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Abstract: A comprehensive and accurate wind power forecast assists in reducing the operational risk
of wind power generation, improves the safety and stability of the power system, and maintains the
balance of wind power generation. Herein, a hybrid wind power probabilistic density forecasting
approach based on a transformer network combined with expectile regression and kernel density
estimation (Transformer-ER-KDE) is methodically established. The wind power prediction results of
various levels are exploited as the input of kernel density estimation, and the optimal bandwidth is
achieved by employing leave-one-out cross-validation to arrive at the complete probability density
prediction curve. In order to more methodically assess the predicted wind power results, two sets of
evaluation criteria are constructed, including evaluation metrics for point estimation and interval
prediction. The wind power generation dataset from the official website of the Belgian grid company
Elia is employed to validate the proposed approach. The experimental results reveal that the proposed
Transformer-ER-KDE method outperforms mainstream recurrent neural network models in terms
of point estimation error. Further, the suggested approach is capable of more accurately capturing
the uncertainty in the forecasting of wind power through the construction of accurate prediction
intervals and probability density curves.

Keywords: wind power forecasting; transformer network; expectile regression; kernel density
estimation; probability density forecasting

1. Introduction

In response to climate problems, environmental pollution, and the energy crisis, the
global focus of energy development and utilization has changed from traditional fossil fuels
to clean and renewable energy sources such as wind and solar power [1]. Among these,
wind energy is a non-polluting and sustainable energy source with huge storage capacity,
stable production, and widespread use, making it one of the most popular sustainable
renewable energy sources in the world [2]. According to forecasts, wind energy is estimated
to account for a significant share of global electricity generation by 2030 [1], with China, in
particular, proposing the development of a new power system based on renewable sources
such as wind and solar [3]. Wind power is anticipated to play a pivotal role in the future
energy mix with plans to integrate it into power systems around the world. This highlights
the enormous potential for future growth in the wind power industry.

However, wind power generation is chiefly influenced by natural wind fluctuations
and other meteorological conditions, and its intermittent, stochastic, and unstable nature
inevitably produces technical challenges for power system planning and scheduling, as
well as safe and stable operations [3]. Comprehensive and precise power network fore-
casting is necessary for the incorporation of wind farm technology into existing power
grids. Successful forecasting is necessary to manage risks and successfully maintain a
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balanced network with significant wind components as part of the overall electrical grid.
The challenges associated with accomplishing this require careful mathematical analysis
combined with data verification to merge wind networks into existing power grids. The
stochastic issues with wind power differ significantly from more traditional power sources,
so data analysis, statistical estimators, stochastic analysis, and predictive methodologies
require careful thought.

With the development of wind power generation in recent years, significant research
and progress have been made in the field of wind power forecasting (WPF). According
to various modeling schemes, WPF can be essentially classified into physical models, sta-
tistical models, and artificial intelligence models with machine learning [3–6]. In more
detail, physical methods commonly exploit long-term forecasts based on numerical weather
predictions (NWPs). Hence, many physical factors are required to achieve the best forecast
accuracy [5], and physical models usually exhibit advantages in long-term forecasting [6].
Statistical methods for time-series forecasting include methods such as the Kalman fil-
ter (KF), autoregressive integrated moving average (ARIMA), generalized autoregressive
conditional heteroskedasticity (GARCH), and its variations [5]. These methodologies are
utilized for predicting the future production of wind power based on a large amount of
historical data and are more effective than physical methods for short-term wind power
forecasting. However, the strict distribution assumptions and smoothness tests on the
data result in these statistical models not exhibiting universality and generality. With the
rapid development of artificial intelligence in recent years, many machine learning-based
prediction approaches such as support vector machine (SVM) [6], random forest (RF) [7],
and XGboost [8] have been developed to perform wind speed or wind power predic-
tion. Machine learning approaches usually have large-scale data processing capabilities,
more accurate prediction precision, and more remarkable universality and generalization
capabilities [3].

