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Abstract: Accurate diagnosis of breast cancer using automated algorithms continues to be a challenge
in the literature. Although researchers have conducted a great deal of work to address this issue, no
definitive answer has yet been discovered. This challenge is aggravated further by the fact that most
available datasets have imbalanced class issues, meaning that the number of cases in one class vastly
outnumbers those of the others. The goal of this study was to (i) develop a reliable machine-learning-
based prediction model for breast cancer based on the combination of the resampling technique and
the classifier, which we called a ‘fusion model’; (ii) deal with a typical high-class imbalance problem,
which is posed because the breast cancer patients’ class is significantly smaller than the healthy class;
and (iii) interpret the model output to understand the decision-making mechanism. In a comparative
analysis with three well-known classifiers representing classical learning, ensemble learning, and
deep learning, the effectiveness of the proposed machine-learning-based approach was investigated
in terms of metrics related to both generalization capability and prediction accuracy. Based on the
comparative analysis, the fusion model (random oversampling techniques dataset + extreme gradient
boosting classifier) affects the accuracy, precision, recall, and F1-score with the highest value of 99.9%.
On the other hand, for ROC evaluation, the oversampling and hybrid sampling techniques dataset
combined with extreme gradient boosting achieved 100% performance compared to the models
combined with the undersampling techniques dataset. Thus, the proposed predictive model based
on the fusion strategy can optimize the performance of breast cancer diagnosis classification.

Keywords: breast cancer prediction model; class-imbalanced data; resampling techniques; ensemble
learning; deep learning; classical learning; Breast Cancer Surveillance Consortium dataset

1. Introduction

Breast cancer is the leading cause of cancer death in women globally, accounting for an
estimated 685,000 deaths in 2020 [1]. Many countries have implemented breast screening
programs, which can significantly reduce mortality rates combined with early treatment [2].
Radiologists must review mammograms (breast X-ray images) generated by these screening
programs for diagnosis; this can be time-consuming, costly, and laborious [3].

Artificial intelligence and data mining have recently been comprehensively used to
predict the survivability of breast cancer patients [4]. Data mining and machine-learning-
based systems could improve cancer diagnosis capability and reduce diagnosis errors [5].
Many studies have applied data mining algorithms on different datasets to classify and
diagnose breast cancer. These algorithms indicated good classification results and thus
encouraged many researchers to take up the challenging task [6]. However, in recent
years, the rampant class-imbalanced data problem has been perceived as a data mining
challenge [7]. The issue of imbalanced data, particularly in the medical domain, has
always been the focal point for researchers in machine learning and data mining [8]. Class
imbalance refers to the imbalanced property of many real healthcare datasets. A class
imbalance occurs when the majority of class instances usually outnumber the minority
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class instances. The imbalanced classification problem in the healthcare domain occurs
when the data are often highly skewed due to individual heterogeneity and diversity, such
as in cancer diagnostics [9]. Learning from class imbalance is crucial in data mining and
knowledge delivery problems. The cost of misclassification causes higher damages in the
minority class (class of interest) compared to the majority [10]. One real-world example
is misclassifying a breast cancer patient as a non-breast-cancer patient, which can be fatal
because treatment may be delayed. Although existing methods have improved the accuracy
of breast cancer diagnosis, these methods still aim to maximize accuracy, assuming that
the data are well balanced [11]. The accuracy achieved from an imbalanced dataset will
degrade the model performance, which is usually biased towards the majority class. Hence,
it consequently leads to the misclassification of minority class instances, known as “noise”,
where the cost of incorrectly categorizing a minority group exceeds that of an incorrectly
categorized majority group [12]. In breast cancer diagnosis, misclassifying a breast cancer
patient as non-breast cancer incurs high costs and has fatal effects [13]. We presented the
previous studies’ review analysis and identified the gap to be addressed as the study’s
contribution in Section 2.

The remaining four sections have been organized in this paper. Section 2 elaborates
on previous works related to this study, followed by Section 3, which explains the study’s
methodology. The experimental results are discussed in Section 4. Limitations of the study
are elaborated on in Section 5, and we conclude the study, including some suggestions for
future work, in Section 6.

2. Literature Review

This section aims to analyze previous literature on class imbalance in breast cancer
clinical datasets and investigate the solutions to address this issue. This section describes the
overview of the class-imbalanced issue in breast cancer datasets, an overview of techniques
handling class imbalance, and an overview of the class-imbalanced issue in breast cancer
studies in Sections 2.1–2.3, respectively. Section 2.4 details this study’s contribution.

2.1. Overview of Class-Imbalanced Issue in Breast Cancer Dataset

Imbalanced issues are currently a prevalent research topic and a comparatively recent
area of research interest in machine learning [14]. If the sum of the data for the majority
group is much more significant than that of the minority group, we have a data imbalance.
The ideal dataset for most classifiers is one in which the proportion of examples from
each class is approximately equal. A balanced environment is required to ensure that
the classifier performs at its best. As a result, when unequal data exist, an imbalanced
data problem occurs [15]. The existence of underrepresented minority groups also causes
imbalanced data. It can also happen if the dataset is skewed. Most classifiers are biased
toward the majority class in a balanced class [16]. All data from the real world have biases.
Typically, real-world data can be divided into highly and lowly imbalanced [17].

When the imbalance ratio (IR) is excessively high compared to low imbalanced data,
there is a highly imbalanced data problem. Moderate imbalance exists when the minority-
to-majority ratio is 50:1; in contrast, an extreme imbalance exists when the IR is 1000:1.
According to Triguero et al. [18], a dataset is considered to be moderately imbalanced if the
IR is between 50:1 and 100:1. Another well-known IR standard states that if IR is 1000:1 up
to 10,000:1, the dataset is considered extremely imbalanced [18]. The formula to calculate
the IR is shown in Equation (1). Table 1 shows the benchmark degree of imbalanced data.
Figure 1 visualization of class imbalance in breast cancer datasets. Table 2 presents the
overview of commonly deployed breast cancer dataset characteristics and their imbalance ratio.

IR = (No. of Majority Class Samples)/(No. of Minority Class Samples) (1)
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Table 1. Benchmark of the degree of imbalance in data.

Class Imbalance Degree IR
(Majority–Minority)

The Proportion of Minority
Class

Extremely Imbalanced (Extreme) 10,000:1, 1000:1 <1% of the dataset
Moderately Imbalanced (Moderate) 100:1, 50:1, 10:1, 5:1 1–19% of the dataset

Mildly Imbalanced (Mild) 4:1, 2:1 20–40% of the dataset

Electronics 2023, 12, x FOR PEER REVIEW 3 of 28 
 

 

the overview of commonly deployed breast cancer dataset characteristics and their imbal-
ance ratio. 

IR = (No. of Majority Class Samples)/(No. of Minority Class Samples) (1)

Table 1. Benchmark of the degree of imbalance in data. 

