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Abstract: Currently, most network intrusion detection systems (NIDSs) use information about an
entire session to detect intrusion, which has the fatal disadvantage of delaying detection. To solve
this problem, studies have been proposed to detect intrusions using only some packets belonging
to the session but have limited effectiveness in increasing the detection performance compared to
conventional methods. In addition, space complexity is high because all packets used for classification
must be stored. Therefore, we propose a novel NIDS that requires low memory storage space and
exhibits high detection performance without detection delay. The proposed method does not need to
store packets for the current session and uses only some packets, as in conventional methods, but
achieves very high detection performance. Through experiments, it was confirmed that the proposed
NIDS uses only a small memory of 25.8% on average compared to existing NIDSs by minimizing
memory consumption for feature creation, while its intrusion detection performance is equal to or
higher than those of existing ones. As a result, this method is expected to significantly help increase
network safety by overcoming the disadvantages of machine-learning-based NIDSs using existing
sessions and packets.
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1. Introduction

Currently, a network intrusion detection system (NIDS) manages traffic by dividing it
into logical groups called sessions. Therefore, it should collect the necessary information
by creating state information for the current active session and monitoring traffic [1–5],
implying that an NIDS with finite computing and memory resources has a limited number
of simultaneous sessions that can be handled. Owing to the steadily increasing size of
networks and the increasing amount of network traffic, the number of sessions that an
NIDS has to handle is also increasing [6].

Accurately distinguishing between network intrusion and normal sessions requires
much information about the session. To date, many NIDSs have stored the entire traffic
belonging to the session, used it to analyze the total traffic sent and received after the session
ended, extracted its statistical characteristics, and used them to distinguish intrusion from
normal sessions [1–4]. However, collecting all traffic during a session’s lifetime requires
excessive storage space. Instead of collecting traffic, it can collect only a portion of the
packet, such as the packet header, and create features for the session; however, using
storage space in proportion to the number of packets remains a problem.

An NIDS using session characteristics requires a high storage space and also has the
disadvantage of detecting intrusions only after the session is terminated. To solve these
problems, a new type of NIDS that collects only session initial packets and uses them for
detection has been proposed [5], where, instead of collecting traffic, it can collect only
a portion of the packet, such as the packet header, and create features for the session.
However, this approach still uses storage space in proportion to the number of packets.
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To solve the problem of existing NIDSs, the proposed method directly inputs the
received packet data to the classifier without collecting the packet data and stores the
output through it. In addition, when the next session packet is received, the previously
stored output and received new packet are input back to the classifier; therefore, partial
classification is performed every time a packet is received. Further, whenever a new
session packet is received, several state values for the session are updated, and a feature
set of the machine-learning (ML) model is finally created using these values. In addition,
instead of using all packets for each session, intrusion detection is performed before session
termination because only some packets are used at the beginning of the session, as in the
conventional method.

Therefore, this study makes the following contributions.

- 002D presents an NIDS model that progressively classifies using an ML model every
time a packet is received.

- Suggests a hybrid feature creation method that uses packet and session data simultaneously.
- Proposes an NIDS capable of fast intrusion detection while maintaining high detection

performance using partial packet data instead of entire session packets.

The remainder of this study is organized as follows. Section 2 briefly summarizes the
related research work. Section 3 describes the proposed NIDS, while Section 4 compares
and analyzes the performance of the proposed system with that of the latest competing
work. Finally, Section 5 presents the conclusions of the study.

2. Existing Work
2.1. Session-Based NIDS

A machine learning-based NIDS (ML-NIDS) converts received traffic into features
and classifies them to detect network intrusions. At this time, an ML-NIDS is classified
according to how the received traffic is converted into features. Traffic is divided into
sessions and monitored, and its nature (intrusion or normal traffic) is determined. Therefore,
to convert traffic into features, it is divided into a specific session, and then features for
the session are created using traffic belonging to the session [7–13]. A session is a concept
that exists in the Transmission Control Protocol (TCP), but the User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP) also extend the concept of TCP to
define sessions. The method primarily used at this time classifies traffic with a key of five
tuples: same source IP address, destination IP address, source port, destination port, and
protocol. Packets with the same five tuples are considered to belong to the same session,
but UDP does not have a packet indicating the end of the session. Therefore, if the packet
inter-arrival time (IAT) of two adjacent packets exceeds a certain value (i.e., maximum IAT),
the existing session is considered to be terminated. Subsequent packets are considered to
belong to another session. In ICMP, a session can be defined as four tuples using the source
IP address, destination IP address, type, and protocol fields, rather than five tuples. For
this protocol, the end of the session is also defined using the IAT of the adjacent packets.