Due to the powerful ability of deep learning to learn features and handle complex
nonlinear problems, neural network algorithms such as long short-term memory neural
networks (LSTMs) [9–12], gated recurrent units (GRUs) [12,13], extreme learning machines
(ELMs) [14], and convolutional neural networks (CNNs) [15,16] have been recently exten-
sively employed for short-term wind power prediction. In constructing predictive models
for time-series data such as wind power data, recurrent neural network (RNN) frameworks,
including LSTMs and GRUs, are particularly effective for modeling sequential data in
time-series data prediction tasks such as wind power forecasting. Despite these RNN-based
frameworks generally performing well, they exhibit some limitations. The RNNs are often
employed to iteratively model sequential data, but these methodologies possess a high
training time cost and could result in performance reduction for sequential data with longer
time steps. This issue is essentially attributed to the fact that the RNNs can only consider
the hidden state of the last moment during processing sequential data [17].

In 2017, Google proposed the transformer network [18], which has already exhibited
a momentous impact on the field of natural language processing and the application area
of deep learning. The model exclusively relies on the self-attention mechanism to estab-
lish global dependencies on sequence data and is capable of mining complex and relevant
information from various scales of the sequence [19]. Transformer network-based method-
ologies have been used by various researchers for wind power prediction [19–21]. The
core self-attention mechanism has also been used in combination with recurrent neural
networks such as LSTM to construct hybrid models for more accurate wind power predic-
tion [1,3,13,22,23]. The transformer networks are capable of capturing the internal correlation
of longer sequences and comprehensively obtaining essential information about wind power
data [21].

Most explorations so far have focused on providing deterministic values for point
estimates, which are difficult to use in measuring the uncertain characteristics of wind
power [24]. On the other hand, interval and probabilistic forecasting of wind power recently
attracted considerable attention because it allows the construction of continuous probability
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density curves and the quantification of uncertainty in wind power output. Thereby, it
provides helpful information for power companies, system operators, and related decision-
makers and stakeholders [2]. In addition, several investigations have been devoted to
interval and probability density forecasting of wind power [25–27]. In [27], the quantile
regression neural network (QRNN) approach was implemented for wind power prediction.
For this purpose, the prediction results for various conditional quantiles were exploited
as input to a nonparametric method of kernel density estimation (KDE) that does not
presuppose the data distribution to derive the complete probability density profile of the
wind power. The QRNN represents a hybrid model that combines traditional statistics and
machine learning. It mainly merges the advantages of quantile regression (QR), such as the
ability to estimate the conditional distribution of explanatory variables without considering
the distribution type of random variables, with the strong nonlinear fitting capabilities of
neural networks.

A nonparametric nonlinear regression model, the so-called expectile regression neural
network (ERNN), was proposed in [28]; it builds upon the concept of QRNN by incorpo-
rating the expectile regression (ER) framework into the neural network structure. This
novel ERNN model is capable of easily predicting the model parameters by standard
gradient-based optimization algorithms and direction propagation due to the use of an
asymmetric squared loss function, a property that outperforms the QRNN model that uses
an asymmetric absolute loss function that is not differentiable at the origin. In addition, the
ERNN model can directly output conditional expectation functions that describe the com-
plete distribution of responses based on covariate information and provide more insightful
information for decision-making.

The prediction performance of neural networks is commonly influenced by the model
structure and hyperparameters [4], and numerous investigators have combined neural
network models (NNMs) with modal decomposition techniques [3,20,23,29–31] or opti-
mization algorithms [30–35] to achieve better prediction results. In the current investigation,
hence, the transformer (i.e., a model known for its superior performance in sequential
data tasks) is utilized as the base model for wind power prediction. Additionally, this
effective model is properly combined with the asymmetric loss function of expectile regres-
sion and then optimized via the cuckoo search (CS) algorithm [36]. The optimal model
structure is then exploited to make wind power predictions at various levels τ. To this
end, the KDE model with a Gaussian kernel function in conjunction with the leave-one-out
cross-validation (LOOCV) method is employed to obtain the probability density interval
estimates for wind power forecasting. The results obtained with the proposed transformer
expectile regression and kernel density estimation (Transformer-ER-KDE) model are com-
pared with those of other models and methods for various points and interval estimates by
utilizing the wind power data in the time interval of 2022.1–2022.2 provided by the Belgian
grid, and its superiority to other models is proved.