Class Imbalance Degree IR (Majority–Minority) The Proportion of Minority Class 
Extremely Imbalanced (Extreme) 10,000:1, 1000:1 <1% of the dataset 

Moderately Imbalanced (Moderate) 100:1, 50:1, 10:1, 5:1 1–19% of the dataset 
Mildly Imbalanced (Mild) 4:1, 2:1 20–40% of the dataset 
 

   
BCSC dataset; IR 25.66:1 SEER dataset; IR 5.53:1 Prognostic dataset; IR 3.21:1 

Figure 1. Illustration of class imbalance in breast cancer datasets. 

Table 2. Class-imbalanced characteristics in public open breast cancer datasets (clinical data). 

Dataset Name #Instances Class Distribution #Attributes Imbalance Ratio Class Imbalance Degree 
Breast Cancer 286 0:201, 1:85 9 2.36 Mild 

Breast Cancer Wisconsin 
(Original) 

699 0:458, 1:241 10 1.9 Mild 

Breast Cancer Wisconsin 
(Prognostic) 198 0:151, 1:47 34 3.21 Mild 

Breast Cancer Wisconsin 
(Diagnostic) 

569 0:357, 1:212 32 1.69 Mild 

Breast Cancer from 
OpenML 

286 0:201, 1:85 10 2.36 Mild 

Breast Cancer Coimbra 116 0:52, 1:65 10 1.25 Mild 
SEER Breast Cancer Da-

taset 4024 
Alive: 3408,  
Dead: 616 15  5.53 Moderate 

Breast Cancer Surveillance 
Consortium-Risk Factor  

180,465 No Risk: 173,696,  
Risk: 6769 

13 25.66 Moderate 

The most pressing issue caused by data imbalanced classification is the misdiagnosis 
of the minority class, which is more probable and cost-sensitive than the majority class 
[19]. Many machine learning algorithms have been developed to improve classification 
accuracy. However, this design principle leads to errors in minority class classifications. 
The algorithm’s primary benefit is improved classification accuracy for samples from the 
majority class, which are taken to be more representative of the whole. For this reason, 
learning algorithms favor classes with more data to work with [19]. When solving classi-
fication problems, most algorithms assume or expect that the costs for each class are 
roughly equal. These algorithms are ineffective in dealing with complex imbalanced data 
sets, which are common in the real world, particularly in the medical field. Most machine 

Figure 1. Illustration of class imbalance in breast cancer datasets.

Table 2. Class-imbalanced characteristics in public open breast cancer datasets (clinical data).

Dataset Name #Instances Class Distribution #Attributes Imbalance
Ratio

Class Imbalance
Degree

Breast Cancer 286 0:201, 1:85 9 2.36 Mild
Breast Cancer Wisconsin (Original) 699 0:458, 1:241 10 1.9 Mild

Breast Cancer Wisconsin (Prognostic) 198 0:151, 1:47 34 3.21 Mild
Breast Cancer Wisconsin (Diagnostic) 569 0:357, 1:212 32 1.69 Mild

Breast Cancer from OpenML 286 0:201, 1:85 10 2.36 Mild
Breast Cancer Coimbra 116 0:52, 1:65 10 1.25 Mild

SEER Breast Cancer Dataset 4024 Alive: 3408,
Dead: 616 15 5.53 Moderate

Breast Cancer Surveillance
Consortium-Risk Factor 180,465 No Risk: 173,696,

Risk: 6769 13 25.66 Moderate

The most pressing issue caused by data imbalanced classification is the misdiagnosis
of the minority class, which is more probable and cost-sensitive than the majority class [19].
Many machine learning algorithms have been developed to improve classification accuracy.
However, this design principle leads to errors in minority class classifications. The algo-
rithm’s primary benefit is improved classification accuracy for samples from the majority
class, which are taken to be more representative of the whole. For this reason, learning
algorithms favor classes with more data to work with [19]. When solving classification
problems, most algorithms assume or expect that the costs for each class are roughly equal.
These algorithms are ineffective in dealing with complex imbalanced data sets, which
are common in the real world, particularly in the medical field. Most machine learning
techniques count on there being roughly the same number of examples in each category.

Consequently, problems arise for majority-class-favored learning algorithms due to
the unequal number of samples. Minority groups are more critical despite their smaller
representation in the overall data set. Therefore, the learning algorithms’ diagnosis accu-
racy must be increased [20]. Misclassifying a minority group can have disastrous results,
especially in the medical field, where it can delay treatment or even cause unnecessary
patient pain. In addition, the most effective classification scheme should have a higher
proportion of correctly diagnosed minority class diseases [20].
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An imbalanced learning problem is illustrated through a real-world example, a biomed-
ical application of a dataset obtained from a sequence of mammograms from multiple
patients. Patients are classified as either positive (those with cancer) or negative (those
without cancer) using binary image analysis, which generates normal classes (labels). Previ-
ous data suggest there will be more patients without cancer than those with it. For instance,
Table 2 shows that there are 173,696 “negative” (majority class) samples in the BCSC-risk
factor dataset, while there are 6769 “positive” samples (minority class). The best classifi-
cation would yield a moderate prediction rate that reliably identified the most common
and rare groups in the data (ideally 100%). However, the actual classification shows a vast
disparity in accuracy, with 100% for the majority class and 0–10% for the minority class. In
other words, if the minority group only had a 10% accuracy rate, 6769 patients would be
mistakenly placed in the majority group.

This way, 6769 people at high risk for cancer will be given negative diagnoses. Mis-
classifying a healthy patient as cancerous is more expensive for healthcare providers [19].
Incorrect identification of a noncancerous cell type may require further clinical evalua-
tion. However, a false positive for cancerous cells can devastate health and even result
in death [19]. The literature shows that imbalanced data are crucial in medical diagnosis,
where prediction is typically prioritized over treatment [18]. Therefore, studying the issue
of class division is essential. Disparities in socioeconomic status are pervasive and impact
many data-related disciplines. Most learning classifier systems have also been criticized
for failing to address class imbalance adequately. The following are examples of problems
with imbalanced medical data that hamper classifier learning [18]:

1. Samples with low information and low training data density: The number of samples
with a stable imbalance rate is crucial in determining the efficacy of a classifier model
when dealing with the class imbalance problem. The main rules discovered in a
small class are suspect. Modeling classification and separating minority from majority
samples also benefit from more data and information [19]. Minority groups often have
inadequate data due to data bias. One article claims that a decrease in the error rate
attributable to class-imbalanced distribution can be attained by collecting sufficient
samples from the minority class (correcting the imbalance rate);

2. Class overlap: makes it challenging to apply separation rules, and it is challenging to
categorize samples from underrepresented groups. Simple classifiers can learn correct
classification without class overlap [20];

3. Small disjuncts: occur when the minority group’s concept includes ancillary ideas.
These auxiliary ideas, with their inequivalent class samples, further complicate
the problem;