Thus, when defining the start and end of a session with the value of the IAT, it
should be noted that even in TCP, a retransmitted packet may be received during session
termination or a timeout may occur owing to packet loss [14]. Ultimately, the maximum
IAT for a session in an NIDS should be set to a sufficiently large value to handle these
situations. If the maximum IAT is set, packets whose IATs exceed this value are not
processed as packets belonging to the existing session, even if they belong to the existing
session. Instead, they are treated as packets belonging to a completely new session with the
same five tuples. Therefore, the maximum IAT must be carefully assigned. It is assigned a
value of 30 to 180 s, although it varies depending on the type of NIDS [15].

Although the maximum IAT is an important value for distinguishing between ses-
sions, it can negatively affect the NIDS detection of intrusions because a delay equal to
the maximum IAT necessarily occurs between the times when a session is terminated
and when the NIDS determines that the session is terminated. Nevertheless, traffic is
classified as a unit of session because NIDS requires tremendous hardware performance
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to determine whether an intrusion has occurred for every individual packet received. A
packet processing performance of up to 30 million packets per second must be supported
to process 10 Gbps ethernet traffic without loss, implying that the NIDS must perform deep
learning ML classification 30 million times per second, which is difficult to support even
with dedicated hardware accelerators. Network traffic should be classified in any unit, i.e.,
single packet or session, and determining intrusion for each session is the most realistic
implementation approach in current hardware technology.

2.2. Session Features

In this section, converting the traffic of each session into an ML input when the network
traffic is divided into sessions is explained. The most common approach in existing studies
is to extract multiple characteristics for a single session through statistical analysis of session
traffic. This method extracts simple characteristics, such as the total data amount of session
traffic and the total number of packets of session traffic, as well as those that require total
traffic, such as the average value of the IAT or standard deviation. An example of a session
feature is presented in Table 1 [9–13].

We call the session information obtained in this manner a session feature. An NIDS
using the session feature must collect the entire traffic of each session until it is terminated.
Therefore, an NIDS using session features collects intra-session traffic, analyzes session
traffic after session termination, creates session features, and uses them to detect intrusions,
as shown in Figure 1.

At this time, to detect session termination, the user must wait for the maximum IAT
after the actual session termination. Therefore, if a network intrusion occurs, it is detected
only after the maximum IAT has elapsed after the actual session termination [10–20].
Therefore, session-based NIDSs have the major disadvantage of long delays in detecting
intrusions. Additionally, because the session feature is created using the total traffic per
session, a considerable amount of traffic must be stored. Storage space may be saved by only
storing packet headers, instead of storing raw packets or storing only some information
necessary to create features. However, this process also requires storage space proportional
to the number of packets belonging to the session. In addition, an NIDS using session
features must decide in advance which characteristics of the session to use as features. These
decisions are determined by the designer, with the performance of an NIDS significantly
affected by the type of feature selected. Furthermore, when a new attack emerges, existing
features may be insufficient to detect it. In this case, a new feature must be designed, posing
a considerable burden on NIDS developers. Table 2 lists the strengths and weaknesses of
session-based NIDS.
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Table 1. ISCXIDS 2012 feature list showing ‘act’: active, ‘avg’: average, ‘blk’: block, ‘bwd’: backward, ‘byts’: bytes, ‘cnt’: count, ‘CWR’: congestion window reduced
flag, ‘dst’: destination, ‘ECE’: explicit congestion notification for echo flag, ‘fwd’: forward, ‘IAT’: inter-arrival-time, ‘init’: initial, ‘len’: length, ‘pkt’: packet, ‘PSH’:
push flag, ‘RST’: reset flag, ‘seg’: segment, ‘src’: source, ‘std’: standard deviation, ‘tot’: total, ‘URG’: urgent flag, ‘var’: variance, ‘win’: window.

