))

, (4)

where RFB means the RFB module and FRd
i means the i-th level decoded features. Conv3×3

denotes a 3× 3 convolution followed by a BN layer. UP×2 and UP×4 means 2 and 4 times
bilinear interpolation upsampling, respectively. Our JMD is similar to SMD, but we replace
the RFB operation in SMD with the context module (CM) shown in Figure 4, where we
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employ two parallel branches with RFB and Nonlocal [45] operation to further enhance
the global context information. Notably, before feeding the feature into the Nonlocal
module, we employ a 1× 1 convolution to compress the feature channel into 64 to reduce
the computation cost of the Nonlocal operation. The above calculation processes are
formulated as,

FFd
5 = CM(FF

5 )

FFd
4 = CM(cat(FF

4 � Conv3×3(UP×2(FFd
5 )), Conv3×3(UP×2(FFd

5 ))))

FFd
3 = CM(cat(FF

3 � Conv3×3(UP×2(FFd
4 )), Conv3×3(UP×2(FFd

4 )), Conv3×3(UP×4(FFd
5 ))))

, (5)

where CM is context module shown in Figure 4, and it can be formulated as,

FCM
out = RFB(FCM

in )⊕ Nonlocal(Conv1×1(FCM
in )), (6)

where Nonlocal means Nonlocal operation.
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⨀
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Figure 4. The architecture of the single-modality decoder (SMD) and joint-modality decoder (JMD).

3.4. Multi-Stream Fusion (MSF)

If we only use the joint-modality decoder output FFd
3 as the final saliency results, it

may lose some distinctive information contained in RGB or thermal modality. Based on this
observation, we again aggregate three branches of decoded features, as shown in Figure 2.
We firstly concatenate these three decoded features FRd

3 , FTd
3 , and FFd

3 together. Then, we
upsample the resulting features two times and employ a 3× 3 convolution to enhance
the upsampling features, and we repeat this operation again, obtaining the final saliency
features FSd

3 . The above calculating processes are formulated as,

FSd
3 = Conv3×3(UP×2(Conv3×3(UP×2(cat(FRd

3 , FTd
3 , FFd

3 ))))), (7)

where Conv3×3 means a 3× 3 convolution layer and a BN layer. Finally, we employ a
1× 1 convolution toward FSd

3 , which is followed by a sigmoid function, obtaining the final
saliency map S. This process is formulated as,

S = σ(Conv1×1(FSd
3 )), (8)

where σ is the sigmoid activation function; furthermore, we employ deep supervision [46]
in our model, as shown in Figure 2, where FRd

3 , FTd
3 , and FFd

3 are also fed into a 1 × 1
convolutional layer followed by the sigmoid activation function to predict the saliency
results, respectively. Their losses, which are marked as {lsi}i=2,3,4, are calculated between
the saliency results and GT.
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3.5. Loss Functions

We adopt the hybrid loss [22] to supervise our model’s CAE-Net,

ls = `bce + `ssim + `iou

`bce = − 1
N ∑N

i=1
[
G(i) log S(i) +

(
1−G(i)

)
log

(
1− S(i)

)]
`ssim = 1− (2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ
2
x+σ2

y+C2)

`iou = 1− ∑N
i=1 G(i)S(i)

∑N
i=1

[
G(i)+S(i)−G(i)S(i)

]
, (9)

where `bce, `ssim, and `iou are binary cross-entropy loss [47], SSIM loss [48], and IoU loss [49],
respectively. G and S mean the groundtruth and saliency map, respectively. N indicates
the number of total pixels in the image, i means the i-th pixel. For SSIM loss, the image is
cropped m patches, and µx, µy, σx, and σy are the mean and standard deviations of GT and
predictions, respectively. σxy is the covariance of them. C1 and C2 are set to 0.012 and 0.032

by default.
Finally, the total loss lstotal of the proposed CAE-Net can be defined as,

lstotal =
4

∑
i=1

lsi, (10)

where lsi are shown in Figure 2 and calculated using Equation (9).

4. Experiments

In this section, the datasets and implementation details are presented in Section 4.1.
The evaluation metrics are described in Section 4.2. In Section 4.3, our model is quantita-
tively and qualitatively compared with 18 state-of-the-art models. The ablation studies are
shown in Section 4.4. Finally, we analyze the scalability of our model on RGB-D datasets in
Section 4.5.