The present investigation presents three major contributions in comparison to the
preceding ones:

(1) The transformer network, which possesses the best performance in the NLP domain
for sequential data tasks, is migrated for wind power prediction. Then, the internal
correlations and remote dependencies of more extended sequential data could be
captured better than the RNN. The expectile regression in conjunction with a trans-
former network is utilized for wind power prediction via the ERNN structure. This
newly developed model is capable of estimating the NNM-based parameters more
easily than the QRNN. Further, it is more sensitive to sample points with larger errors
and can output conditional expectation functions that provide more information for
decision making. To the best of our knowledge, this is the first expectile regression
added to the ERNN structure of the transformer network.

(2) The nonparametric KDE-based approach is implemented to estimate the prediction
results of Transformer-ER at a variety of levels, thus allowing the complete wind
power probability density estimate to be derived. Since the bandwidth influences



Electronics 2023, 12, 1187 4 of 20

the density function of random variables [27], the leave-one-out cross-validation is
employed here for optimal bandwidth selection, fully exploiting the information from
the estimation results of various levels τ, while Gaussian kernel functions [3] are
commonly utilized to achieve improved probability density estimates.

(3) The probability density estimation results are appropriately derived based on two sets
of evaluation criteria for point estimation and interval prediction. The point estima-
tion results, which are attained using the probability density approach, exhibit strong
robustness and high accuracy compared with traditional prediction methods [27].
Usually, evaluation metrics, such as prediction interval coverage probability (PICP),
prediction interval normalized average width (PINAW), and coverage width-based
criterion (CWC), are employed to assess the interval prediction results. The prediction
interval estimation error (PIEE) evaluation metrics proposed in [25] are also imple-
mented here for the purpose of evaluating and comparing the probability density
interval estimation. Additionally, the PIEE index is incorporated into the CWC com-
posite index to make it more comprehensive and accurate in reflecting the evaluation
effect of interval prediction.

2. Related Theories
2.1. Transformer Network

A transformer network is a transduction model that relies entirely on a self-attention
mechanism to evaluate its input and output representations without employing RNNs or
CNNs [20].

2.1.1. Self-Attention Mechanism

The main advantage of the attention mechanism is its ability to extract relevant
information from a large amount of input data in the current task context. Specifically,
the self-attention mechanism calculates attention values within a sequence and uses this
information to identify structural relationships and connections within the sequence [21].

In self-attention, the input sequence X ∈ Rl×d is transformed by matrix operations into
Q(Query), K(Key), and V(Value), where l represents the sequence length and d denotes
the model dimension:

Q = XWQ, K = XWK, V = XWV, (1)

where WQ ∈ Rd×dqk , WK ∈ Rd×dqk , and Wv ∈ Rd×dv are the weight matrix parameters that
the neural network is trained to through iterations, Q ∈ Rl×dqk , K ∈ Rl×dqk , and V ∈ Rl×dv

are evaluated as follows to the output of the self-attentive mechanism:

A = So f tmax

QKT√
dqk

V. (2)

It is evident that QKT contains the information of various positions in the whole
sequence, and after normalization, it represents the attention weights for each position.
Furthermore, the matrix multiplication with V results in the output of attention A ∈ Rl×dv .
Finally, the output is transformed through the linear transformation as specified in the
following form:

O = AWO, (3)

where WO ∈ Rdv×dout represents the linear layer training weight matrix, and the final
output would be O ∈ Rl×dout .

2.1.2. Multi-Head Attention Mechanism

Within the transformer network, the self-attention mechanism is extended to a multi-
head attention mechanism, which is calculated in an identical way. The primary difference
is that the input sequence X is divided into n subspaces, n heads, and parallel operations
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of the self-attention mechanism are executed on each subspace. The attention outputs
obtained from each head (i.e., A1, A2, . . . , An) are then concatenated, and the final output O
can be obtained through the following linear transformation:

O = Concat
(

A1, A2, . . . . . . An
)

WO. (4)

The operating principle of multi-headed attention is illustrated in Figure 1. Despite the
presence of multiple heads, the number of parameters and time complexity are comparable
to those of self-attention [20]. The exploitation of multi-head attention allows it to attend to
various representation subspaces at various positions, thereby providing enhanced forecast-
ing capabilities. Each subspace makes its own prediction based on its own perspective or a
combination of factors, yielding better predictions than a single self-attentive mechanism.
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Figure 1. Schematic diagram of the multi-head attention.