No. Name No. Name No. Name No. Name No. Name

1 Src IP 18 Bwd Pkt Len Max 35 Bwd IAT Std 52 SYN Flag Cnt 69 Subflow Fwd Pkts
2 Src Port 19 Bwd Pkt Len Min 36 Bwd IAT Max 53 RST Flag Cnt 70 Subflow Fwd Byts
3 Dst IP 20 Bwd Pkt Len Mean 37 Bwd IAT Min 54 PSH Flag Cnt 71 Subflow Bwd Pkts
4 Dst Port 21 Bwd Pkt Len Std 38 Fwd PSH Flags 55 ACK Flag Cnt 72 Subflow Bwd Byts
5 Protocol_HOPOPT 22 Flow Byts/s 39 Bwd PSH Flags 56 URG Flag Cnt 73 Init Fwd Win Byts
6 Protocol_TCP 23 Flow Pkts/s 40 Fwd URG Flags 57 CWE Flag Count 74 Init Bwd Win Byts
7 Protocol_UDP 24 Flow IAT Mean 41 Bwd URG Flags 58 ECE Flag Cnt 75 Fwd Act Data Pkts
8 Timestamp 25 Flow IAT Std 42 Fwd Header Len 59 Down/Up Ratio 76 Fwd Seg Size Min
9 Flow Duration 26 Flow IAT Max 43 Bwd Header Len 60 Pkt Size Avg 77 Active Mean

10 Tot Fwd Pkts 27 Flow IAT Min 44 Fwd Pkts/s 61 Fwd Seg Size Avg 78 Active Std
11 Tot Bwd Pkts 28 Fwd IAT Tot 45 Bwd Pkts/s 62 Bwd Seg Size Avg 79 Active Max
12 TotLen Fwd Pkts 29 Fwd IAT Mean 46 Pkt Len Min 63 Fwd Byts/b Avg 80 Active Min
13 TotLen Bwd Pkts 30 Fwd IAT Std 47 Pkt Len Max 64 Fwd Pkts/b Avg 81 Idle Mean
14 Fwd Pkt Len Max 31 Fwd IAT Max 48 Pkt Len Mean 65 Fwd Blk Rate Avg 82 Idle Std
15 Fwd Pkt Len Min 32 Fwd IAT Min 49 Pkt Len Std 66 Bwd Byts/b Avg 83 Idle Max
16 Fwd Pkt Len Mean 33 Bwd IAT Tot 50 Pkt Len Var 67 Bwd Pkts/b Avg 84 Idle Min
17 Fwd Pkt Len Std 34 Bwd IAT Mean 51 FIN Flag Cnt 68 Bwd Blk Rate Avg 85 Label
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Table 2. Advantages and disadvantages of session-feature-based NIDS.

Advantages

‚ Intrusion detection is performed at every session termination
instead of every received packet, reducing computational
overhead required for detection.

‚ Robust against loss of some packets.

Disadvantages

‚ Huge memory requirement to store received packets per session.
‚ The NIDS developer must select and design the feature type.
‚ When a new attack emerges, it is likely that a new feature type

will have to be designed.
‚ Detection delay occurs due to waiting for the maximum

inter-arrival time to recognize session termination.
‚ Vulnerable to NIDS detection bypass attacks through repetitive

transmission of packets by an attacker to change important
session feature values.