4. Noisy data: When a classifier encounters a small cluster of minority classes, it may
ignore them as noise [21]. The evaluation measures used to direct the learning process
may be the source of the sample’s ignorance (assumed noise). Noisy samples are
more likely to be found in the “safe” regions of the other classes, as defined by their
labels [22];

5. Borderline samples: These are discovered where the majority and minority classes
intersect. Learning algorithms struggle when dealing with borderline and noisy
samples. During the training process, most classification algorithms strive to learn
the most accurate borderline of each class to achieve a better prediction. Borderline
samples are more likely to be misdiagnosed than nonborderline samples, making
them more important for classification [22]. The difficulties associated with medical
datasets are shown in Figure 2. The literature review shows that many methods have
been developed to deal with the issue of imbalanced data, as discussed in Section 2.3.
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2.2. Overview of Techniques Handling Class-Imbalanced

There are three main approaches to dealing with class imbalance: (1) a data-level
approach, (2) an algorithm-level approach, and (3) a hybrid approach. The data-level
strategy for resolving the imbalanced class is preprocessing input data that balance by
redistributing items across the data space. Balancing reduces the size of the majority class
while increasing the size of the minority class. The methods used in this tactic can be
classified as either random undersampling, oversampling, or a hybrid of the two. Class
data balancing is more effective at the data level [23]. The algorithm-level strategy may
develop or update existing algorithms and assess the effects of minor classes [24]. The
hybrid strategy combines data-level and algorithm-level strategies to address the class
imbalance problem.

A common method for addressing the issue of class differences in data is resampling.
The original data set’s construction is modified to achieve the optimal balance (50:50, for
instance) [25]. A standard learning algorithm can be applied with no changes when using a
resampled training data set. These methods have greater practicality without requiring
a specific learning algorithm [26]. Correct sampling is essential for achieving a simple,
even distribution of classes in a system [22]. More specifically, this paper is concerned with
oversampling, undersampling, and preprocessing the data in this setting [27].

Resampling methods that change the data distribution do not care which classifier is
used. Class balance is adjusted using several methods, each tailored to the specific char-
acteristics of the sample. There are three different types of resampling: (1) oversampling:
by creating new samples or reusing old ones, it validates and represents the minority
group [28]. (2) Undersampling: minimizing data and removing majority class samples
to confirm an equal number of samples for both classes. (3) Hybrid sampling utilizes
both resampling strategies [8]. In Table 1, we present the full titles, acronyms, and cita-
tions of the balance methods discussed in this paper. What follows is a brief overview of
each technique.

2.2.1. Oversampling

When dealing with an unbalanced dataset, oversampling methods add artificial sam-
ples to the underrepresented group. This process requires either resampling previously
collected data from minority groups or generating new data sets. Methods of repetition
include picking at random or taking representative samples from minority and majority
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groups. When it does so, the classifier gives these ambiguous locations to the underrep-
resented sample group. Critics of oversampling say it does nothing more than rebalance
minority and majority samples without providing any new insight. Methods for devel-
oping new synthetic samples to address this deficiency are being developed in promising
areas [28]. Popular oversampling methods include the ones listed below:

1. ADAptive SYNthetic Sampling (ADASYN): The main idea behind this method is
to assign different values to different subsets of the minority group based on their
relative degree of academic challenge. Synthetic data generation is more significant
for harder-to-learn samples than simpler ones [29];

2. Adjusting the Direction Of the synthetic Minority clasS examples (ADOMS): Synthetic
samples are generated along the first principal component axis of geographically
dispersed data [30];

3. Agglomerative Hierarchical Clustering (AHC): Selects a subset category randomly
and returns the made-up samples to serve as a prototype [31];

4. Synthetic Minority Oversampling Techniques (SMOTE): Based on feature space simi-
larities between minority class samples, the SMOTE algorithm generates synthetic
data. The central idea is to draw representative samples from underrepresented
groups by looking at their nearest neighbor. The feature vector of the considered
sample is compared to those of its nearest neighbors, and the resulting difference is
used to create new models [32];

5. Borderline SMOTE (BLSMOTE): In improving their predictions, classified algorithms
work hard to acquire the most accurate learning possible. Incorrectly classifying
samples closer to the boundary is more costly than misclassifying samples further
away. All K neighbors of a marginal sample are included in the majority class.
This equivocal approach pre-samples the underrepresented demographic using the
statistical methodology known as SMOTE [33];

6. Random Oversampling (ROS): Ensures that both groups have an equal number of sam-
ples by randomly generating additional samples for the underrepresented group [34];

7. Safe-Level-SMOTE (SL-SMOTE): Before creating synthetic samples, this method de-
termines the SMOTE-recommended threshold for minority class samples. K-nearest-
neighbors calculates an appropriate sample size for underrepresented groups. Then,
each synthetic sample is placed close to the lowest possible level. Therefore, all artifi-
cial samples are produced within acceptable limits. The maximum tolerable value is
considered close to K, while the minimum is believed to be close to zero [35].

2.2.2. Undersampling

The original data set is undersampled to meet a specified ratio of missing to nonmiss-
ing values. Elimination can be performed randomly or with the help of more efficient
specific standards, such as eliminating borderline samples. The correct classification of
minority samples is achieved using the second method, which efficiently decreases the
space allocated to the majority class. This, however, runs the risk of wiping out some
crucial data [24]. These are some of the most common methods of sampling:

1. Condensed Nearest Neighbor (CNN): This method may be less useful for learning
because it discards the vast majority of class samples on the cusp of a decision. We can
make the dataset smaller by omitting some aspects from the original data set while
leaving the classifier NN unchanged [36];

2. Tomek Link (TL): Specifically, the method employs Tomek links x and y, where x is a
member of the majority class, and y is a member of the minority class, and where their
distance is smaller than that of any other sample, such as z. Tomek-linked samples
are either at the class boundary or contain spurious information. Many studies have
employed TL as a method of guided undersampling by excluding data from the
dominant group [37];

3. Condensed Nearest Neighbor–TL (CNN-TL): As with the OSS algorithm, this method
combines CNN and TL. The mutually beneficial subset is identified in advance of
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applying TL. As described in Tomek’s linked article [38], the goal is to prune the
data set by omitting particular elements using CNN, which significantly affects the
performance of the NN classifier;

4. Edited Nearest Neighbor (ENN): Another way to eliminate examples. Using k = 3
nearest neighbors, you can identify misclassified cases in a dataset and remove them
from further analysis [38];

5. Neighborhood Cleaning Rule (NCL): In this strategy, we eliminate the samples from
the majority class by applying the ENN rule. Class labels of the eliminated samples
differ from those of 3–5 neighbors [39];

6. One-Sided Selection (OSS): For TL detection, 1-NN chooses all samples from the
minority class and some misclassified samples from the majority class. Most of the
Tomek link’s encapsulated class samples are omitted [40];

7. Random Undersampling (RUS): In maintaining parity between groups, most class
samples are purged randomly [41];

8. Undersampling Based on Clustering (SBC): The theory assumes that any given data
set will contain subsets with varying degrees of similarity. First, we cluster all of the
training samples. The samples would then establish the purposes of the clusters. The
functions of the clusters are equivalent regardless of whether the samples come from
the minority or the majority. Similarly, the SBC method achieves class balance by
randomly selecting a large number of samples from clusters belonging to the majority
class based on the ratio of the two classes [42].

