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Abstract: SLAM (Simultaneous Localization And Mapping) in unmanned aerial vehicles can be an
advantageous proposition during dangerous missions where aggressive maneuvers are paramount.
This paper proposes to achieve it for a quadcopter using a differential flatness-based linear quadratic
regulator while utilizing sensor measurements of an inertial measurement unit and light detection
and ranging considering sensors’ constraints, such as a limited sensing range and field of view.
Additionally, a strategy to reduce the computational effort of Extended Kalman Filter-based SLAM
(EKF-SLAM) is proposed. To validate the performance of the proposed approach, this work considers
a quadcopter traversing an 8-shape trajectory for two scenarios of known and unknown landmarks.
The estimation errors for the quadcopter states are comparable for both cases. The accuracy of the
proposed method is evident from the Root-Mean-Square Errors (RMSE) of 0.04 m, 0.04 m/s, and 0.34
deg for the position, velocity, and attitude estimation of the quadcopter, respectively, including the
RMSE of 0.03 m for the landmark position estimation. Lastly, the averaged computational time for
each step of EKF-SLAM with respect to the number of landmarks can help to strategically choose
the respective number of landmarks for each step to maximize the use of sensor data and improve
performance.

Keywords: quadcopter; simultaneous localization and mapping; extended Kalman filter; linear
quadratic regulator; differential flatness

1. Introduction

SLAM (Simultaneous Localization And Mapping) aims to solve the problem of local-
ization of an autonomous robot in an unknown environment by simultaneously mapping
the surroundings. The emergence of indoor applications of mobile robotics has made
SLAM an attractive alternative to user-built maps [1]. Moreover, SLAM is gradually finding
applications outdoors, underwater, and in space devoid of a Global Positioning System
(GPS) [2]. Essentially, SLAM can be divided into a process of front-end and back-end
formulation, where the front-end comprises feature extraction, data association, and outlier
rejection, whereas the back-end deals with the main estimation process of robot poses
and landmark positions [1]. Based on factors, such as spatial representation, the structure
and dynamics of the environment, and the employed sensors, a variety of approaches to
SLAM can be used, which include but are not limited to GraphSLAM, FastSLAM, and
VoSLAM [3].

Several developments have been made for mobile mapping systems using ground-
based systems, but unmanned aerial vehicles (UAVs) could provide advantages at haz-
ardous sites compared to other platforms and enable mapping at different resolutions
with the ability to fly at different elevations and speeds [4]. For UAVs, the most popular
method for SLAM implementation has been based on Extended Kalman Filter (EKF), that
is EKF-SLAM, with a majority using Inertial Measurement Units (IMUs) as proprioceptive
sensors and visual odometry-based sensors such as cameras as exteroceptive sensors [5].
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The EKF-SLAM approach was first proposed by Smith et al. [6], where EKF is a Bayesian
approach of estimation utilizing posterior probability distribution. EKF-SLAM faces key
issues, especially in terms of computational effort as computation increases quadratically
with the number of landmarks [7]. Still, EKF-SLAM is the most popular method with the
ability to deal with non-linear systems, and plenty of available research and resources [8].

SLAM is basically solved specifically for vision-based slow robots in 2D indoor envi-
ronments [1], but it is still an enigma for highly agile robots such as quadcopters, operating
in indoor or outdoor environments. The SLAM algorithm has been studied for UAVs with
3D observations of LiDAR (Light Detection And Ranging) or comparable to LiDAR in a few
research works [2,4,9–12]. Note that cameras are extremely sensitive to lighting conditions
and have limitations in capturing the geometry of the observed scene and generating more
accurate maps, thus a more effective sensor, LiDAR, is being considered more lately [4].
Cho and Hwang [9] conducted SLAM with just four landmarks using EKF-SLAM and
observation in terms of range and attitude difference. In [10], 3D SLAM is performed
for UAVs using a linear Kalman filter with the linearized model for the UAVs and range-
bearing measurements. A data fusion algorithm was proposed for UAVs by the integration
of LiDAR measurements with GPS to perform in GPS-degraded environments [11]. Kim
et al. [12] discussed an application of LiDAR for the localization of speedy UAVs in a
GPS-denied outdoor environment while conducting surface reconstruction and elevation
registration. While all of the aforementioned studies have used EKF in some form, there
are others. Sadeghzadeh-Nokhodberiz et al. [2] studied the application of 3D SLAM on
UAVs using FastSLAM and LiDAR. Karam et al. [4] used LiDAR for validation of the
performance of GraphSLAM using rangefinders on UAVs.

Most works discussed above are focused on localization and mapping and mostly
have not discussed the control strategies used. Many of them used the most basic con-
troller such as PID control with pre-defined control signals for following a set trajectory.
In [13], SLAM was achieved using a sliding mode control for the non-linear system of a
quadcopter, but still lacked the ability to closely follow a given trajectory over extended
periods. Moreover, UAVs can have aggressive maneuvers where fast and reliable SLAM is
required. Thus, this work proposes the use of a Differential Flatness-based Linear Quadratic
Regulator (DF-LQR). It is known that LQR is an optimum control superior to other classical
approaches including PID in terms of robustness, energy performance, computational
efficiency, and tuning parameters [14]. However, LQR by itself can only be applied to linear
or linearized systems. A DF-based approach, where the non-linear system of quadcopters
can be formulated linearly for control using LQR, has been proposed to achieve aggressive
maneuvers [15]. For UAVs operating in any dangerous conditions, aggressive maneuvers
could be paramount and thus DF-based LQR control for quadcopters could be an ideal
choice. In practice, control is achieved in SLAM based on control signals obtained using
estimated states rather than true-value states, but many researchers have been conducting
studies assuming true-value states [2,9,10]. DF-based LQR control has not been studied in
conjunction with 3D SLAM, and thus this work proposes to do so while also calculating
control signals from estimated states. The effectiveness of this control strategy is validated
by comparing the results of estimated quadcopter states when landmarks are unknown
and are also being estimated to a case when landmarks are known.