2.3. Packet Features

Although the session feature has excellent advantages, it also has many fatal dis-
advantages, necessitating studies for its improvement. Among them, the most effective
alternative involves using the traffic belonging to the session as a feature [5]. Using raw
packet data directly as a feature fundamentally avoids determining the type of session
feature in advance. As the ML model automatically determines the most effective char-
acteristics for existing attacks, it is sufficient to train the model again with the updated
dataset when the session data for a new type of intrusion are added. However, because
raw packet data are used as a feature, the packet itself must be stored, placing a heavy
burden on the storage space per session. Thus, only part of the packet is stored, with only
some of the session’s initial packets used instead of all the packets. Let us call the features
directly transformed from raw packet data packet features. The packet feature uses some
session packets, but the actual detection performance is comparable to that of the existing
session-feature-based NIDS. In addition, unlike the session feature, maximum IAT need
not be used because there is no need to wait until the session ends. Therefore, the NIDS can
rapidly detect an intrusion after it has occurred, which is the most important characteristic
of the packet-feature-based method; thus, the packet-feature-based NIDS is advantageous
in securing networks.

As mentioned earlier, session features and packet features have different characteristics
because the methods of creating features are completely different. Considering session
and packet features can complement each other’s disadvantages, research on a new type
of feature that further strengthens the advantages of the two features and improves the
disadvantages is continuously required.

However, in the field of NIDS, there is no research to apply both features at the same
time. In order to apply both feature types simultaneously, there are problems to be solved.
First, the memory usage required for feature creation can increase significantly. Currently,
even NIDS using only session features or packet features requires high memory usage, so it
is technically very difficult to create both features at the same time. In addition to this, we
need a machine learning model that can apply both features together. While all packets
belonging to each session are required to create a session feature, only some packets at the
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beginning of a session are used to create a packet feature. Therefore, a new NIDS design is
needed to combine the advantages of both methods rather than simply using them. Table 3
lists the strengths and weaknesses of packet-based NIDS.

Table 3. Advantages and disadvantages of packet-feature-based NIDS.

Advantages

‚ When a new attack emerges, it can automatically create features to
detect the new attack, eliminating the need for NIDS
developer intervention.

‚ Intrusion detection is possible before session termination.
‚ When it handles long sessions, there is no detection delay due to the

maximum inter-arrival time for end-of-session recognition.
‚ It supports deep packet inspection.
‚ Detection rate is very high.

Disadvantages

‚ High memory requirement to store some packet data per session.
‚ Patterns located in packet payloads that are not used as features

cannot be detected.

3. Materials and Methods
3.1. Motivation

According to previous studies on NIDS, session and packet features have significantly
different characteristics, which can considerably improve detection performance through
synergistic effects if they can be used together. However, the amount of information to be
stored and maintained increases excessively when both feature types are used simultane-
ously. In addition, the detection delay may intensify as the time required for packet feature
processing is added to the delay required for detection caused by using session features.
However, if this problem can be resolved, the intrusion detection performance of the NIDS
can be dramatically improved by comprehensively using session and packet features.

The significant data needed to create a feature requires a correspondingly large storage
space. Packet-feature-based NIDS collects sequentially received packets for each session up
to a predetermined size and then inputs them to an ML model for classification. Therefore,
past packets must be stored until sufficient packet data are gathered. Hence, creating an
ML model where a packet-feature-based NIDS performs classification tasks incrementally
every time packets are received and only stores intermediate classification results of small
size and does not store packet data will significantly reduce the storage space required
for NIDS.

The session-feature-based NIDS stores all packet data or packet headers for all packets
in the session and analyzes them after the session is completed to determine their statistical
characteristics, resulting in a high storage burden and long delay to confirm session termi-
nation, as explained above. Here, re-examining the characteristics of packet-feature-based
NIDS indicates that some data from sessions can be used to achieve sufficiently high de-
tection rates; thus, session features obtained from some initial session packets are likely to
contain sufficient information. In addition, it is possible to fundamentally solve the delay
problem of waiting for the maximum IAT until the end of a session. However, assuming
that NIDS has improved to generate session features with only some initial session packets,
the same storage space as the existing NIDS will be eventually used if all those packets still
need to be stored; thus, storage space issues will remain unresolved again. Therefore, a new
approach to creating session features that can address these constraints is urgently needed.