2.2.3. Hybrid Sampling

This sampling strategy is a hybrid between oversampling and undersampling. There
are several popular hybrid sampling methods, including:

1. SMOTE-ENN: This technique is a hybrid, built on the foundation of SMOTE by ENN,
and filters out unwanted background noise. To further narrow down the sample
space, ENN can filter out data that do not fit either classification. Mislabeled samples
are weeded out by comparing them to their three nearest counterparts [38];

2. SMOTE-TL: This hybrid approach employs SMOTE to eliminate data containing
the Tomek link selectively. To create a Tomek connection, you need to find two
samples nearest to each other but do not share the same category. Before detecting and
eliminating Tomek links, SMOTE oversamples the original data set. Thus, a uniform
dataset with clearly delineated class clusters is generated [38];

3. Selective Processing of Imbalanced Data (SPIDER): This method employs intricate
sample filtering on the majority group and oversampling the local minority group.
Misclassified or noisy samples can be identified with the help of the K-nearest neighbor
(KNN). Then, depending on what you choose (weak, firm, or relabeling), the noisy
objects are either repeated or removed [39];

4. Selective Processing of Imbalanced Data 2 (SPIDER2): Preprocessing samples from
both the majority and the minority classes is the first step in this method. The majority
class characteristics are defined, and then the noisy samples are found and either
discarded or relabeled according to the relabeling options available (reclassified as
the minority class). The same thing happens to the minority group, and their noisy
samples are repeated after being uncovered [40].

The class imbalance issue is typically resolved through either oversampling or under-
sampling methods. Although oversampling helps preserve the large dataset of the majority
class, it can make the classifier-training process more time-consuming and introduce the
possibility of overfitting. However, under selective sampling’s sampling means that it can
be trained in a relatively short amount of time. On the other hand, undersampling can
cause significant samples to be lost [41].
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2.3. Overview of Class-Imbalanced Issues in Breast Cancer Studies

There are numerous works on breast cancer forecasting. However, few studies have
focused on methods of dealing with class imbalance. Even though, to our knowledge and
as evidenced by the review (see Table 2), most breast cancer datasets were found to have a
class-imbalanced issue. As a result, our review only includes studies that have provided
evidence on how to deal with this issue specifically to address the class overlap, small
disjuncts, borderline samples, and noisy sample issues discussed and their success with the
proposed methods or combination of methods. The previous studies are summarized in
Table 3. The following paragraph contains a discussion of the review.

San et al. [42] identified and classified breast cancer risk factors using four classifiers:
LR, RF, SVM, and MLP. These four classifiers are trained and tested using data splits of
80–20, 70–30, and 60–40. The SMOTE data resampling technique significantly improves
the precision–recall rate. The combination of SMOTE and RF classifiers produces the best
fusion model.

Huang et al. [43] used SMOTE in conjunction with information gain (IG) and genetic
algorithm (GA) feature selection methods to resample the class-imbalanced. For highly
class-imbalanced datasets, the experimental results based on two breast cancer datasets
show that the combination outperforms either feature selection or oversampling alone.
SMOTE + GA + SVM is the most effective fusion model.

Vuttipittayamongkol and Elyan [44] investigated an undersampling method based on
the recursive neighborhood (URNS) for classifying imbalanced data by exploring neighbor-
hood instances using the recursive process. Experiments’ outcomes demonstrate URNS’s
efficacy in classifying poorly balanced breast cancer datasets. URNS outperformed well-
established and state-of-the-art methods on most datasets by achieving the highest sensi-
tivity and G-mean. Sensitivity and G-mean were significantly improved over the baseline
across all datasets (RF with no resampling).

Wang et al. [45] proposed a new framework for entropy and confidence-based un-
dersampling boosting (ECUBoost). ECUBoost is distinguished by three features that set
it apart from previous works. The incorporation of dynamic resampling methods with
confidence into the boosting ensemble; the use of entropy and confidence of instances as
evaluation standards; instance selection; and an effective undersampling-based ensemble
learning system, which extends the concept of dynamic resampling methods with the
boosting ensemble along with a novel data preprocessing technique to a broader ground.

Al-Shamaa et al. [46] presented the Hellinger distance undersampling (HDUS) method
to resample the data using three classification algorithms (DT, SVM, and KNN). They
compared it to the baseline model (without resampling method) and three state-of-the-art
undersampling methods (Tomek link, RUS, and ENN).

Desuky and Hussain [47] combined a novel simulated annealing (SA) strategy with
machine learning classifiers for the first time to balance imbalanced datasets. SA is a
better hybrid method for dealing with unbalanced settings and thus improving overall
performance. The process of achieving the best solution for a problem (selecting an optimal
subset of majority class instances) is known as optimization; in this work, the simulated
annealing optimization technique aids in improving the objective function (classification
performance) value. They employ undersampling techniques such as simulated annealing,
discriminant analysis (DA), SVM, DT, and kNN.

Zhang et al. [48] used two standard breast cancer data sets and 12 representative
imbalanced data sets to assess the model effectiveness of AK-Boosted C5.0. Furthermore,
the statistical test analysis shows that AK-Boosted C5.0 is effective. The results show that
the proposed AK-Boosted C5.0 method can significantly improve classification perfor-
mance without feature selection algorithms and in less time. Furthermore, a cluster-based
undersampling algorithm may be a better resampling alternative.

Koziarski [49] presented radial-based undersampling, a novel undersampling algo-
rithm based on the previously introduced concept of mutual class potential. The pro-
posed algorithm was motivated primarily by the desire to apply the idea of non-nearest
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neighbor-based resampling, which had once been used in radial-based oversampling, to
the undersampling procedure. The proposed method is conceptually more straightforward
and more computationally efficient than the radial-based oversampling algorithm.

Zhang and Chen [50] used a sample-based method to reduce the imbalanced effects
in breast cancer diagnosis (a hybrid method based on random oversampling examples
(ROSE), K-means, and SVM). The performance metrics evaluation results showed that the
proposed K-means, ROSE, and SVM methods are the best fusion models for dealing with
imbalanced datasets.

Rajendran et al. [51] solved the class imbalance problem by combining SpreadSample
and SMOTE with a SpreadSubsample/SMOTE hybrid. Classification models were built
using C4.5, Bayesian network, and RF based on this resampling method. The results
showed that the Bayesian network generated by the hybrid sampling methods was a better
model for a decision support system, especially for the early diagnosis and treatment of
breast cancer patients.