4.1. Datasets and Implementation Details

To evaluate the performance of the proposed CAE-Net, we employ three widely used
RGB-T datasets, including VT821 [35], VT1000 [37], and VT5000 [40]. VT821 contains 821
RGB-T image pairs. VT1000 includes 1000 RGB-T image pairs. VT5000 includes 5000 RGB-T
image pairs.

For a fair comparison, we follow the setting in [16], where 2500 samples from VT5000
are chosen as the training set. The remaining datasets are treated as testing datasets. To
avoid overfitting, we augmented the training datasets using random flipping.

We implement our model by using the PyTorch toolbox [50], and our PC is equipped
with one RTX2080Ti GPU. We resize the input image to 224× 224 before training. The
encoder of RGB and thermal branches are initialized using pretrained VGG16 [41]. We
train our model by using the Adam optimizer, where the initial learning rate is set to
1× 10−4. Additionally, the batchsize is 14, and the total training epoch is 250. We decrease
the learning rate to 1× 10−5 after 200 epochs.

4.2. Evaluation Metrics

In this paper, we compare our CAE-Net with 18 state-of-the-art models in terms of
four widely used SOD metrics, including mean absolute error (MAE), F-measure (Fβ) [51],
E-measure (Eξ) [52], and structure-measure (Sα) [48].

4.2.1. MAE

The mean absolute error (MAE) is expressed as follows,

MAE =
1

W × H ∑W
i=1∑H

j=1|S(i, j)−G(i, j)|, (11)
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where G(i, j) and S(i, j) denotes the groundtruth and the predicted saliency map, respectively.

4.2.2. Fβ

The F-measure (Fβ) is a weighted harmonic mean of recall and precision, which is
formulated as,

Fβ =
(1 + β2)Precision · Recall

β2 · Precision + Recall
, (12)

where β2 is set to 0.3 referring to [51].

4.2.3. Eξ

The E-measure (Eξ) is a metric that evaluates global and local similarities between the
groundtruth and the predicted saliency map. Concretely, it is formulated as,

Eξ =
1

W × H ∑W
i=1∑H

j=1 ϕ
(
S(i, j), G(i, j)

)
, (13)

where ϕ indicates the enhanced alignment matrix.

4.2.4. Sα

Structure-measure (Sα) is employed to evaluate the structure similarities between
salient objects in the groundtruth and the predicted saliency map,

Sα = αSo + (1− α)Sr, (14)

where Sr and So mean region-aware and object-aware structural similarity, respectively,
and α is set to 0.5, referring to [48].

4.3. Comparison with State-of-the-Arts

Our model is compared with 18 state-of-the-art saliency models, which are split into
three groups, including the RGB, RGB-D, and RGB-T models. They are five RGB saliency
models, including PoolNet [9], R3Net [53], BASNet [22], EGNet [14], and CPD [8]; five
RGB-D saliency models, including DMRA [27], S2MA [30], AFNet [28], JLDCF [31], and
PDNet [29]; and eight RGB-T saliency models, including M3S-NIR [36], MTMR [35], SGDL [37],
FMCF [38], ADF [40], MMNet [39], MIDD [16], and CSRNet [17]. For fair comparison, the
prediction maps of the RGB-T models are provided by the authors of the original paper.
However, for the RGB and RGB-D models, the authors did not provide their prediction
maps on RGB-T datasets, so we run the officially released codes to retrain and test them.
It is worth noting that the authors [16] have tested part of the RGB and RGB-D models
in this repository (https://github.com/lz118/Multi-interactive-Dual-decoder, accessed on
1 December 2022), so we directly use them. To ensure a fair comparison, we evaluate the
saliency maps of all the models using the same one as the publicly available evaluation toolbox
(https://github.com/lartpang/PySODMetrics, accessed on 1 December 2022).

4.3.1. Quantitative Comparison

We present PR curves and F-measure curves in Figure 5. For PR curves, our model is
closest to the upright corner compared with other models. Except for VT821, our model is
slightly inferior to CSRNet. For F-measure curves, our model outperforms other models on
VT5000 and V1000. Namely, it locates the top position in the figure on these two datasets,
but it is comparable to CSRNet on VT821. In addition, the quantitative comparison results,
including MAE, Fβ, Eξ , and Sα, are presented in Table 1, where the adaptive F-measure and
adaptive E-measure are reported. As can be seen from Table 1, our model outperforms most
models on three datasets, except for VT821, our model ranks as second order with regard
to Fβ and Sα. To be specific, the traditional RGB-T methods M3S-NIR, MTMR, and SGDL
perform poorly. This demonstrates the powerful representation learning ability of CNNs.
Besides, our model surpasses the best RGB method CPD and RGB-D method PDNet by a

https://github.com/lz118/Multi-interactive-Dual-decoder
https://github.com/lartpang/PySODMetrics
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large margin. This result indicates that our carefully designed model is effective. Compared
to the competitive RGB-T model CSRNet, our model advances the MAE, Fβ, Eξ , and Sα by
10.0%, 1.7%, 1.2%, and 1.4% on VT5000, respectively.