As session features primarily use statistical values that reflect the entire session, pack-
ets need not be stored if each session feature can be represented as a recurrent expression.
With this approach, packet data can be discarded immediately after updating the existing
session feature value every time a packet is received. Therefore, if both ideas can be im-
plemented, the overhead for storing packet data can be fundamentally solved, even if the
NIDS uses packet and session features simultaneously.
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The proposed approach presents solutions to the two questions presented in the
aforementioned motivation: ‘Can classification be performed each time a packet is received?’
and ‘Can session features be generated in a recurrent manner?’ Each solution is described
in detail.

3.2. Incremental Classification Using Packet Data

In a typical deep learning model with fixed input shapes, it is not possible to perform
a gradual classification of the sessions to which the received packets belong each time they
are received [21,22]. However, deep learning models, such as recurrent neural network
(RNN), gated recurrent unit (GRU), and long short-term memory (LSTM), address these
constraints by generating cycles between nodes [23–26]. Thus, the deep learning model
of the proposed NIDS performs classification with the LSTM classifier for every packet
received, stores the results, and uses this result and newly received packets as LSTM inputs
to progressively continue the classification for the session. Therefore, the required storage
space can be significantly reduced because the packet data itself need not be stored and only
the output result of the corresponding cell of the LSTM needs to be stored. Figure 2 shows a
block diagram of the LSTM used in the proposed scheme for the incremental classification
of sessions. When the proposed NIDS receives the first packet (i.e., Packet 1) of the session,
it inputs packet 1 to the first cell (i.e., Cell 1) of the LSTM classifier. Afterwards, the hidden
states and cell states of cell 1 are temporarily stored in the buffer until the next packet of
the session (i.e., Packet 2) is received. When NIDS receives Packet 2, it inputs the values
stored in the buffer and Packet 2 into Cell 2 to proceed with the next classification process,
and the hidden states and cell states of Cell 2 are stored in the buffer again. In this way,
classification of one session is gradually progressed, and the output value of the last cell
(i.e., Packet N) is used as a feature to classify the session.
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3.3. Recurrent Session Feature Generation

For the feature set presented in ISCXIDS2012, the importance of each feature was
measured using a random forest, and 15 features, including the top 10 features, were
selected and analyzed to determine whether they could be expressed recursively. According
to the analysis results shown in Table 4, although some states for feature generation need to
be added, the features and state values for the current packet can be recurrently calculated
through the features and state values for the previous packet. Using this approach, instead
of collecting all packets and then creating session features, we update the state and features
online as each packet is received and create the features shown in Table 1 when needed,
eliminating the need to store any packets.
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Table 4. Recurrently creating selected features without storing any packet data. Fifteen features
are created recursively using seven states in addition to fifteen features. For example, for the Flow
Duration feature, ‘old Flow Duration + new Flow IAT’ implies that a new Flow Duration value can be
obtained by adding the updated Flow IAT value to the previous Flow Duration, when a new packet
belonging to the current session is received.

Label Type Recurrent Expression

Last Flow Timestamp State current packet timestamp

Flow IAT State new Last Flow Timestamp—old Last Flow Timestamp

Fwd Last Timestamp State new current packet timestamp if the current packet is sent forwards

Bwd Last Timestamp State new current packet timestamp if the current packet is sent backwards

Fwd IAT State new Last Flow Timestamp—old Fwd Last Timestamp if the current packet is
sent forwards

Flow IAT2 Mean State (old Flow IAT2 Mean × old Tot Pkts + new Flow IAT2)/new Tot Pkts

Pkt Len2 Mean State ((old Tot Fwd Pkts + old Tot Bwd Pkts) × old Pkt Len2 Mean + packet size2)/(new Tot
Fwd Pkts + new Tot Bwd Pkts)

Flow Duration Feature old Flow Duration + new Flow IAT

Tot Fwd Pkts Feature old Tot Fwd Pkts + 1 if the current packet is sent forwards

Tot Bwd Pkts Feature old Tot Bwd Pkts + 1 if the current packet is sent backwards

Flow IAT Mean Feature (old Flow IAT Mean × old Tot Pkts + new Flow IAT)/new Tot Pkts

TotLen Fwd Pkts Feature old TotLen Fwd Pkts + the packet size if the current packet is sent forwards