Tran et al. [52] investigated an engineered upsampling (ENUS) method for dealing
with imbalanced data to improve the predictive performance of machine learning models.
When the minority–majority class ratio is less than 20%, ENUS training models improve
balanced accuracy by 3.74 percent, sensitivity by 8.36 percent, and F1-score by 3.83 percent.
In addition, our research discovered that the XGBoost tree (XGBTree) using ENUS produced
the best results.

To address data class imbalance problems, Ibrahim [53] proposed a salp swarm
optimization-based undersampling technique (SSBUT). Using the proposed SSBUT, the
similarity relationship among the majority class samples is thoroughly examined, and
samples that do not affect the classification algorithm’s accuracy are removed from the
majority class. The proposed SSBUT’s performance was tested on benchmark medical
imbalanced datasets, and the results were compared to state-of-the-art undersampling
techniques. Regarding various evaluation criteria, the experimental results show that the
proposed SSBUT consistently outperforms state-of-the-art undersampling methods.

On five unbalanced clinical datasets (Breast Cancer Disease, Coronary Heart Disease,
Indian Liver Patient, Pima Indians Diabetes Database, and Coronary Kidney Disease),
Kumar et al. [54] compared the empirical performance of seven class balancing techniques
(decision tree, K-nearest neighbor, logistic regression, artificial neural network, support
vector machine, and Gaussian naïve Bayes). The SMOTE-ENN balancing method achieves
99.8%, 99.5%, 99.1%, and 99.1% accuracy when using KNN, SVM, LR, and ANN, respectively.

The synthetic minority oversampling technique (SMOTE) was used by Mahesh et al. [55]
to deal with the problem of imbalanced data in the class and noise. The suggested task
consists of two steps. SMOTE is used in the first phase to reduce the impact of imbalanced
data issues. Then, data are classified using the naïve Bayes, decision trees classifier, random
forest, and their ensembles in the second phase. The XGBoost-random forest ensemble
classifier outperforms with 98.20 percent accuracy in the early detection of breast cancer,
according to the experimental results.

In CDSMOTE, Elyan et al. [56] used integrated class decomposition (CD) for the
majority class and SMOTE for the minority class. The majority of instances are grouped
into clusters based on similarity in the first phase to reduce the dominance of the majority
class without losing information. Following that, oversampling is performed to ensure that
the distribution of people in the minority class is even.

Based on previous research, this study aims to provide a detailed analysis of imbal-
anced data and its characteristics. The purpose of this study is to examine the effect of data
preprocessing on the performance of classifiers in the interest of improving early breast
cancer diagnosis and treatment by studying data that is imbalanced in several ways. Table 3
presents a detailed summary of research works on breast cancer prediction. A combination
of techniques and a predictive classifier aid in the improvement of machine learning results.
When compared to a single model, this approach produces better predictive performance.
As shown in Figure 2, this study proposes a new hybrid model that combines ROS and
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integrates boosting techniques (XGBoost) to develop a robust early breast cancer prediction
model to fill the research gap. The fusion model is expected to resolve the imbalanced data
problem of class overlap, small disjuncts, borderline samples, and noisy samples.

Table 3. Summary of the reviewed studies using resampling techniques in Breast Cancer prediction.

Study Year Proposed Resampling Technique Resampling Type Classifiers Best Fusion Model with the
Highest Accuracy

[43] 2022 SMOTE Oversampling LR, RF, SVM, MLP SMOTE + RF
[44] 2021 SMOTE + feature selection (IG and GA) Oversampling SVM SMOTE + GA + SVM
[45] 2020 Overlap-based undersampling (URNS) Undersampling KNN RF URNS + RF
[46] 2020 Undersampling boosting (ECUBoost) Undersampling RF ECUBoost + RF
[47] 2020 Hellinger distance undersampling (HDUS) Undersampling kNN, SVM, DT HDUS + DT

[48] 2021 Undersampling using simulated annealing
(SA) Hybrid sampling

SVM, DT, kNN, and
discriminant analysis

(DA)
SA + kNN

[49] 2021 Cluster-based undersampling Undersampling Boosted C5.0 Cluster-based undersampling
+ Boosted C5.0

[50] 2020 Radial-based undersampling (RBU) Undersampling CART, kNN, NB,
SVM RBU + NB

[51] 2019 ROSE + K-means Oversampling SVM ROSE + K-means + SVM

[52] 2020 SpreadSample + SMOTE Hybrid sampling C4.5, Bayesian
network, and RF

SpreadSample + SMOTE +
Bayesian network

[53] 2022 Engineered upsampling method (ENUS) Oversampling

XGBoost tree
(XGBTree),

kNN, DT, RF, ANN,
SVM

ENUS + XGBoost

[54] 2022 Salp swarm optimization-based
undersampling technique (SSBUT) Undersampling C4.5, SVM, NB SSBUT + C4.5

[55] 2022
undersampling, random oversampling,

SMOTE, ADASYN, SVM-SMOTE,
SMOTEEN, and SMOTETOMEK.

Hybrid sampling DT, KNN, LR, ANN,
SVM, and NB SMOTE-ENN + kNN

[56] 2022 SMOTE Oversampling

NB, DT, RF, XGBoost,
XGBoost-NB,
XGBoost-DT,
XGBoost-RF

SMOTE + XGBoost-RF

[57] 2021 SMOTE, ADASYN, CD, CDSMOTE Oversampling Boosting, SVM, RF CDSMOTE + RF

2.4. Research Contribution

The following contributions are the result of systematic experimental work in this
study. Overall, we present an end-to-end machine-learning-based model classification in
dealing with extremely class-imbalanced datasets, which consists of the steps listed below:

1. To reduce the imbalance ratio of the BCSC dataset, nine different state-of-the-art
resampling techniques, which include Random undersampling (RUS), edited nearest
neighbor undersampling (ENN), Tomek links undersampling (TL), random over-
sampling (ROS), SMOTE, borderline SMOTE (BLSMOTE), SMOTE + edited near-
est neighbor undersampling (SMOTE-ENN), SMOTE + Tomek link undersampling
(SMOTETomek) and SPIDER, are harnessed;

2. We constructed 27 different fusion models via pretraining of three renowned classifiers,
namely, extreme gradient boosting (XGBoost), artificial neural network (ANN), and
support vector machine (SVM);

3. In evaluating the efficiency and effectiveness of the models, the study deployed six
performance metrics such as confusion matrix, accuracy, precision, recall, F-score, and
“area under the curve” (AUC) of “receiver characteristic operator” (ROC) (AUC-ROC);

4. Assessing the performance of the 27 fusion models by performing a comparative
analysis between the proposed algorithm with the rest of the algorithms;

5. To validate the results by analyzing the differences between all classifiers and indicat-
ing the best classifier;

6. To compare the performance of the new proposed fusion model with the state-of-
the-art predictive models applied to the BCSC dataset as a benchmark dataset for
experimental validation.
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3. Materials and Methods
3.1. Proposed Method