As mentioned previously, EKF-SLAM is computationally intensive with the increasing
number of landmarks, but it is still a method of choice for several researchers, as is evident
from several kinds of research over the years using EKF [8]. While there has been research
on reducing the computational complexity of EKF-SLAM with the use of local maps for
2D motion [16], it would be beneficial if there are metrics that can provide inference on
computation time for different steps of SLAM, such as prediction, update, and registration
such that decisions can be made on the size of map space for predictions, the number of
landmarks for update, or registration, or even the time step for SLAM. This work proposes
a strategy to reduce the computational effort of EKF-SLAM, which is tightly combined with
the UAV control discussed above. It conducts multiple simulations over different numbers
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of landmarks to study the relationship between these time parameters with the landmarks
in consideration. Although these metrics were derived for the specific computing resources
available in this study, comparable metrics can be derived for other computing resources in
use. Therefore, it is thought that it can provide direction to researchers who want to use or
improve EKF-SLAM in the future.

In summary, the contributions of this paper are summarized below:

1. Study of DF-based LQR control in 3D EKF-SLAM to achieve a better and more realistic
trajectory control using estimated states.

2. A pragmatic way of using LiDAR measurements as they become available based on
UAV position and LiDAR’s Field Of View (FOV).

3. Inducing decision-making to improve the computational efficiency of the appropriate
number of landmarks or EKF-SLAM through the development of a metric of the
relationship between the number of landmarks and the time step.

2. Methodologies
2.1. Dynamic and Kinematic Model of Quadcopters

The inertial and body frames and the state variables to describe the motion of the
quadcopter are depicted in Figure 1. The inertial frame N, which is fixed to the surface of
the Earth at mean sea level, is defined as n̂i for i = 1, 2, and 3, where n̂1 is directed towards
North, n̂2 is directed towards East, and n̂3 points to the center of the Earth. Note that one
assumes a flat, non-rotating Earth with a uniform gravitational field. The body frame B,
whose origin is fixed to the center of gravity of the quadcopter, is defined as b̂i for i = 1, 2,
and 3, where b̂1 is directed normal to the field of view of the LiDAR on the quadcopter, b̂2
points to the direction of the right arm of the quadcopter, and b̂3 is directed downwards,
which is perpendicular to the quadcopter plane.

Figure 1. Definitions of the reference frames and the state variables of the quadcopter.

The quadcopter is assumed to be an exactly symmetrical rigid body, which implies
that the inertia matrix is diagonal, with 3 Degrees-Of-Freedom (DOF) translation motion
and 3 DOF rotational motion. The quadcopter’s attitude with respect to the inertial frame
is expressed using the 3-2-1 set of the Euler angles as φ, θ, and ψ that represent the roll,
pitch, and yaw angles, respectively. Note that the direction cosine matrix that maps from
the body frame to the inertial frame is described as [17]:

CNB = C3(ψ) C2(θ) C1(φ). (1)

Note that each direction cosine matrix is defined as

C3(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

, C2(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

, C1(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

.
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where, for instance, cψ and sψ are cos ψ and sin ψ, respectively.
To describe the motion of the quadcopter, this work defines a state model as [18]:


N ρ̇
Bν̇
BΛ̇
Bω̇

 =


CNB

Bν

− Bω× Bν +
(
CT

NB
Nfg + BfT

)
/m

D Bω

J−1[− Bω×
(

J Bω
)
+ Bτ

]

, (2)

where Nρ ∈ R3 is the position of the quadcopter in the inertial frame in Cartesian
coordinates, Bν ∈ R3 is the velocity of the quadcopter expressed in the body frame,
BΛ = [φ, θ, ψ]T ∈ R3 is the vector composed of the 3-2-1 set of the Euler angles,
Bω = [p, q, r]T ∈ R3 is the angular velocity of the quadcopter expressed in the body
frame, Nfg is the gravity force defined by gn̂3, g is the gravitational constant, BfT is the
thrust force defined by − fTb̂3, fT is the intensity of the thrust, m is the mass of the quad-
copter, J ∈ R3×3 is the moment of inertia of the quadcopter, Bτ =

[
τφ, τθ , τψ

]T ∈ R3 is the
torque acting on the quadcopter in the body frame, and the matrix D is defined as:

D =
1

cos θ

cos θ sin φ sin θ cos φ sin θ
0 cos φ cos θ − sin φ cos θ
0 sin φ cos φ

. (3)

Note that the top-left superscripts represent the frame in which the components of
each vector are defined. From here on, for simplicity, the superscripts N and B are omitted
unless otherwise specified for clarity. Additionally, the aerodynamic and gyroscopic effects
of the rotors are ignored to reduce the complexity.