TotLen Bwd Pkts Feature old TotLen Bwd Pkts + the packet size if the current packet is sent backwards

Pkt Len Mean Feature (new TotLen Fwd Pkts + new TotLen Bwd Pkts)/(new Tot Fwd Pkts + new Tot Bwd Pkts)

Flow IAT Std Feature sqrt(new Flow IAT2 Mean − new Flow IAT Mean2)

Fwd Pkts/s Feature new Tot Fwd Pkts/(new Flow Duration − (new Last Flow Timestamp − new Fwd
Last Timestamp)

Flow Pkts/s Feature (new Tot Fwd Pkts + new Tot Bwd Pkts)/new Flow Duration

Fwd IAT Mean Feature (old Fwd IAT Mean × old Tot Fwd Pkts + new Fwd IAT)/new Tot Fwd Pkts if current
packet is sent forwards

Pkt Len Std Feature sqrt(new Pkt Len2 Mean − new Pkt Len Mean2)

Bwd Pkts/s Feature new Tot Bwd Pkts/(new Flow Duration − (new Last Flow Timestamp − new Fwd
Last Timestamp)

Flow IAT Mean Feature (old Flow IAT Mean × old Tot Pkts + new Flow IAT)/new Tot Pkts

Flow IAT Max Feature max(old Flow IAT, new Flow IAT)

3.4. System Architecture

Essentially, the packet-feature-based NIDS uses only a few packets at the beginning of
the session. Therefore, to use both the packet and session features, a session feature must
be created using only the packets used by the packet-feature-based NIDS. If the number of
packets used to create a packet feature and session feature is different, using more packets
will eventually become a bottleneck in the feature creation speed.

Owing to varying packet sizes, even one packet cannot be classified by deep learning
models, such as convolution neural network (CNN) and deep neural network (DNN),
which can only process fixed input sizes. Therefore, a classifier consisting of a two-stage
LSTM is required. The first-stage LSTM classifies packets of various sizes and inputs the
result to a specific cell of the second-stage LSTM, enabling the second-stage LSTM classifier
to classify sessions of various lengths.

Simultaneously, packets processed by LSTM update some features and state the values
necessary for creating the rest of the session features. For the packet input to the last LSTM
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cell, after updating the features and states, the session features for the session to which the
current packet belongs are created. The generated session features are concatenated with
the output of the two-stage LSTM and passed as input to the DNN to detect intrusion.

Figure 3 shows the overall architecture of the proposed NIDS. When packets belonging
to a session are sequentially received, NIDS updates states and some feature values used to
create session features. When the NIDS receives the M-th packet, the states and features
are used to generate session features after updating, and the created session features are
input to the DNN. At the same time, the received packet is divided into equal sizes as
shown in Figure 3, and each partial packet is sequentially input to the first stage LSTM to
create a packet feature to be used in the second stage LSTM. The generated packet feature
is input to each cell of the second stage LSTM, and after the packet feature for the M-th
packet is input, the output of cell M is input to another feature of the DNN. Now, the DNN
determines whether the session is malicious by combining the two input features as inputs
and using them for classification.
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4. Results

To accurately analyze the performance of the proposed scheme, we compared it
with various existing deep-learning-based NIDS. In particular, the ISCXIDS2012 and CIC-
IDS2017 datasets were used to verify the performance in various environments [9,10];
the characteristics of these datasets are listed in Tables 5 and 6, respectively. The fields
dependent on a specific session, such as the source IP, destination IP, and source port, were
removed from the packet data and session features to accurately train the ML models. In
addition, representative deep learning algorithms, such as DNN, CNN, and HAST-I, were
selected for comparison. Parameter settings for each algorithm are shown in Table 7. For
performance analysis, we compared the performance of the proposed method and other
algorithms by measuring the accuracy, precision, recall, F1-score, and confusion matrix.
Each definition of metric is as follows:

• accuracy =
TP + TN

TP + FP + FN + TN
• precision =

TP
TP + FP

• recall =
TP

TP + FN

• F1 − score =
2 · recall · precision
recall + precision

where, TP, TN, FP, and FN represent the true positive, true negative, false positive,
and false negative, respectively. We also compared the proposed method and other NIDSs
in terms of memory requirement and detection speed.
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Table 5. Details of the ISCXIDS2012 dataset.