The proposed method in the study predicts breast cancer by combining various
resampling techniques with several selected machine-learning-based classifiers. The goal is
to find the best combination (fusion model) using the confusion matrix, accuracy, precision,
recall, F1-score, and ROC. We used three undersampling, three oversampling, and three
hybrid sampling techniques to balance the dataset. Three well-known classifiers are used
for model classification. Figure 3 depicts the research’s conceptual framework.
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3.2. Dataset Acquisition

The BCSC dataset was acquired by downloading it from https://www.bcsc-research.
org/data/rfdataset/risk-estimation-dataset-download (accessed on 14 February 2022). The
dataset consisted of 280,660 breast cancer mammography data records among women aged
between 35 and 54 years (the mammography image was not included). Of the 280,660 data
samples, 180,465 samples were trained and validated. Only trained and validated data was
used in this study to ensure a more accurate result. A total of 173,696 were labeled as ‘no
cancer’, while 6769 were labeled as ‘cancer’ Based on the data distribution, the dataset is
moderately imbalanced based on the IR benchmark (see Section 2.1). Table 4 presents the
dataset attributes and description. The distribution is shown in Figure 4.

Table 4. BCSC dataset description.

S# Variable Short Name

1 Menopausal status menopause
2 Age group agegrp
3 Breast density density
4 Race race
5 Hispanic hispanic
6 Body mass index bmi
7 Age at first birth Agefirst
8 Number of first-degree relatives with breast cancer nrelbc
9 Previous breast procedure brstproc
10 Result of the last mammogram before the index mammogram lastmm
11 Surgical menopause surgmeno
12 Current hormone therapy hrt

13 Diagnosis of invasive breast cancer within one year of the index
screening mammogram invasive

14 Diagnosis of invasive or ductal carcinoma in situ breast cancer within
one year of the index screening mammogram cancer

15 Training data training

16 Frequency count of this combination of covariates and outcomes (all
variables 1 to 14) count

https://www.bcsc-research.org/data/rfdataset/risk-estimation-dataset-download
https://www.bcsc-research.org/data/rfdataset/risk-estimation-dataset-download
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3.3. Data Preprocessing: Resampling of BCSC Dataset

The most crucial step in achieving the best classification results is preprocessing. It
is frequently applied to data before classification to ensure that the desired results are
obtained. Preprocessing strategies for the breast cancer dataset are being researched to
improve detection model accuracy, reduce computational time, and accelerate training.
Furthermore, by normalizing the data, the optimizer may achieve a mean (µ) = 0 and a
standard deviation (σ) = 1, allowing it to converge more quickly. To balance the BCSC
dataset, we used five undersampling techniques (RUS, ENN, TL), four oversampling
techniques (SMOTE, BLSMOTE, ROS), and two hybrid sampling techniques (SMOTE-ENN,
SMOTE-TL, SPIDER). Section 2 goes over all of the techniques. The visualization of the
new balanced dataset (after using undersampling, oversampling, and hybrid sampling
techniques) is shown in Figures 5–7.
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Ref. [57] discovered that the standard resampling techniques deployed in the health
domain for (1) oversampling techniques are SMOTE, BLSMOTE, ESL-SMOTE, IQR-SMOTE,
KMPP-SMOTE; (2) undersampling techniques are ENN and KMPP-US; and (3) hybrid
sampling techniques are SMOTE-ENN, SPIDER, and AHC-OS + KM-US. Figure 8 presents
the outcome of their review. Based on the result, we proposed using the above-mentioned
resampling techniques in this study because, according to the literature review and to
the best of our knowledge, not all of the techniques presented in this paper have been
used to balance the BCSC dataset. This study will determine which resampling technique
improved the model’s accuracy, precision, recall, F-measure, and ROC.
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3.4. Model Classification

In assessing the classification accuracy of a breast cancer model, this study used
support vector machine (SVM) to represent classical machine learning, artificial neural
network (ANN) to represent deep learning, and extreme gradient boosting (XGBoost) to
represent ensemble learning. The classifiers were chosen based on the findings of Werner
et al. [57], who identified SVM as the most commonly used classifier in health domain
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research, specifically in class-imbalanced research. ANN and XGBoost are two other
popular classifiers used in this research domain. Figure 8 depicts the summary result of
their review. The following are the deployed classifiers in this study:

1. XGBoost: This algorithm is a highly efficient version of a gradient-boosted decision
tree. By providing a wrapper class, XGBoost facilitates using models in the scikit-
learn framework as either classifiers or regressors. XGBoost’s classification model
goes by the name XGB Classifier. Since it was designed and developed with model
performance and computational speed in mind, XGBoost is an efficient and accurate
execution of gradient boosting machines that have confirmed to push the boundaries
of computing power for upgraded tree algorithms. With the tree-boosting algorithm
in mind, it was built to use all available memory and processing powerfully. XGBoost
is popular because it can be applied to many machine learning and data mining
problems. In 2015, for instance, 17 out of the 29 winning challenge solutions published
on the ML competition site Kaggle all made use of XGBoost;

2. ANN: The algorithm for artificial neural networks is inspired by the structure and
function of real neurons, down to the minor details of the dendrites, somas, and
axons. Each ANN comprises a network of artificial neurons, each of which performs
an essential mathematical operation. An artificial neural network consists of input,
hidden, and output layers, each a collection of linked neurons. This network acquires
the ability to perform tasks by observing a large enough sample of similar instances.
Classification and regression issues are well within the neural networks’ capabilities.
Advanced perception versions of ANNs, called multilayer ANNs, can be used to tackle
difficult classification and regression issues. When it comes to binary classification,
perception ANNs are by far the most popular. In our classification work, we used
a very similar set of ANNs. In an ANN, the number of neurons in the input layer
is proportional to the number of features in the data set used for training. Even a
network’s hidden layer can be considered an independent entity. The research uses
an input layer with 31 neurons connected to the first hidden layer’s nine neurons. The
links between the first and second secret layers have been mapped out to the extent of
9-9. It is a binary classification problem, so there’s only one neuron in the output layer;

3. SVM: Using hyperplanes, SVM separates data for classification purposes. SVM is
based on using hyperplanes to classify data into similar groups. Data with nonreg-
ularities and unknown distributions are ideal candidates for the SVM method. Our
research uses the caret and kern lab packages to construct and tune the SVM model’s
hyperparameters. Specifically, we used a grid search algorithm to determine the best
values for our model’s hyperparameters.

In this study, we proposed to use XGBoost, ANN, and SVM as machine-learning-based
classifiers to be trained on a balanced dataset that was resampled using various techniques.
The experiment aims to see how effectively each combination technique improves the
models’ ability to predict breast cancer.