2.2. Trajectory Control

A quadcopter is an under-actuated system that uses 4 independent rotors to control 6
DOF motion. For this reason, the position control of the quadcopter is achieved by changing
its attitude and thrust. Usually, a trajectory controller is used as an outer loop control while
the attitude controller plays a role in an inner loop control [19]. However, the quadcopter
may suffer from large tracking errors when following high-speed trajectories. This problem
is countered by using the concept of DF.

Figure 2 shows the procedure of the trajectory control for the quadcopter in this work.
Once the desired states (rd) and desired input (ud) using DF are determined for a given
trajectory (yd), the LQR-based trajectory controller generates an output (u) that is used in an
inverse mapping process, at the end of which we obtain the required thrust information ( fT),
desired attitude (Λd = [φd, θd, ψd]

T), and desired angular velocity (ωd = [pd, qd, rd]
T).

The desired attitudes and angular velocity are utilized to compute the control torque (τ)
via the attitude controller. Then, the obtained fT and τ are used to control the quadcopter.
Each of the steps of the trajectory control is explained in the following subsections.

Figure 2. Flowchart of the trajectory control.
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2.2.1. Differential Flatness

DF is a structural property of a class of nonlinear dynamical systems, denoting that
all system variables (such as state vectors and control inputs) can be written in terms
of a set of specific variables (called flat outputs) and their derivatives [15,20]. In other
words, a flat output is expressed as yd = fy(rd, ud), where rd and ud can be expressed as
rd = gr(yd, ẏd, ÿd, . . .) and ud = gu(yd, ẏd, ÿd, . . .) if they exist [15].

With this concept, this work defines yd = [ρT
d , ψd]

T ∈ R4, where ρd ∈ R3 and ψd
represent the position of the desired trajectory in the inertial frame and the heading angle
of the desired trajectory, respectively. Thus, the corresponding rd can be defined in terms of
flat outputs as

rd =
[
ρT

d , ρ̇T
d , ψd

]T
∈ R7. (4)

Likewise, ud is defined in terms of flat outputs ρ̈d and ψ̇d as

ud =
[
[ρ̈d − gn̂3 ]

T, ψ̇d

]T
∈ R4. (5)

The desired states can also be found from the following:

ṙd = Ard + Bud + bg, (6)

where

A =

[
03×3 I3×3 03×1

04×7

]
∈ R7×7, B =

[
03×4
I4×4

]
∈ R7×4, b =

05×1
1
0

 ∈ R7.

Here, 0i×j represents a zero matrix with a dimension of Ri×j, 0i×1 represents a zero
vector with a dimension of Ri×1, and Ik×k represents an identity matrix with the dimension
of Rk×k.

2.2.2. LQR-Based Trajectory Controller

This work considers an LQR-based control that can provide trajectory control by
linearizing a nonlinear system at a nominal trajectory [21]. Since the position, velocity,
and heading angle of the quadcopter are the main states out of DF, the trajectory control
considers the following state vector:

r =
[
ρT, ρ̇T, ψ

]T
∈ R7. (7)

The linearized state space model is obtained as [15]:

ṙ = Ar + Bu + bg, (8)

where u is defined by

u ≡
[

up
uψ

]
=

 1
m

CNB fT

ψ̇

 ∈ R4. (9)

Note that up is expressed in the inertial frame.
To find the optimal control input that follows the desired trajectory, one considers the

following performance index [19]:

L =
∫ ∞

0

(
r̃TQ̃r̃ + ũTR̃ũ

)
dt, (10)

subject to
˙̃r = Ar̃ + Bũ, (11)
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where r̃ ∈ R7 is the state error defined as r̃ = r− rd, ũ ∈ R7 is the difference between the
trajectory control input and the desired input defined as ũ = u− ud, and Q̃ ∈ R7×7 and
R̃ ∈ R4×4 are the positive-definite weight matrices, which are determined by the Bryson’s
rule [22]. Note that Equation (11) can be obtained from the difference between Equations (6)
and (8) because these equations are comparable with the same A, B, and b coefficients.

The optimal control input is given by [23]

ũ = −R̃−1BTP̃r̃, (12)

where P̃ ∈ R7×7 is the positive-definite Riccati matrix, which is determined by solving the
following algebraic Ricatti equation:

ATP̃ + P̃A− P̃BR̃−1BTP̃ + Q̃ = 0. (13)

Then, u in Equation (9) is ultimately calculated as:

u ≡
[

up
uψ

]
= ud + ũ. (14)

It is important to note that u cannot be directly used to track the desired trajectory
because a quadcopter is an under-actuated system. Therefore, based on u, the useful
expressions using Equations (9) and (14) are described for the attitude control in the
following subsection.

2.2.3. Inverse Mapping

The resulting u in Equation (14) is converted into fT , the desired attitudes φd, θd,
and the desired yaw angular rate rd through the inverse mapping process. For a stable
flight, one would not want continuously changing roll and pitch in a quadcopter. Thus,
the desired roll and pitch angular rates in the body frame are considered to be zero, that is,
pd = 0 and qd = 0. Additionally, ψd is obtained from yd.