Number of features 81

Number of classes 5

Number of sessions 78,878

Number of sessions for each class

Normal 22,382
DDoS 21,702

BruteForceSSH 18,145
HTTPDoS 9487
Infiltration 7162

Table 6. Details of the CIC-IDS2017 dataset.

Number of features 81

Number of classes 11

Number of sessions 123,236

Number of sessions for each class

Benign 27,234
DDoS 24,860

DoS Hulk 20,419
DoS GoldenEye 15,305

PortScan 6459
FTP-Patator 6267
SSH-Patator 6029

DoS slowloris 5256
DoS Slowhttptest 4630

Bot 3546
Web Attack Brute Force 3231

Table 7. Parameter configuration for each NIDS.

Type Parameter Value

Proposed

Packet LSTM Unit 512, 256
Session LSTM Unit 1024

Session Unit 256, 128, 16
Session Drop Out 0.1, 0.1, 0.1

Activation ReLU

CNN

Conv Unit 3, 3, 3, 3
Kernel size 3, 3, 3, 3

Unit 512, 256, 128
Activation ReLU

DNN
Unit 1024, 768, 512, 256, 128

Density 0.5
Activation ReLU

HAST-I

Conv_unit 32, 64
Kernel size 5, 5
Pooling size 3, 3

Unit 1024
Activation ReLU

4.1. Memory Requirement

Table 8 shows the memory size required to store the packet data used to create the
feature. In the existing session-feature-based NIDS, the size of memory required to store
packets for generating features is proportional to the average session length. On the other
hand, the existing packet-feature-based NIDS uses some data for an initial fixed number
of packets, so the required memory size is smaller than that of the session-feature-based
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NIDS. The proposed NIDS minimizes the required memory area even though both feature
types are used simultaneously. First, instead of using packet data to create session features,
all features are created using only 17 states and some session features. Therefore, the
proposed method always uses the same memory to create session features regardless of
the session length. In addition, when generating packet features, only the current packet
is used instead of several packets received so far, so only a fixed size of memory is used
regardless of the session length. From Table 8, the existing session-based NIDS consumes
21,066 and 5791 bytes per session on average for the ISCXIDS2012 and the CIC-IDS2017,
respectively. This means that the sessions in the ISCXIDS2012 are longer than the sessions in
the CIC-IDS2017 and therefore use more memory. On the other hand, packet-feature-based
NIDS requires 418 bytes per session in the CIC-IDS2017 instead of 357 bytes per session in
the ISCXIDS2012. From this result, we find that ISCXIDS2012 contains more sessions, or six
packets shorter than the CIC-IDS2017.

Table 8. Average memory size in bytes for storing the packet data needed to create the feature.
Assume that only initial six packets are used for each session and only 100 bytes of each packet are
used to create packet-based features.

Dataset Session-Feature-Based Packet-Feature-Based Proposed

ISCXIDS2012 21,066 357 296 (196 + 100)
CIC-IDS2017 5791 418 296 (196 + 100)

The proposed NIDS creates two types of features simultaneously, using 196 bytes of
memory per session for session features and only 100 bytes of memory per session for
packet features. Therefore, since a total of 296 bytes of memory is used per session, the
proposed NIDS consumes less memory than the existing session-based NIDS or packet-
based NIDS, even though both features are used simultaneously. Above all, it is also a great
advantage that the size of memory required per session is always fixed. It is advantageous
for system design, such as being able to accurately calculate the memory required for the
number of concurrent sessions that can be supported.