(a) (b) (c)

Figure 5. PR and F-measure curves of different models. (a) Results on the VT5000 dataset. (b) Results
on the VT1000 dataset. (c) Results on the VT821 dataset.

Table 1. Quantitative comparisons with 18 models on three RGB-T datasets. The top three results
are marked with red, green, and blue color in each column. ↑ and ↓ denote that the larger value is
better and the smaller value is better, respectively. * denotes tradition method, and others are deep
learning method.

Dataset VT5000 VT1000 VT821
Metric MAE ↓ Fβ ↑ Eξ ↑ Sα ↑ MAE ↓ Fβ ↑ Eξ ↑ Sα ↑ MAE ↓ Fβ ↑ Eξ ↑ Sα ↑

RGB

PoolNet [9] 0.0805 0.6431 0.8089 0.7881 0.063 0.7503 0.8552 0.8485 0.0828 0.6518 0.811 0.7884
R3Net [53] 0.0588 0.7283 0.8618 0.8128 0.0369 0.8325 0.9191 0.8865 0.0809 0.6815 0.8165 0.7823

BASNet [22] 0.0542 0.764 0.8793 0.8385 0.0304 0.848 0.9244 0.9084 0.0673 0.7354 0.857 0.8228
EGNet [14] 0.0528 0.7741 0.8885 0.8526 0.0339 0.8474 0.9226 0.9093 0.0661 0.7256 0.8583 0.829

CPD [8] 0.0465 0.7859 0.8965 0.8547 0.0312 0.8617 0.9307 0.9071 0.0795 0.7173 0.8474 0.8185

RGB-D

DMRA [27] 0.1845 0.5273 0.6869 0.6589 0.1241 0.7151 0.8197 0.7836 0.2165 0.5772 0.7144 0.6663
S2MA [30] 0.0533 0.7432 0.8703 0.8535 0.0297 0.848 0.9286 0.9182 0.098 0.7092 0.8376 0.8112
AFNet [28] 0.0503 0.7488 0.8794 0.8323 0.0328 0.8382 0.9226 0.8891 0.0687 0.6616 0.8212 0.7787
JLDCF [31] 0.0503 0.7391 0.8639 0.8615 0.0299 0.8291 0.9145 0.9127 0.0756 0.7265 0.8486 0.8389
PDNet [29] 0.0474 0.7612 0.8836 0.845 0.0327 0.8362 0.9212 0.8974 0.0566 0.7126 0.8587 0.8099

RGB-T

M3S-NIR * [36] 0.168 0.5752 0.7818 0.6527 0.1454 0.7167 0.8281 0.7263 0.1397 0.7339 0.8607 0.7238
MTMR * [35] 0.1143 0.5952 0.7948 0.6808 0.1194 0.7136 0.8356 0.7063 0.1083 0.662 0.8142 0.7258
SGDL * [37] 0.0886 0.6712 0.8241 0.7517 0.0896 0.7626 0.857 0.7878 0.0849 0.7292 0.8472 0.7666
FMCF [38] 0.0556 0.7326 0.8672 0.813 0.037 0.822 0.916 0.8723 0.0808 0.6405 0.8035 0.7596
ADF [40] 0.0483 0.7774 0.891 0.8636 0.0339 0.8462 0.9222 0.9094 0.0765 0.7158 0.8442 0.8106

MMNet [39] 0.0433 0.7823 0.8903 0.8639 0.0275 0.8607 0.9284 0.9173 0.04 0.7958 0.8931 0.8749
MIDD [16] 0.0433 0.7994 0.8988 0.8679 0.0271 0.88 0.942 0.9155 0.0446 0.8032 0.8975 0.8712

CSRNet [17] 0.0417 0.8092 0.9068 0.8676 0.0242 0.8751 0.9392 0.9183 0.0376 0.829 0.9116 0.8848
Ours 0.0375 0.8233 0.9185 0.8802 0.0232 0.8813 0.9491 0.9234 0.0359 0.8201 0.9159 0.8837