First, up component of Equation (9) can be rearranged as:

fT = m
√

uT
pup. (15)

Here, fT is calculated with up obtained from Equation (14). Additionally, the up
component of Equation (9) can be rearranged with desired attitudes as follows:

z ≡ − m
fT
[C3(ψd)]

Tup = C2(θd) C1(φd) b̂3, (16)

where z = [z1, z2, z3]
T ∈ R3. Substituting the values of up determined from Equation (14)

into Equation (16), z is calculated using the first part of the equation. Then, the second part
of the equation is solved for φd and θd as follows:

φd = sin−1(−z2), θd = tan−1
(

z1

z3

)
. (17)

Following the expansion of Equation (2) for ψ̇ in Λ̇ equation, one can have the follow-
ing relation:

ψ̇ = r
cos φ + q sin φ

cos θ
. (18)
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Since, ψ̇ = uψ in Equation (9), substituting ψ̇ with uψ obtained from Equation (14),
φ, θ with φd, θd from Equation (17), and q with the desired pitch angular rate of qd = 0, the
desired yaw angular rate is determined as:

rd = uψ
cos θd
cos φd

. (19)

2.2.4. Attitude Controller

For attitude control, a PD controller is considered in this work. The attitude controller
determines the torque τ based on the desired attitude and the desired angular rate. The
torque components in the body frame at a given instant are calculated as:

τφ = −kpφ(φ− φd)− kdφ
(p− pd),

τθ = −kpθ
(θ − θd)− kdθ

(q− qd),

τψ = −kpψ(ψ− ψd)− kdψ
(r− rd).

(20)

where kpφ , kpθ
, and kpψ are the proportional gains and kdφ

, kdθ
, and kdψ

are the derivative
gains.

2.3. EKF-SLAM

The EKF-SLAM estimates the quadcopter states while mapping the estimated land-
marks’ position simultaneously. This work assumes that the quadcopter has a 3D LiDAR
that can provide range-bearing measurements for each identified landmark and an IMU
that provides a 3-axis gyroscope and 3-axis accelerometer. For the LiDAR measurement, it
is assumed that the observed landmarks are perfectly identified whenever observed using
LiDAR providing range-bearing measurements of each identified landmark. In the case of
the IMU measurement, especially the accelerometer, the only vertical accelerometer data in
the body frame will be used because both planar axes data should ideally be zero in the
quadcopter dynamics [24]. Additionally, one assumes that the IMU provides the estimated
measurements that are already filtered.

One part of the total state vector estimated by the EKF-SLAM is the quadcopter’s
state defined by s =

[
ρT, νT, ΛT]T ∈ R9, which includes the position in the inertial frame,

velocity in the body frame, and attitude in terms of Euler angles.
Unlike the conventional EKF, the total state vector in the EKF-SLAM contains more

states, which are the position (i.e., the inertial coordinate) of mapped landmarks defined

by m =
[
lT
1 , . . . , lT

nm

]T
∈ R3nm . Here, the subscripts represent landmark IDs associated

with mapped landmarks in a set M = {1, . . . , nm}, and nm is the total number of mapped
landmarks at any given instant. Therefore, the total state vector is defined as:

x =
[
sT, mT

]T
∈ R9+3nm . (21)

Note that the size of the total state vector keeps changing at each time step because the number
of mapped landmarks varies.

In addition to the mapped landmarks, there are observed landmarks defined by a set
O as shown in Figure 3. If the LiDAR observes no landmarks, some may already be mapped
(nκ), but some might not yet have been mapped (nυ). The observed mapped landmarks are
identified as κ ⊆ M, and the observed but unmapped landmarks are identified with new
IDs as υ = {nm + 1, nm + 2, . . . , nm + nυ}, where υ * M.
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Figure 3. Classification of landmarks.

Moreover, the difference between the conventional EKF and the EKF-SLAM is the
registration process of new landmarks. Once unmapped landmarks, which are not incorpo-
rated in the total state vector, are observed by LiDAR, they are registered in the total state
vector. This process will be explained in Section 2.3.4. An outline of the EKF-SLAM process
proposed including the registration process is depicted in Figure 4. The process takes
inspiration from [25] proposed for 2D SLAM and is improved to match the continuous
non-linear system of the quadcopter in 3D space.

Figure 4. EKF-SLAM flowchart in the sensing, navigation, and control system.
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2.3.1. State and Covariance Initialization

The estimated total states x̂ and the state error covariance matrix P are expressed
as [7,26]:

x̂ =
[
ŝT, m̂T

]T
∈ R9+3nm , (22)

P =

[
Pss Psm
Pms Pmm

]
=


Pss Psl1 · · · Pslnm
Pl1s Pl1l1 · · · Pl1lnm

...
...

. . .
...

Plnm s Plnm l1 · · · Plnm lnm

 ∈ R(9+3nm)×(9+3nm), (23)

where the hat operator (̂) signifies the corresponding estimated states, Pss and Pmm are the
estimated covariance matrix of the quadcopter and the mapped landmark states, respec-
tively, and Psm and Pms are the estimated cross-covariance matrix between the quadcopter
states (s) and the mapped landmarks (m). Note that the subscripts for the covariance matrix
P are so named to identify the rows and columns considered. For instance, ss identifies
the matrix of the first 9 rows and columns corresponding to the quadcopter’s 9 states, and
sm identifies the matrix of the first 9 rows and 3nm columns corresponding to the mapped
landmark states. In this work, it is assumed that the quadcopter starts without sensing
any landmarks. Therefore, x̂1 = ŝ and P1 = Pss are only initialized at the first time step
(i.e., i = 1).