4.2. Detection Speed

Table 9 shows the number of packets required for intrusion detection per session
between the existing session-feature-based NIDS and the proposed NIDS, where a smaller
number of packets means faster detection speed. Although the number of packets required
for detection varies depending on the dataset used, it shows that the proposed method
uses a very small number of packets compared to the existing session-feature-based NIDS.
In general, packet-feature-based NIDS is advantageous in increasing intrusion detection
speed because it uses only some initial session packets. However, it should be noted that
the proposed NIDS uses session features in addition to packet features. From Table 9, it is
confirmed that the detection speed of the proposed NIDS can be greatly improved, unlike
the existing session-feature-based NIDS, even though the proposed method uses the same
session features to session-feature-based NIDSs. Due to the synergistic effect of packet and
session features, the proposed NIDS can reduce the number of required packets effectively,
increasing detection speed.

Table 9. The average number of packets required to detect an intrusion per session.

Dataset Session-Feature-Based Proposed

ISCXIDS2012 32.92 3.6
CIC-IDS2017 9.04 4.1

4.3. Intrusion Detection Accuracy

Figure 4 shows the intrusion detection rates of each algorithm for the datasets men-
tioned. As shown in the figure, the proposed scheme has the highest detection rate com-
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pared with the existing NIDS. In particular, it is noteworthy that the proposed NIDS has
the highest performance for all metrics, i.e., accuracy, precision, recall, and F1-score, among
all the comparison algorithms. Considering that the proposed method detects intrusion
without packet storage, in contrast to the existing methods that require a large memory size
to store many packets to create features, the high detection accuracy of the proposed NIDS
proves that it effectively mitigates the disadvantages of existing NIDSs while maintaining
high detection accuracy.
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4.4. Confusion Matrix

Figures 5 and 6 show the confusion matrices for each algorithm for the two datasets.
The confusion matrix is advantageous for analyzing detailed performance because it can
analyze the performance of individual classes. When using ISCXIDS2012, the proposed
method has a slightly lower detection rate for distributed denial-of-service (DDoS) than
HAST-I but exhibits the highest performance for the other classes.
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As shown in Figure 5, the DDoS class shows the lowest detection rate regardless of
algorithm type. The reason is that DDoS attacks use many zombie PCs to attack one target
with multiple sessions, so the characteristics are very different from other classes. Most
NIDS today detect attacks based only on information about a single session, making them
vulnerable to DDoS attacks that use multiple sessions. In this case, the additional use of
characteristics for multiple sessions is helpful for detection.

In contrast, CIC-IDS2017 exhibits almost the same performance as HAST-I as shown
in Figure 6. Therefore, these two confusion matrices confirm that the proposed NIDS has a
high detection rate for the entire dataset but can also significantly improve the detection
rate for individual classes.

CIC-IDS2017 has fewer noises than other datasets including the ISCXIDS2012. There-
fore, compared to the ISCXIDS2012, the classification accuracy is higher regardless of
the machine learning algorithm, so the margin for improving the accuracy is very small.
Nevertheless, it shows that the proposed method is superior in that the proposed NIDS
improves F1-scores by 3.67% points and 1.46% points, respectively, compared to DNN and
CNN models. Since performance differences are evident for each classification model, it
also shows that the CIC-IDS2017 is sufficient to be used for performance comparison.

5. Conclusions

The proposed NIDS does not need to store the received packets for feature creation;
therefore, in contrast to the existing ML-based As, the amount of memory consumed for
processing each active session is minimal. Because the same memory can support a greater
number of concurrent sessions than other NIDS, the insufficient NIDS processing capacity
owing to the recent increase in network traffic can be significantly improved. Above all,
it is a significant advantage that the intrusion detection performance can be improved
compared to the existing NIDS, despite the small memory footprint. As network attacks
diversify and zero-day attacks become frequent in an environment where the amount
of network traffic increases drastically, NIDS faces technically significant challenges in
simultaneously improving processing capacity, speed, and detection accuracy. Hence, the
proposed NIDS is expected to significantly aid in solving these problems.

As the proposed NIDS operates optimally when packets within a session are received
in order, the amount of memory used for sorting increases when there are many out-of-
order packets. The proposed NIDS is designed under the assumption that session packets
are received without loss. However, some packets may be lost in real networks. It is
expected that packet loss causes a negative impact on intrusion detection performance.
The weaknesses of the proposed NIDS will be addressed through future research, and we
expect that the proposed NIDS will be fully applied to an actual network.
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