4.3.2. Complexity Analysis

In Table 2, we report the number of parameters and floating-point operations per
second (FLOPs) of the compared models. We also visualize the accuracy corresponding to
FLOPs in Figure 6, where the area of the circle denotes the relative size of the parameter
quantities. The model located at the top-left position achieves a better trade-off between
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the accuracy and model complexity. We can see that the lightweight model CSRNet has the
fewest parameters and FLOPs, while ranking second in terms of the Fβ score. Our model
has a moderate number of parameters (38.8 M) and fewer FLOPs (47.1 G), while ranking
first in terms of the Fβ score. From Figure 6, we can see that our model is located at the top
and the second left position. It shows that our model achieves a better trade-off between
accuracy and model complexity.

Table 2. The comparisons of model complexity between different models. Here, “↓” means that the
smaller the better.

Models
PoolNet R3Net BASNet EGNet CPD DMRA S2MA JLDCF ADF MIDD CSRNet

Ours
[9] [53] [22] [14] [8] [27] [30] [31] [40] [16] [17]

Param (M) ↓ 53.6 56.1 87.1 108.1 29.2 59.7 86.7 143.5 83.1 50 1 38.8
FLOPs (G) ↓ 123.4 47.5 97.7 291.9 59.4 120.9 141.1 211.1 247.2 114.6 4.4 47.1
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PoolNet
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MIDDCSRNet

Ours

Figure 6. The accuracy and complexity of each model. The horizontal axis indicates FLOPs, while the
vertical axis indicates the accuracy. Here, we measure the accuracy by Fβ score on VT5000. The area
of circle represents the relative size of parameter quantity of each model. The model with top-left
position means the better trade-off between accuracy and FLOPs.

4.3.3. Qualitative Comparison

We show the qualitative results in Figure 7, where some representative samples,
containing bad quality thermal images and small objects (the 1st row), bad quality RGB
images (the 8th row), low-contrast RGB images (the 5th row), multiple objects (the 6th
row and the 8th row), and vimineous object (the 10th row), are displayed. Concretely, in
Figure 7 (first row and eighth row), even though the bad quality thermal image or RGB
image exists, our method can highlight the salient objects without being disturbed by the
bad quality sample. In the fifth row, our model can detect the bulb with the help of the
thermal image, but other models are interfered by the low-contrast RGB image. In the sixth
and eighth row, our model can detect two salient objects, but other models either detect
only one object or detect objects with blurry boundaries. Especially in the first and sixth
row, the salient objects are small, but our model can also detect them. In the 10th row, the
vimineous stick can be integrally detected by our model. Generally, it can be found that,
compared with other models, our model can detect small objects with less noise and can
adaptively mitigate the distraction from low-quality samples.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u) (v)

1
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Figure 7. Visual comparison of saliency maps. (a) RGB image. (b) Thermal infrared image.
(c) Groundtruth. (d) Ours. (e) CSRNet [17]. (f) MIDD [16]. (g) MMNet [39]. (h) CPD [8]. (i) PDNet [29].
(j) ADF [40]. (k) JLDCF [31]. (l) AFNet [28]. (m) EGNet [14]. (n) S2MA [30]. (o) BASNet [22].
(p) FMCF [38]. (q) R3Net [53]. (r) PoolNet [9]. (s) SGDL [37]. (t) MTMR [35]. (u) M3S-NIR [36].
(v) DMRA [27].

4.4. Ablation Studies

To demonstrate the effectiveness of each component in the proposed CAE-Net, we
conduct several ablation experiments, including the effectiveness of CMF, the effectiveness
of SMD/JMD, the effectiveness of MSF, the effectiveness of backbone, and the effectiveness
of loss functions. We provide the quantitative results in Table 3 and the visualization results
in Figures 8 and 9.

Table 3. Ablation studies are implemented on three datasets, where the best result is marked with
red color in each column. Here, “↓” means that the smaller the better.