2.3.2. Prediction of Quadcopter States

This work utilizes Equation (2) to describe the motion of the quadcopter. However,
since this mathematical model may not fully describe the actual motion of the quadcopter,
the quadcopter model for EKF includes an additional term of the process noise, which is
defined by w ∼ N(0, Q), where Q indicates the process noise covariance matrix. Addition-
ally, considering the estimation is for only nine states of the quadcopter, the propagation
is achieved using estimated IMU readings as a control input. This modified model is
expressed as

ṡ = fs(s, λ) + w =
[
ρ̇T, ν̇T, Λ̇T

]T
+ w, (24)

where λ =
[
âz, ω̂T]T ∈ R4. Here, âz and ω̂ are estimated measurements from the IMU

sensor post noise filtering actual vertical accelerometer measurement (ãz) and gyroscopic
measurement (ω̃), respectively. The considered IMU measurements for the quadcopter are
as follows: [

ãz
ω̃

]
=

[
− fT/m

ω

]
+ η, (25)

where η ∼ N(0, Rη), Rη ∈ R4×4 is the measurement covariance matrix for IMU measure-
ments considered.

In the prediction step, only the quadcopter states will be predicted based on a math-
ematical model as the landmarks are stationary [7]. Therefore, the predicted quadcopter
states at the ith time step are obtained by integrating the following equation through the
time step:

˙̂s = fs(ŝ, λ). (26)

Similarly, the predicted quadcopter state covariance matrix at the ith time step,
Pss ∈ R9×9, is obtained by integrating the following equation through the time step:

Ṗss = FPss + PssFT + Q, (27)
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where F is the Jacobian matrix for the state space function with respect to the quadcopter
state as:

F ≡ ∂fs

∂s

∣∣∣∣
ŝ,λ
∈ R9×9. (28)

Additionally, the prediction equation for the cross-covariance matrix between the
quadcopter states and the mapped landmark states is given by

Ṗsm = FPsm, (29)

and Psm ∈ R9×3nm is obtained by integrating Equation (29). Moreover, Pms is simply
computed by Pms = PT

sm. Note that Equation (29) is a corollary equation for the established
linear form of cross-covariance update in SLAM [7,26] so that it embeds the continuous
nature of the quadcopter system.

2.3.3. Updating Total State

For an arbitrary observed landmark, the LiDAR provides the azimuth, elevation, and
range information, which are defined as α, β, and δ, respectively, shown in Figure 5, and
the observation is given by yl = [α, β, δ]T ∈ R3.

Figure 5. Spherical coordinate representation of LiDAR measurement of a landmark.

If the inertial Cartesian coordinate of the arbitrary observed landmark is l, the obser-
vation model for the LiDAR is as follows:

yl = ho(s, l) + ζ l ∈ R3, (30)

where ζ l ∼ N(0, Rζ), Rζ ∈ R3×3 is the measurement covariance matrix for LiDAR measure-
ments, and also

ho(s, l) =


tan−1

 c3√
c2

1 + c2
2


tan−1

(
c1

c2

)
√

c2
1 + c2

2 + c2
3


∈ R3, (31)

where c =
[
c1, c2, c3

]T
= CT

NB(l− ρ) is the Cartesian position of the landmark in the
body frame.

The measurements for observed landmarks O are represented as

yo =

[
yκ

yυ

]
∈ R3no , (32)
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where

yκ =


yκ,1
yκ,2

...
yκ,nκ

 ∈ R3nκ , yυ =


ynm+1
ynm+2

...
ynm+nυ

 ∈ R3nυ . (33)

Here, for instance, if κ = {2, 4, 7}, yκ,1 signifies the LiDAR observation for the first
landmark in κ set, that is the landmark with ID 2. Likewise, ynm+1 signifies the measurement
of an unmapped landmark whose new ID will be nm + 1 post-registration.

It should be noted that only the observed mapped landmarks are used in the obser-
vation model considering the requirement of landmark inertial coordinates as one of the
arguments in Equation (30). For observed mapped landmarks, one has estimated landmark
inertial coordinates. However, for observed but unmapped landmarks that are not the case
until the completion of their registration in Section 2.3.4. Hence, the observation function is
represented as:

yκ = h(s, mκ) + v =


ho(s, lκ,1) + ζκ,1
ho(s, lκ,2) + ζκ,2

...
ho(s, lκ,nκ ) + ζκ,nκ

 ∈ R3nκ , (34)

where

v =

 ζκ,1
...

ζκ,nκ

 ∈ R3nκ , (35)

is the measurement error vector for the observation function with the measurement covari-
ance matrix R ∈ R(3nκ)2

.
So, the total measurement vector at the ith time step can be represented as:

yo,i =

[
yκ,i
yυ,i

]
∈ R3no,i . (36)

The first step of updating is to calculate the Kalman gain at the ith time step as:

Ki = P̂−
(sm,smκ)i

HT
i E−1

i ∈ R(9+3nκ,i)×(3nκ,i), (37)

where
Ei = Hi P̂−(smκ ,smκ)i

HT
i + Ri ∈ R(3nκ,i)

2
, (38)

P̂−
(sm,smκ)i

=

[
P̂−ss P̂−smκ

P̂−ms P̂−mmκ

]
i
∈ R(9+3nm,i)×(9+3nκ,i). (39)

Here, Hi is a Jacobian matrix of observation function Equation (34), which is calcu-
lated as