3.5. Performance Metrics of Classifiers

We use standard machine learning performance metrics to evaluate the classification
performance of the prediction models. To describe the performance of the models, we use
the confusion matrix, as shown in Figure 9. It consists of the following metrics:

1. TP (true positive)—The number of observations that the model classified as ‘positive’
and that are actually ‘positive’;

2. FP (false positive)—The number of observations that the model classified as ‘Positive’
but are actually ‘Negative’. It is also called a Type-1 error;

3. TN (true negative)—The number of observations that the model classified as ‘Negative’
and are actually ‘Negative’;

4. FN (false negative)—The number of observations that the model classified as ‘Nega-
tive’ but are actually ‘Positive’. It is also called a Type-2 error.
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The following metrics are used to measure the effectiveness and efficiency of the
prediction models:

Accuracy (overall performance) = (TP + TN)/(TP + FP + TN + FN); (2)

Precision (model predictive power) = TP/(TP + FP); (3)

Recall (hit rate) = TP/(TP + FN); (4)

F1-Score = (2 ∗ Precision ∗ Recall)/(Precision + Recall); (5)

ROC (receiver operating characteristic)—A quick assessment of the
model’s quality. The nearer to 1, the better the model.

(6)

4. Results and Discussion

We used Python for data visualization and the Orange3 data mining tool to implement
the experiments. We first conduct the model classification involving SVM, XGBoost, and
ANN classifiers on nine balanced datasets balanced by nine resampling techniques. The
results of the model classification are presented and discussed in Section 4.1. The confusion
matrix analysis of all the datasets is presented and discussed in Section 4.2. The AUC-ROC
analysis results for all the datasets and classifiers are presented and discussed in Section 4.3.
The efficiency analysis of the time taken to build the models is presented in Section 4.4.
Lastly, the comparative analysis between models in terms of all the performance measures
is presented in Section 4.5.

4.1. Model Classification Evaluation

The experimentation was carried out using three machine-learning-based models: the
SVM (classical learning), the XGBoost (ensemble learning), and the ANN (deep understand-
ing) model. The model classification results are presented in Tables 5–7. Table 8 shows the
models’ overall performance.

Table 5. Effect of resampling techniques on SVM classifier performance.

Undersampling Oversampling Hybrid Sampling

Metrics RUS ENN TL ROS SMOTE BLSMOTE SMOTE-TL SMOTE-ENN SPIDER

Accuracy 0.817 0.914 0.897 0.688 0.549 0.596 0.575 0.607 0.879
Precision 0.817 0.967 0.967 0.706 0.612 0.611 0.630 0.621 0.881

Recall 0.817 0.914 0.897 0.688 0.549 0.596 0.575 0.607 0.879
F1-

Score 0.817 0.934 0.924 0.681 0.475 0.581 0.525 0.587 0.879

ROC 0.882 0.843 0.876 0.780 0.728 0.713 0.762 0.743 0.931

Table 5 observes that the ENN technique improved the SVM classifier by obtaining the
highest accuracy (91.4%%), highest precision (96.7%), highest recall (91.4%), and highest
F1-score (93.4%). On the other hand, SPIDER improved the model by achieving the highest
ROC with 93.1%.

Table 6 indicates that ROS improved the XGBoost classifier by attaining the highest
accuracy (99.9%), precision (99.9%), recall (99.9%), F1-score (99.9%), and AUC-ROC (100%).
SMOTE, BLSMOTE, SMOTE-TL, and SMOTE-ENN improved the model by achieving the
highest ROC of 100%.
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Table 6. Effect of resampling techniques on XGBoost classifier performance.

Undersampling Oversampling Hybrid Sampling

Metrics RUS ENN TL ROS SMOTE BLSMOTE SMOTE-TL SMOTE-ENN SPIDER

Accuracy 0.934 0.996 0.996 0.999 0.994 0.997 0.994 0.997 0.983
Precision 0.935 0.996 0.996 0.999 0.994 0.997 0.994 0.997 0.983

Recall 0.934 0.996 0.996 0.999 0.994 0.997 0.994 0.997 0.983
F1-Score 0.934 0.996 0.996 0.999 0.994 0.997 0.994 0.997 0.983

ROC 0.980 0.984 0.984 1.000 1.000 1.000 1.000 1.000 0.998

Table 7. Effect of resampling techniques on ANN classifier performance.

Undersampling Oversampling Hybrid Sampling

Metrics RUS ENN TL ROS SMOTE BLSMOTE SMOTE-TL SMOTE-ENN SPIDER

Accuracy 0.915 0.994 0.993 0.995 0.983 0.990 0.983 0.991 0.958
Precision 0.915 0.994 0.993 0.995 0.983 0.990 0.983 0.991 0.958

Recall 0.915 0.994 0.993 0.995 0.983 0.990 0.983 0.991 0.958
F1-Score 0.915 0.994 0.993 0.995 0.983 0.990 0.983 0.991 0.958

ROC 0.963 0.972 0.967 0.999 0.998 0.999 0.998 0.999 0.965

Table 7 observes that the ROS technique improved the ANN classifier in all the metrics
at 99.5% and the highest ROC at 99.9%. BLSMOTE and SMOTE-ENN improved the
classifier by achieving the highest ROC of 99.9%.

Table 8. Overall performance of model classification.

Metric Highest Value Classifier Resampling Strategy The Best Fusion Model

Accuracy 99.9% XGBoost ROS ROS + XGBoost
Precision 99.9% XGBoost ROS ROS + XGBoost

Recall 99.9% XGBoost ROS ROS + XGBoost
F1-Score 99.9% XGBoost ROS ROS + XGBoost

ROC 100% XGBoost

ROS
SMOTE

BLSMOTE
SMOTE-ENN

SMOTE-TL

ROS + XGBoost
SMOTE + XGBoost

BLSMOTE + XGBoost
SMOTE-ENN + XGBoost

SMOTE-TL + XGBoost

Table 8 presents that XGBoost outperformed the rest of the classifiers by achieving
the highest value of 99.9% in terms of accuracy, precision, recall, F1-score, and ROC at
100%. The result also indicates that the dataset balanced by ROS produced appropriate
useful samples for training compared to the rest of the datasets. The best fusion model
for accuracy, precision, recall, and F1-score is XGBoost + ROS. On the other hand, the
best fusion model for ROC is XGBoost + ROS, XGBoost + SMOTE, XGBoost + BLSMOTE,
XGBoost + SMOTE-ENN, and XGBoost + SMOTE-TL.

4.2. Confusion Matrix Analysis

To check the model’s classification performance, we implemented a confusion matrix.
The confusion matrix classifies breast cancer as ‘cancer diagnosed’ or ‘no cancer diagnosed.’
We presented the confusion matrix for each of the balanced datasets to observe which
classifiers perform better in which dataset. The comparative analysis of the confusion
matrix between the datasets based on the resampling techniques is presented in Tables 9–11
for datasets resampled by oversampling, undersampling, and hybrid sampling techniques,
respectively.

The overall performance of the confusion matrix indicates that the fusion model ROS +
XGBoost outperformed the rest of the fusion model predicting correctly the highest number
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of ‘cancer diagnoses’ instances (42,237) and the highest number of ‘no cancer diagnose’
instances (42,146). The result supports the overall performance of the model classification,
as shown in Table 8.