Ablation Study
VT5000 VT1000 VT821

MAE ↓ Fβ ↑ Eξ ↑ Sα ↑ MAE ↓ Fβ ↑ Eξ ↑ Sα ↑ MAE ↓ Fβ ↑ Eξ ↑ Sα ↑

No.1
CI 0.043 0.7955 0.9013 0.8639 0.0275 0.8647 0.9388 0.9111 0.046 0.7894 0.8884 0.8595

w/o CMF 0.039 0.8096 0.9091 0.873 0.0259 0.8682 0.9393 0.9132 0.0393 0.7889 0.8931 0.8653
Self 0.0385 0.8155 0.9113 0.8763 0.0252 0.8733 0.9413 0.9176 0.0381 0.7977 0.8968 0.8712

No.2

Unet 0.0445 0.7679 0.8883 0.8516 0.0319 0.8426 0.9223 0.8989 0.0484 0.7412 0.8673 0.8433
w/o SMD 0.0386 0.8144 0.9103 0.8775 0.0233 0.8753 0.9411 0.9196 0.0387 0.8066 0.9023 0.8754
w/o RFB 0.04 0.7995 0.9 0.8704 0.0281 0.8634 0.9295 0.9128 0.0406 0.7871 0.8882 0.8673

w/o Nonlocal 0.0386 0.8153 0.9123 0.8735 0.0257 0.8771 0.9455 0.9178 0.0381 0.801 0.902 0.8698

No.3

Only-J 0.0382 0.8126 0.9106 0.8746 0.0246 0.8757 0.944 0.9188 0.0391 0.7971 0.8957 0.8688
Only-R 0.0442 0.7937 0.9001 0.8601 0.0278 0.8638 0.9338 0.9088 0.0575 0.7524 0.8704 0.84
Only-T 0.0509 0.7644 0.8904 0.8335 0.0384 0.8354 0.9238 0.8816 0.0541 0.7424 0.8699 0.8176

Both-Avg 0.0395 0.797 0.9002 0.8731 0.0271 0.8614 0.9304 0.9134 0.0378 0.7912 0.8936 0.8731

No.4
Res50 0.0523 0.7486 0.8772 0.8361 0.0372 0.8277 0.9121 0.8866 0.0445 0.7796 0.8917 0.8501

PS 0.039 0.8098 0.9074 0.8738 0.0243 0.8781 0.9458 0.9193 0.0373 0.7987 0.8971 0.8738

No.5
bce 0.0393 0.7918 0.8981 0.8771 0.0268 0.8553 0.9299 0.9175 0.041 0.78 0.8861 0.8719

bce+IoU 0.0381 0.8138 0.9089 0.8805 0.0235 0.8737 0.9391 0.921 0.0383 0.8059 0.8992 0.8767
bce+SSIM 0.0385 0.8041 0.9072 0.8781 0.0258 0.8595 0.9327 0.9206 0.0386 0.7884 0.8919 0.8738

Ours 0.0375 0.8233 0.9185 0.8802 0.0232 0.8813 0.9491 0.9234 0.0359 0.8201 0.9159 0.8837
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q)

Figure 8. Visual comparison of different ablation models. (a) RGB image. (b) Thermal infrared image.
(c) Groundtruth. (d) Ours. (e) CI. (f) w/o CMF. (g) Self. (h) Unet. (i) w/o SMD. (j) w/o RFB. (k) w/o
Nonlocal. (l) Only-J. (m) Only-R. (n) Only-T. (o) Both-Avg. (p) Res50. (q) PS.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. Visual comparison of different ablation losses. (a) RGB image. (b) Thermal infrared image.
(c) Groundtruth. (d) Ours. (e) bce. (f) bce+IoU. (g) bce+SSIM.

4.4.1. Effectiveness of cross-Modal Fusion (CMF)

In order to verify the effectiveness of feature fusion in the middle layer, we conduct
comparative experiments by concatenating two modal features at the input stage, which is
abbreviated as “CI” in Table 3 (No.1). Concretely, we directly concatenate two modal input
images IR and IT along the channel dimension at the beginning stage, and then feed it into
the single branch saliency prediction network (i.e., the bottom stream in Figure 2). From
Table 3 we can see that our model enhances the MAE by 12.7% on VT5000. It demonstrates
the effectiveness of fusing features at the intermediate level. The visual results shown
in Figure 8e also prove the same conclusion. This is because the early fusion scheme
(i.e., concatenating two inputs) fails to fully explore deep complementary cues between
two modal inputs. Next, we verify the effectiveness of the CMF module by removing
it, shown in Table 3 (No.1 w/o CMF). Namely, we replace the CMF module by simply
concatenating two modal features FR

i and FT
i together along the channel, which is followed

by a 3× 3 convolution layer to produce fusion features FF
i , and other parts are kept the same

with our full model. Compared to this variant, our model elevates the MAE, Fβ, Eξ , and Sα