Hi ≡
[

∂h
∂s

,
∂h

∂mκ,i

]∣∣∣∣
x̂−i

∈ R(3nκ,i)×(9+3nκ,i), (40)

and the part of the covariance matrix, P̂−
(ss,smκ)i

, is of the form

P̂−
(smκ ,smκ)i

=

[
P̂−ss P̂−smκ

P̂−mκs P̂−mκmκ

]
i
∈ R(9+3nκ,i)

2
. (41)

Then, the correction step based on the observation function Equation (34) at the ith

time step can be expressed as:

x̂+i = x̂−i + Ki
[
yκ,i − hi

]
∈ R9+3nκ,i . (42)
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Lastly, the updated error covariance matrix at the ith time step is given by [7]

P̂+
i = P̂−i − KiEiKT

i ∈ R(9+3nκ,i)
2
. (43)

2.3.4. Registration of the New Landmarks

Landmark registration is performed when the quadcopter discovers new unmapped
landmarks that are yet to be incorporated into the map space x. Therefore, this operation
results in an augmentation of the state vector. All the landmarks observed but unmapped go
through this registration step once. During registration, the inertial Cartesian coordinates
for each new landmark (l) are determined using the inverse observation model. For an
arbitrary landmark observation discussed in Section 2.3.3, the inverse observation model is

l = g(s, yl) = CNB $(yl) + ρ, (44)

where $ is a transformation function that converts LiDAR observations in spherical coordi-
nates to Cartesian coordinates in the body frame as follows:

$(yl) =

δ cos (β) cos (α)
δ cos (β) sin (α)

δ sin (β)

. (45)

For any observed unmapped landmark, its registration starts by first calculating its
inertial Cartesian coordinate using Equation (44) as:

l̂ = g(ŝ+i , yl). (46)

It is then registered or added into prior updated map space x̂+ to obtain the augmented
map space as:

x̂+i =

[
x̂+i
l̂

]
∈ R9+3nm+3. (47)

During registration, the covariance matrix needs augmentation as well with additional
rows and columns corresponding to the new landmark. The landmark’s covariance is
calculated using

P̂ll = Gs P̂+
ssi

GT
s + Gl Rζ GT

l ∈ R3×3, (48)

where Gs and Gl are Jacobian matrices as follows:

Gs =
∂g
∂s

∣∣∣∣
ŝ+i ,yl

∈ R3×9, Gl =
∂g
∂yl

∣∣∣∣
ŝ+i ,yl

∈ R3×3. (49)

The landmark’s cross-covariance with the prior updated map space is determined
as [25]:

P̂lx = Gs
[
P̂+

ss , P̂+
sm
]

i ∈ R3×(9+3nm), (50)

P̂xl = P̂T
lx ∈ R(9+3nm)×3. (51)

Finally, the prior updated covariance matrix is augmented as follows:

P̂+
i =

[
P̂+

i P̂lx
P̂xl P̂ll

]
i
∈ R(9+3nm+3)2

. (52)

At the end of the landmark registration, the number of mapped landmarks increases
by one. That is,

nm = nm + 1. (53)
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Figure 6 shows the updated parts of the covariance matrix P̂ at different steps of EKF-
SLAM.

(a) (b) (c) (d)

Figure 6. (a) Error covariance matrix at the beginning of the ith time step, (b) predicted covariance
matrix, (c) updated part of the covariance matrix, and (d) augmented covariance matrix with a
single new landmark. Shaded regions are where changes happen. Dark gray represents respective
covariance and pale gray represents cross-variance.

If υi are observed unmapped landmarks at the ith time step corresponding to measure-
ments yυ,i as discussed in Equations (32) and (36), each of the landmarks in υi is registered
sequentially using Equation (46) through (53). After each observed unmapped landmark
becomes registered, nυ,i reduces by one, that is, nυ,i = nυ,i − 1.

3. Simulation Results and Discussion

For the simulation, the considered quadcopter’s mass and inertia properties are tab-
ulated in Table 1. The objective of LQR-based control is to reduce tracking errors while
ensuring the least amount of work is performed. The weight matrices are chosen to main-
tain proximity to the desired trajectory and are tabulated in Table 2. For verifying the
efficacy of the DF-LQR-based EKF-SLAM for aggressive maneuvers, a desired trajectory
of ‘8’ is chosen. Initially, the quadcopter is set at the origin and controlled to achieve the
trajectory over the simulation time of 50 s. Static landmarks are generated randomly around
the trajectory of the quadcopter within the region set by the azimuth range, elevation range,
and radial range detailed in Table 3. The number of landmarks chosen for simulation is
40 to ensure the observability of the system during the EKF-SLAM process. The sensor
specifications assumed for the LiDAR and the IMU equipped in the quadcopter are de-
tailed in Tables 4 and 5, respectively. The specifications listed include the range and noise
(standard deviation) for LiDAR measurements and Noise Densities (ND) for accelerometer
and gyroscope measurements.

Table 1. Quadcopter properties.

Parameter Value

Mass, m 1.56 kg
Inertia matrix, J diag([0.114700, 0.057600, 0.171200])kg-m2

Table 2. LQR weight matrices.

Parameter Value

Q̃ diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.04])
R̃ diag([0.2, 0.32, 0.1])
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Table 3. Landmark region specifications.

Parameter Value

Number of landmarks, n 40
Azimuth [−180, 180] deg
Elevation [−50, 50] deg

Range [8, 20] m

Table 4. LiDAR sensor specifications.