2.1.3. Position Encoding

While self-attention considers information from all positions of the sequence data, it
may not wholly capture the influence of positional differences. To make full use of the loca-
tion information of sequence data, this paper incorporates position-encoding information
into the sequence data. The position encoding is evaluated in the following form:

PE(pos, 2i) = sin
(

pos/10, 0002i/d
)

, (5)

PE(pos, 2i + 1) = cos
(

pos/10, 0002i/d
)

, (6)

where pos denotes the sequence length index, and i represents the dimensional index from
0 to d/2.

2.1.4. Transformer

The structure of the transformer network utilized in the present work is depicted in
Figure 2.

The traditional transformer architecture consists of an encoder and a decoder. In the
current exploration, only the transformer encoder structure is employed, which is appro-
priate for regression problems and serves as a general-purpose module for transforming
a sequence into a more informative feature representation. The transformer is originally
developed for exploitation in the NLP field; hence, minor modifications have been made
to its architecture. Instead of a word vector embedding layer, the input data are passed
through a linear layer before being encoded based on their position. Similarly, before
being output, the prediction results are passed through a linear layer without an activation
function rather than a Softmax layer for probabilistic prediction. The remaining elements
of the multi-headed attention, two normalization layers, one linear layer, and two residual
links, are identical to those in the original transformer.
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2.2. Expectile Regression

Given a response variable Y and a covariate matrix X with observations (yi, xi), where
i is the sample number such that i = 1, 2, . . . , n and n denotes the total number of samples,
the values yi of the response variable at the τ level can be derived by the following classical
linear expectile regression model:

Êyi (τ|xi) = x’
i β̂(τ), i = 1, 2, . . . , n (7)

β̂(τ) = arg min
n

∑
i=1

ϕτ

(
yi − x’

iβ
)

. (8)

ϕτ(u) =
{

τu2, u ≥ 0
(τ − 1)u2, u < 0

(9)

where τ ∈ (0, 1) is the quantile of a given weight level and denotes the degree of asymmetry
of the loss function. Eyi (τ|xi) represents the τ-th level of the response variable yi, and β̂(τ)
denotes the regression’s coefficient at a given τ for which the estimation can be obtained by
solving the optimization problem, as displayed in Equation (8).

ϕτ(u) is an asymmetric loss function that depends on the level τ. When τ = 0.5, the
asymmetric squared loss function in Equation (9) above degenerates to the squared loss
function ϕ(u) = u2, and the overall expectile regression model degenerates to a simple
linear regression model. It has been widely acknowledged that the square loss function,
commonly utilized in the training of neural networks through back-propagation, is merely
a specific instance of the expectile regression asymmetric loss function.

A neural network can be conceptualized as a nonlinear function denoted by f (·) that
serves as a generalized nonlinear model. Given an input xi, the output of this model can be
displayed as follows:

Êyi (τ|xi) = f (xi, w(τ)), i = 1, 2, . . . , n (10)
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where w(τ) represents the model parameter to be estimated. In the ERNN model, the
estimator can be appropriately derived by iterating based on the following loss function:

ŵ(τ) = arg min
n

∑
i=1

ϕτ(yi − f (xi, w(τ))), (11)

where ϕτ(u) is the same as that given in Equation (9). Unlike the asymmetric absolute value
loss function of the QRNN, the empirical loss function of the ERNN model is differentiable
and smooth everywhere at various levels of τ. The empirical loss function is also convex,
so the standard back-propagation and gradient descent optimization algorithms of neural
networks are capable of estimating the ERNN model parameters easily and obtaining the
optimal solution ŵ(τ) at different values of τ. Furthermore, it is clear that the ERNN model
is derived by replacing the conventional squared loss function employed in general neural
networks with an asymmetric quadratic loss function [28].