by 3.8%, 1.6%, 1.0%, and 0.8% on VT5000, respectively. As can be seen from Figure 8f, the
model “w/o CMF” cannot suppress the background noise. This proves that the design of
the CMF is beneficial. The reason is that the CMF can suppress the noisy information in two
modal features with the help of an attention module. To verify the effectiveness of cross
attention in CMF, we replace it with self-attention, which is abbreviated as “Self” in Table 3
(No.1). That is, in CAU-R, we employ CA and SA of RGB feature FR

i to enhance itself, but
not CA and SA of thermal feature FT

i , and, in CAU-T, thermal feature FT
i also employs

attention from itself. Compared to this variant, our model elevates the MAE, Fβ, Eξ , and Sα

by 2.5%, 0.9%, 0.7%, and 0.4% on VT5000, respectively. From Figure 8g, we can see that
the ablation model “Self” is easily affected by background noise. This suggests that the
cross-attention can highlight the shared information and suppress distracting information
in another modal features.

4.4.2. Effectiveness of Single-/Joint-Modality Decoder (SMD/JMD)

To verify the effectiveness of SMD and JMD, we perform an ablation experiment by
removing both of them, which is shown in Table 3 (No.2 Unet). Concretely, we use three
simple Unet [7] structures to fuse the cross-level features of the three branches, respectively,
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where cross-level features FX
5 , FX

4 , and FX
3 are concatenated, followed by a 3× 3 convolution

to fuse them layer by layer. Compared to this variant, our model can improve MAE, Fβ,
Eξ , and Sα by 15.7%, 7.2%, 3.3%, and 3.3% on VT5000, respectively. As can be seen from
Figure 8h, the ablation model “Unet” displays poor prediction results. This is because
simple Unet cannot capture long-range context information and filter cross-level interfering
information. Besides, we remove two SMDs, retaining only JMD, which is abbreviated
as w/o SMD. Specifically, two single-modality decoders for the RGB branch and thermal
branch are removed, only retaining one joint-modality decoder for the joint branch, so
the multi-stream fusion module is also removed. The saliency maps are predicted on
FFd

3 . Compared to this variant, our model elevates the MAE, Fβ, Eξ , and Sα by 2.8%, 1.0%,
0.9%, and 0.3% on VT5000, respectively. As shown in Figure 8i, it can be seen that the
ablation model “w/o SMD” is easily affected by the inverted reflection of the cup in the
first row. The reason is that the SMD can help two encoders extract more modality-specific
information, and then the cross-modal features contain more valuable information to be
fused. We further verify the effectiveness of RFB in SMD/JMD (Table 3 No.2 w/o RFB).
That is, in SMD and JMD, the RFB module is replaced by a 3× 3 convolution, while the
Nonlocal branch in CM remains unchanged. Compared to this setting, our model enhances
the MAE, Fβ, Eξ , and Sα by 6.2%, 2.9%, 2.0%, and 1.1% on VT5000, respectively. We also
show the visual comparison in Figure 8j. The reason is that the RFB can effectively capture
the long-range context information, which is more beneficial to depict the salient objects.
Besides, we verify the effectiveness of the Nonlocal branch in the context module (No.2
w/o Nonlocal). Namely, we remove the Nonlocal branch in CM and only keep the RFB
branch; at this time, the CM module is identical to the RFB. Compared to this setting,
our model improves the MAE, Fβ, Eξ , and Sα by 2.8%, 0.9%, 0.6%, and 0.7% on VT5000,
respectively. As can be seen from Figure 8k, the ablation model “w/o Nonlocal” is disturbed
by the vehicle wheel, which is prominent in thermal image. This proves that the Nonlocal
module is effective in CM because it can capture long-range relationships between different
pixel positions.

4.4.3. Effectiveness of Multi-Stream Fusion (MSF)

To verify the validity of the MSF, we remove it and retrain the variant under the
supervision of ls2, ls3, and ls4. In this ablation model, there are three saliency outputs
corresponding to features FFd

3 , FRd
3 , and FTd

3 , so we evaluate their different contributions.
First, we evaluate the contribution of joint-modality decoder branch (i.e., the middle stream
in Figure 2), which is denoted as “Only-J” in Table 3 (No.3). That is, the saliency map is
predicted on FFd

3 . Compared to this variant, our model elevates the MAE, Fβ, Eξ , and Sα by
1.8%, 1.3%, 0.8%, and 0.6% on VT5000, respectively. Second, we evaluate the contribution
of RGB branch (i.e., the bottom stream in Figure 2), with the saliency map predicted on
FRd