Parameter Value

Azimuth (α) FOV [−45, 45] deg
Elevation (β) FOV [−30, 30] deg

Range (δ) [0, 100] m
Azimuth noise, σα 0.33 deg
Elevation noise, σβ 0.3 deg

Radial noise, σδ 0.1 m
Sampling rate 10 Hz

Table 5. IMU sensor specifications.

Parameter Value

Accelerometer (ND) 300 µg/rtHz2

Gyroscope (ND) 0.01 (deg/s)/rtHz
Sampling rate 10 Hz

Figure 7 shows the results of the quadcopter traversing through an 8-shape trajectory
using DF-LQR for the two scenarios considered for reviewing the effectiveness of EKF-
SLAM. The first scenario is where the landmarks are known, i.e., their inertial positions
are known and are used to make the updates during the localization of the quadcopter
using EKF. This scenario does not include mapping as the landmarks are already known.
The second scenario is where the mapping part of EKF-SLAM comes into effect as the
landmarks are unknown. The positions of the landmarks are estimated relative to the
initially assumed position of the quadcopter. It can easily be seen from the figure that the
case of known landmarks has smoother trajectory control than the unknown case, which
is expected.

(a) (b)

Figure 7. Quadcopter traversing 8-shape trajectory for different scenarios. (a) Known landmarks. (b)
Unknown landmarks.
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3.1. Estimated Quadcopter States

Now, one compares the estimated states and errors for each of the scenarios to verify
the effectiveness of EKF-SLAM using DF-LQR.

The initial state covariance (P0) and process noise covariance (Q) matrices considered
for each of the scenarios are given in Tables 6 and 7, respectively.

The estimated inertial position of the quadcopter for the known and unknown scenar-
ios are plotted in Figure 8a,b, respectively. It is visible that the estimated positions are closer
to the true trajectory in the known landmarks scenario than in the unknown landmarks
scenario. It is more evident from the 3σ boundaries for each scenario in Figure 8c,d, where
the estimation error is lower for the known landmarks case than the unknown landmarks
case. However, this greater error in the unknown landmarks scenario is inevitable consider-
ing the process also includes the estimation of landmark positions. Moreover, the average
Root-Mean-Square Error (RMSE) over the duration of the simulation for its estimated
inertial position hovered around 0.04 m when the landmarks were unknown compared to
0.012 m when the landmarks were known. Thus, the increase in the margin of error for the
unknown landmarks case is not substantially larger than for the known landmarks case.

(a) (b)

(c) (d)

Figure 8. Quadcopter’s estimated position and corresponding estimation error when following
an 8-shape trajectory for different cases. For (a) position for known landmarks and (b) posi-
tion for unknown landmarks, true states ( ), estimated states ( ), and desired states ( ).
For (c) estimated position error for known landmarks and (d) estimated position error for unknown
landmarks, estimation error ( ), and 3σ boundary ( ).
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Table 6. Initial state covariance and process noise covariance matrices for the known landmarks
scenario.

Parameter Value

Initial state covariance (P0) diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02])
Process noise covariance (Q) diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02])

Table 7. Initial state covariance and process noise covariance matrices for the unknown landmarks
scenario.

Parameter Value

Initial state covariance (P0) diag([0.001, 0.001, 0.001, 0.1, 0.1, 0.1, 0, 0, 0])
Process noise covariance (Q) diag([0.2, 0.2, 0.05, 0.01, 0.01, 0.01, 0.02, 0.2, 0.2])

The same was the case when comparing results for the estimated velocities over
the simulation duration of the two scenarios. As expected, when the landmarks were
known, the quadcopter motion closely followed the desired velocity trajectory compared
to when landmarks were unknown, as evident from Figure 9. The average RMSE for the
estimated velocity of the quadcopter when landmarks were known was 0.03 m/s and that
for unknown landmarks scenario was 0.04 m/s. Again, the estimations were accurate and
not that far apart for the two scenarios. It was actually more erred for the known landmarks
scenario, which is due to assumed P0 and Q matrices.

(a) (b)

(c) (d)

Figure 9. Quadcopter’s estimated velocity and corresponding estimation error when following
an 8-shape trajectory for different cases. For (a) position for known landmarks and (b) posi-
tion for unknown landmarks, true states ( ), estimated states ( ), and desired states ( ).
For (c) estimated position error for known landmarks and (d) estimated position error for unknown
landmarks, estimation error ( ), and 3σ boundary ( ).
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The results for attitude estimations were astoundingly much better compared to other
states estimated for the quadcopter as shown in Figure 10. The average RMSE for estimation
of Euler angles during the simulation was just 0.34 deg for even the unknown landmarks
case quite comparable to the known landmarks case, which hovered around 0.17 deg.

(a) (b)

(c) (d)

Figure 10. Quadcopter’s estimated Euler angles and corresponding estimation error when fol-
lowing an 8-shape trajectory for different cases. For (a) attitude for known landmarks and
(b) attitude for unknown landmarks, true states ( ), estimated states ( ), and desired states ( ).
For (c) estimated attitude error for known landmarks and (d) estimated attitude error for unknown
landmarks, estimation error ( ), and 3σ boundary ( ).

It should also be noted that the RMSE for each of the estimated states includes the
initial high fluctuations before converging to the trajectory. This is mainly a result of the
quadcopter’s initial position being at the origin, which is further from the initial desired
trajectory position. It results in rapid motion of the quadcopter to reach the initial desired
position and thus the higher fluctuations. Considering the motion of the quadcopter mainly
when it has converged to its desired trajectory, the average RMSE is slightly lower for both
the known and unknown landmark scenarios.