Table 9. Confusion matrix of the fusion model for datasets balanced using oversampling techniques.
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Table 10. Confusion matrix of the fusion model for datasets balanced using undersampling techniques.
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Table 11. Confusion matrix of the fusion model for datasets balanced using hybrid sampling techniques.
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4.3. ROC Analysis

Classification results for the models are shown in a graphical format called the receiver
operating characteristic (ROC) curve, which also includes total classification thresholds.
The ROC curve is a visual representation of a comparison between the true-positive rate
(TPR) on the y-axis and the false-positive rate (FPR) on the x-axis (FPR). The proposed
methods outperformed the rest of the model in classification, as shown in the ROC plot of all
the fusion models in Tables 12–14 for datasets resampled by oversampling, undersampling,
and hybrid sampling techniques, respectively.

Table 12. ROC analysis of all the models based on the datasets balanced using oversampling techniques.
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of 2781.5 s. On the other hand, ROS + XGBoost has a training time of 93.85 s, which is 
considered moderately short and efficient. However, the testing time for all the fusion 
models, as shown in Figure 11, indicates that all the fusion models have relatively short 
time compared to their training time. RUS + ANN has the shortest testing time (0.043 s), 
and BLSMOTE + SVM is the longest to test (2.607 s). 
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Table 14. ROC analysis of all the models based on the datasets balanced using hybrid sampling techniques.
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4.4. Model Efficiency

The time complexity (s) measures the model’s effectiveness during the model classifi-
cation and evaluation process. Figures 9 and 10 show the training and testing time of all
the fusion models, respectively. The fact that the majority of the training was performed
offline was not considered during the experiment. As shown in Figure 10, RUS + SVM
has the shortest training time of 0.934 s, and SMOTE + XGBoost has the longest training
time of 2781.5 s. On the other hand, ROS + XGBoost has a training time of 93.85 s, which
is considered moderately short and efficient. However, the testing time for all the fusion
models, as shown in Figure 11, indicates that all the fusion models have relatively short
time compared to their training time. RUS + ANN has the shortest testing time (0.043 s),
and BLSMOTE + SVM is the longest to test (2.607 s).
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4.5. Comparative Analysis between the Fusion Models

To further investigate the best fusion performance for model classification, we com-
pared and correlated it with the rest of the model using performance measures (Acc, Pres,
recall, and F1-score). The analysis revealed that the ROS + XGBoost model outperformed
these models in classification measures. The SVM-based models have the least fundamental
performance matrix in breast cancer detection, as presented in Figure 12.
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Figure 12. The overall critical performance of the fusion models.
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To assess the study’s novelty, we compared the findings to those of previous studies
using the same dataset, including those by Kabir and Ludwig [58], San Yee et al. [42],
and Rajendran et al. [51]. (BCSC). Table 15 summarizes the findings. The current study’s
accuracy performance outperformed the rest of the previous studies.

Table 15. Comparative analysis of the current and previous studies on the BCSC dataset.

Kabir and Ludwig [58] Rajendran et al. [51] San Yee et al. [42] The Current Study

Year 2018 2020 2022 2023

Resampling Techniques
deployed

RUS, ROS, SMOTE,
ENN, SMOTE-ENN,

SMOTE-TL

SMOTE
SpreadSubsampling SMOTE

RUS, ENN, TL, ROS,
SMOTE, BLSMOTE,

SMOTE-ENN,
SMOTE-TL, SPIDER

Classifiers deployed DT, RF, XGBoost Bayesian network, NB, LR,
SVM, MLP LR, RF, SVM, MLP XGBoost, ANN, SVM

Best Fusion Model ENN + XGBoost SMOTE + Bayesian
network SMOTE + RF ROS + XGBoost

Accuracy 0.9149 0.9910 0.8200 0.9999

5. Limitations

Extensive hyperparameter tuning of the resampling techniques and the classifiers was
very challenging due to the many experiments and the time required for each training
evaluation. While batch normalization and dropout have increased robustness in hyper-
parameters, a more in-depth investigation, particularly optimizing different resampling
techniques and classifiers, may have yielded better results for each experiment. For sim-
plicity and fairness, we used the same setup for all experiments. The classifiers were
investigated using classical, ensemble, and deep learning classifiers, representing only the
single most well-known classifier. Another limitation is that only the most well-known
resampling techniques with a fixed sampling rate are evaluated using a single classification
algorithm. Over and above simple resampling technique selection, a more ambitious future
research direction is the development of automatic methods for classifying imbalanced
data. Enhanced techniques may produce different results on the same datasets.

Numerous proposed solutions to the class imbalance exist, and only a subset of the
most widely used ones are discussed here. Other, more complex methods, such as SMOTE
and its variants, may, on the other hand, improve performance for classical machine
learning problems. More complex processes are, by definition, more difficult to implement
and tune. As a result, a single technique may take some time to gain traction over more
direct sampling and weighting strategies.

The data used to train the classifiers significantly impacts the accuracy of any predic-
tion. As a result, obtaining high-quality, balanced data is crucial in model classification. In
a class-imbalanced dataset, any resampling technique will face challenges in dealing with
issues such as class overlap, small disjuncts, and borderline and noisy samples. Further-
more, most learning classifier systems have been reported to be inadequate in coping with
the class imbalance problem.

6. Conclusions and Future Work

This paper investigated three undersampling, three oversampling, and three hybrid
sampling techniques on the BCSC dataset, which has a moderate IR. According to the
study, unbalanced data reduces the functional efficiency of default classifiers. As a result,
techniques for preprocessing data were used to optimize algorithm functions. The best
balancer and classifier for the breast cancer dataset were discovered in this study by
examining the impact of class imbalance on classifier performance and comparing the
functions of preprocessing techniques and classification on the dataset. An extensive
empirical study was conducted in which 27 balanced datasets from a moderately class-
imbalanced BCSC dataset were resampled using three oversampling, three undersampling,
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and three hybrid sampling methods to optimize classification models and determine
which strategy is best for improving the prediction model. Three machine-learning-based
classifiers were used in the model classification: classical, ensemble, and deep learning
classifiers. Based on previous work, as shown in Table 15, experiments on the same dataset
produce different best models. Performance was assessed using six performance metrics
tailored to the specific problem of imbalanced data. These models provide valuable patterns
for determining the most appropriate resampling strategy for handling class-imbalanced
datasets. Despite the extensive research, some limitations to work have been discussed in
Section 5, and some other limitations will be addressed in future work.

As for future works, the current approach (assessed at the data level) could be eval-
uated together with the algorithm-level and the hybrid techniques to optimize the effec-
tiveness and performance of the methods in improving the model classification on the
class-imbalanced BCSC dataset. A comprehensive investigation of cost-sensitive and ensemble
algorithms on various cancer datasets involving clinical and image data should be explored.
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