3 , which is marked as “Only-R” in Table 3. Third, we evaluate the contribution of the
thermal branch (i.e., the top stream in Figure 2), and the saliency maps are predicted on FTd

3 ,
which is marked as “Only-T” in Table 3. We can see that the RGB branch provides more
contributions than the thermal branch on VT5000 with MAE(↓) 0.0442 vs. 0.0509. However,
our model largely outperforms the single RGB branch or single thermal branch. This shows
that single modal information is deficient. By fusing two modal features together (i.e., Only-
J), the performance is boosted, but is still inferior to our full model. Finally, we average three
saliency predictions of FFd

3 , FRd
3 , and FTd

3 , which is labeled as “Both-Avg”. It turns out that
simply averaging the three predictions will not yield better results. However, our model
with MSF can further explore the complementary relationship between three branches by
fusing them at the feature level with two 3× 3 convolution layers. The visual comparisons
shown in Figure 8l–o also consistently prove the effectiveness of the MSF module.

4.4.4. Effectiveness of Backbone

In Table 3, (No.4), we verify the effectiveness of backbone of the encoder. Firstly, we
replace VGG16 with ResNet50 [54] as backbone of the encoder for two modal inputs IR
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and IT , which is abbreviated as “Res50”. Compared to this variant, our model elevates the
MAE, Fβ, Eξ and Sα by 28.2%, 9.9%, 4.7%, 5.2% on VT5000, respectively. From Figure 8p
we can see that, the model “Res50” can only predict the inferior saliency results. This
proves that our model is not compatible with ResNet50. Secondly, we share the parameters
of two encoders for RGB and thermal branches, which is abbreviated as “PS”. That is,
the Conv1–Conv5 of the RGB branch share the same parameters as Conv1–Conv5 of the
thermal branch. Compared to this variant, our model elevates the MAE, Fβ, Eξ , and Sα

by 3.8%, 1.6%, 1.2%, and 0.7% on VT5000, respectively. The visual results are shown in
Figure 8q. The results show that two parameter independent encoders can learn more
diverse feature representations for each modality, respectively.

4.4.5. Effectiveness of Loss Functions

In Table 3, (No.5), we verify the effectiveness of loss functions. Firstly, we only use
the bce loss `bce in the training process. Compared to this setting, our model elevates the
MAE, Fβ, Eξ , and Sα by 4.5%, 3.9%, 2.2%, and 0.3% on VT5000, respectively. Secondly, we
combine the bce with IoU loss. Namely, simultaneously employing `bce and `iou to train our
model. Compared to only employing bce loss, this variant elevates the MAE, Fβ, Eξ , and Sα

by 3.0%, 2.7%, 1.2%, and 0.3% on VT5000, respectively. Thirdly, we combine the bce with
SSIM loss. Namely, simultaneously employing `bce and `ssim to train our model. Compared
to only employing bce loss, this variant elevates the MAE, Fβ, Eξ , and Sα by 2.0%, 1.5%,
1.0%, and 0.1% on VT5000, respectively. Compared to bce+IoU and bce+SSIM, our model
can elevate the MAE by 1.5% and 2.5%, respectively. As can be seen from Figure 9, our
full model shows the superiority in all cases. The results show that either IoU or SSIM
loss can help the model learn more helpful information. Furthermore, by simultaneously
employing bce, IoU, and SSIM losses, our model presents the best results.

4.5. Scalability Analysis

We also verify the adaptation of our CAE-Net on four RGB-D datasets, including
NJU2K (1985 image pairs) [55], NLPR (1000 image pairs) [56], STERE (1000 image pairs) [57],
and DUT (1200 image pairs) [27]. Following previous work settings [58,59], 1485 images
from the NJU2K dataset and 700 images from the NLPR dataset are used for training, when
testing our model on NJU2K, NLPR, and STERE. Additionally, as in the widely adopted
training strategy in [60,61], an additional 800 image pairs from DUT are used for training,
when testing our model on DUT.