3.2. Estimation of Landmarks

The landmarks’ inertial position errors are estimated using EKF-SLAM and are de-
picted in Figure 11. Figure 11a shows that each of the inertial coordinates for each
of the landmarks is estimated within the 3σ boundary. It is visible in the figure that
some landmarks are initialized after some time because they were sensed at that instant
only. Thereafter, with the knowledge of uncertainties for previously identified and esti-
mated landmarks, the uncertainty for newly discovered landmarks decreases over time.
Figure 11b shows the final state of estimation error for all the landmarks at the end of the
simulation. It can be seen that a few landmarks were never sensed and thus not initialized
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for estimation. The average RMSE for the estimated position for landmarks was around
0.03 m.

(a) (b)

Figure 11. Landmarks state estimation error for an 8-shape trajectory. For 11a, estimation error ( ),
3σ boundary ( ); each line signifying estimation error for each landmark over time. (a) Estimation
error over time and (b) estimation error at the end.

3.3. Computational Time Analysis for EKF-SLAM

The computational complexity of EKF-SLAM increases quadratically with the number
of landmarks [7]. For a different number of landmarks ranging from 5 to 200, the averaged
computational time for each of the major steps of EKF-SLAM is displayed in Figure 12. The
prediction step of EKF is directly correlated to the number of mapped landmarks as the
size of the cross-covariance matrix propagated in Equation (29) increases with it. Thus, the
averaged computational time for the prediction step is seen varying quadratically with
respect to the number of mapped landmarks in Figure 12a. Likewise, the computation time
for the update depends on the number of landmarks that are observed and mapped. The
linear trend of averaged computational time for the update considered with respect to the
observed mapped landmarks is shown in Figure 12b, as the update step considers observed
mapped landmarks. Lastly, the registration time in SLAM is also linearly dependent on
the number of newly discovered landmarks that are registered as depicted in Figure 12c. It
is evident from the figures that the computational effort of EKF-SLAM certainly increases
quadratically with the number of landmarks. However, the main idea for generating these
plots is to develop a metric or a strategy to run EKF-SLAM in real-time with a choice of the
appropriate number of landmarks at each step, minimally affecting the total performance.

For instance, for better performance of EKF-SLAM, it is ideal not to miss any sensor
data. Thus, considering the sensors’ sampling rate of 10 Hz, the steps of EKF-SLAM should
ideally be complete within 0.1 s. Hence, if for example, the registration step is taking
almost 0.1 s, it can be strategically decided to consider a finite number of landmarks using
Figure 12c. Similarly, in case the update step itself is taking longer with making updates
using all the observed mapped landmarks, only a few of those landmarks can be used to
limit the time of operation to less than 0.1 s. Additionally, it is clear from Figure 12 that the
update and registration steps take more time than the prediction step. Additionally, only
after 200 mapped landmarks does prediction have a significant effect on computation time.
Hence, if a mission identifies less than around 200 landmarks, decisions can be based upon
choosing an appropriate number of landmarks for update and registration. However, in
case the number of mapped landmarks is more, decisions can be made where only a few
landmarks at random are taken into consideration during the prediction step. It should be
noted the results in Figure 12 will vary among different computers. The results shown were
generated using a computer with Intel i7-11800H 2.30 GHz processor, 16 GB RAM, and an
NVIDIA T1200 GPU 4 GB. However, these sets of plots will be similar and can be used to
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make decisions on the number of landmarks to consider for each step of EKF-SLAM to
improve its real-time performance.

(a) (b)

(c)

Figure 12. Computational time for different steps of EKF-SLAM with respect to the number
of landmarks. (a) Computational time of prediction step vs. number of mapped landmarks,
(b) computational time of update step vs. number of observed mapped landmarks, and (c) computa-
tional time of registration step vs. number of observed unmapped landmarks.

4. Conclusions

This work proposes an Extended Kalman Filter-based Simultaneous Localization
And Mapping (EKF-SLAM) for a quadcopter to follow aggressive trajectories using a
Differential Flatness-based Linear Quadratic Regulator (DF-LQR). A strategy to reduce the
computational effort of EKF-SLAM using averaged computational time of operation for
each step of the process with respect to the number of landmarks is also proposed in the
end. To validate the performance of the proposed approach, the quadcopter traversing
an 8-shape trajectory is considered for two scenarios of known landmarks and unknown
landmarks, and to imitate practical conditions, sensors’ constraints, such as limited sensing
ranges and field of views, are considered. The estimation errors for the quadcopter states are
comparable for both cases despite the lack of information on the landmarks in the unknown
landmarks scenario. When following the given trajectory, the estimated states of both the
quadcopter and landmarks are accurate enough for DF-LQR to generate the appropriate
control signal using the estimated states themselves. The estimated position, velocity,
and attitude of the quadcopter are extremely accurate along with the estimation of the
landmark positions evident from extremely low root-mean-square errors. The computation
time analysis for each step of EKF-SLAM with respect to the number of landmarks shows
that the computational time does increase quadratically with the number of landmarks, and
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the results are identified to be beneficial in strategically choosing the respective number
of landmarks for each step to maximize the use of sensor data and improve performance.
Albeit this work validates the proposed approach via numerical simulations, hardware
experiments will be conducted to verify its real-time applicability during the quadcopter’s
aggressive maneuvers in future work.
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