We provide the quantitative results of 10 SOTA RGB-D methods in Table 4, includ-
ing JLDCF [31], DCMF [62], SSF [63], DANet [61], A2dele [60], DMRA [27], ICNet [64],
S2MA [30], AFNet [28], and CPFP [65]. There are some methods, for which their codes are
not available or for which the authors do not provide the saliency results, where we mark
them with symbol “−” in Table 4. From the quantitative comparisons, we can see that our
CAE-Net is comparable to these SOTA RGB-D methods. In general, our model ranks in
the top three on most datasets, except on STERE in terms of Sα, where our model ranks
fourth. Specifically, our model enhances MAE by 8.6% and 2.9% on NJU2K and STERE,
respectively. These quantitative results show that our model can be successfully adapted to
RGB-D datasets, demonstrating favorable generation ability of our model.
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Table 4. Quantitative comparisons with 10 methods on four RGB-D datasets. The top three results
are marked with red, green, blue color in each column. ↑ and ↓ denote that the larger value is better
and smaller value is better, respectively. The symbol “−” denotes that their saliency results are
not available.

Datasets Metric
CPFP AFNet S2MA ICNet DMRA A2dele DANet SSF DCMF JLDCF

Ours
[65] [28] [30] [64] [27] [60] [61] [63] [62] [31]

NJU2K

MAE ↓ 0.0534 0.0533 0.0533 0.052 0.051 0.0509 0.0464 0.0435 0.0427 0.0415 0.0379
Fβ ↑ 0.8364 0.8672 0.8646 0.8676 0.8701 0.8709 0.8763 0.8827 0.8804 0.8841 0.9007
Eξ ↑ 0.9002 0.9188 0.9163 0.9127 0.92 0.916 0.926 0.9335 0.9246 0.9347 0.9409
Sα ↑ 0.8777 0.8801 0.8942 0.8939 0.8859 0.871 0.8969 0.8984 0.9125 0.9025 0.9074

NLPR

MAE ↓ 0.036 0.033 0.03 0.0284 0.0315 0.0286 0.0285 0.0267 0.029 0.0219 0.0221
Fβ ↑ 0.8189 0.8203 0.8479 0.865 0.8494 0.87 0.8662 0.8672 0.849 0.8732 0.897
Eξ ↑ 0.9227 0.9306 0.9407 0.9435 0.94 0.9441 0.9478 0.949 0.9381 0.9539 0.9606
Sα ↑ 0.8874 0.8994 0.9145 0.9215 0.8986 0.898 0.9137 0.9135 0.921 0.9239 0.9241

STERE

MAE ↓ 0.0514 0.0472 0.0508 0.0447 0.0477 0.0432 0.0476 0.0448 0.0427 0.0404 0.0392
Fβ ↑ 0.8296 0.8718 0.8545 0.8642 0.8658 0.8808 0.8581 0.878 0.8659 0.8688 0.8824
Eξ ↑ 0.9071 0.9337 0.9254 0.9256 0.9332 0.9348 0.9263 0.9342 0.9298 0.9368 0.9403
Sα ↑ 0.8793 0.8914 0.8904 0.9025 0.8856 0.887 0.8922 0.8928 0.9097 0.9029 0.8993

DUT

MAE ↓ − − 0.044 0.0722 0.0478 0.0427 0.0467 0.034 0.0351 0.043 0.035
Fβ ↑ − − 0.8847 0.8298 0.8831 0.8901 0.8836 0.9129 0.9057 0.8827 0.916
Eξ ↑ − − 0.9349 0.9012 0.9301 0.9296 0.929 0.9514 0.9505 0.9375 0.9498
Sα ↑ − − 0.903 0.8524 0.8889 0.8869 0.8894 0.9159 0.9279 0.9055 0.9141

5. Conclusions

In this paper, we propose a cross-modal attention enhancement network (CAE-Net),
which consists of cross-modal fusion (CMF), a single-/joint-modality decoder (SMD/JMD),
and multi-stream fusion (MSF), to accurately detect the salient objects. Firstly, we design
the cross-modal fusion (CMF) to fuse cross-modal features, where a cross-attention unit
(CAU) is employed to refine two modal features, and channel attention weighted fusion is
used to merge two modal features. The CMF can effectively enhance features and reduce
disturbance from bad quality samples. Then, we design the joint-modality decoder (JMD)
to fuse cross-level features, where the low-level features are purified using high-level
decoded features. The JMD effectively filter noise in low-level features and capture wider
context information. Besides, we add two single-modality decoder (SMD) branches to
preserve more modality-specific information. Finally, we employ multi-stream fusion
(MSF) to fuse three branches of decoded features. The MSF can further aggregate effective
information in three decoder branches. Extensive experiments are performed on three
public datasets, and the results show that our model CAE-Net is comparable to 18 state-of-
the-art saliency models.
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