2.3. Cuckoo Search Algorithm

The cuckoo search algorithm was proposed in 2009 [36] as a bionic intelligent algorithm
that would be applicable to optimization problems. Similar to genetic algorithms (GAs),
and particle swarm optimization (PSO) algorithms, the CS is also an algorithm for directly
searching for the extremum points of the objective function in the feasible domain of the
given parameters. The main strategy relies on the Lévy flight to update the position where
the nest is located. The Lévy flight step formula is given as follows [37]:

s =
u

|v|1/β
, (12)

The value of β is usually considered between 1 and 2. In this study, we set β = 1.5,
which is a commonly used value in the literature. Both u and v obey the following nor-
mal distribution:

u ∼ N
(

0, σ2
u

)
, v ∼ N(0, 1). (13)

σu =

 Γ(1 + β)sin πβ
2

β·Γ
(

1+β
2

)
·2

β−1
2

 1
β

. (14)

The Lévy flight, which is commonly characterized by a combination of high-frequency
small-step movements and low-frequency large-step movements, mimics the random
wandering of a cuckoo. This behavior enables the CS algorithm to effectively search for
globally optimal solutions while also avoiding being trapped in local optima. Moreover,
the incorporation of small steps in the algorithm guarantees a certain level of accuracy in
the solution. The position of the nest is updated according to the following relation:

xk+1
i = xk

i + α× s⊗ xk
i , (15)

where xk
i denotes the value of the k-th iteration, α represents the scaling factor of the step, s

stands for the step of the Lévy flight, and ⊗ denotes the dot product. The overall flow of
the cuckoo search algorithm is presented in Figure 3.

This exploration takes the hyperparameters of an NNM into account as the search
parameters, with the overall ERNN model employed as the adaptation function. The
performance of the model in predicting the test set data, as measured by its goodness-of-fit
value, is also utilized as the adaptive value. The objective of the current search is to find
the optimal set of hyperparameters by maximizing the adaptive value.
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2.4. Kernel Density Estimation

In comparison to the parametric model, kernel density estimation, being a nonpara-
metric method, avoids imposing any prior assumptions on the data distribution, thereby
resulting in more accurate estimations. Based on the similarity theory, the obtained condi-
tional quantile is similar to conditional density [27].

2.4.1. KDE-Based Model

The KDE is established based on the sample data to estimate the probability density
function. Given the density function of a random variable represented by f (x) and the em-
pirical distribution function denoted by F(x), the basic estimation of f (x) can be provided
by the following:

f (x) =
F(x + h)− F(x− h)

2h
, (16)

where h represents a non-negative constant. As the value of h approaches zero, an approxi-
mate estimation of f (x) can be obtained in the following form:

f̂ (x) =
1

Nh

N

∑
i=1

k
(

x− xi
h

)
, (17)

where N denotes the number of samples, h is the bandwidth, and k(x) represents the
kernel function. It is worth mentioning that various kernel functions bring different
estimation effects. This investigation is aimed to utilize the Gaussian kernel function,
which is commonly exploited and known to produce effective results [3]. The function is
represented by the following equation:

k(x) =
1√
2π

exp
(
− x2

2

)
. (18)
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2.4.2. Leave-One-Out Cross-Validation

The bandwidth plays a crucial role in a KDE-based approach. Wide bandwidths are
capable of preventing the model from accurately estimating the density of critical features,
while a small bandwidth results in an estimation with a higher level of noise. Herein,
leave-one-out cross-validation is implemented for the optimal selection of the bandwidth,
and mean integrated squared error (MISE) is also utilized to evaluate the error of the kernel
density function. The MISE is defined per the following relation:

MISE
(

f̂ (x)
)
= E

∫ [(
f̂ (x)− f (x)

)2
]

dx. (19)

The global error of LOOCV is defined as follows:

LV =
1
N

N

∑
i=1

MISEi. (20)

The error resulting from the computation of various bandwidths (h) is specified by
LV(h). The optimal bandwidth (h0) is determined by identifying the point at which LV(h)
takes its minimum value:

h0 = argmin LV(h), h > 0 (21)

LOOCV effectively utilizes all the information of the data, resulting in the calculation
of optimal parameters for the sample data. However, the corresponding computational
time cost is high, and it is generally utilized in the case of small sample data due to the need
for N-training that fits the model and error metric calculations. In the current investigation,
the prediction results of the ERNN-based model for different levels of τ are chosen as
inputs for kernel density estimation, and then the LOOCV is exploited as the method for
bandwidth selection due to the limited number of values for τ ∈ (0, 1).

3. Methodology Framework and Evaluation Metrics
3.1. Methodology Framework

The framework of the overall WPF is demonstrated in Figure 4. The forecasting
process in the present work is divided into the following steps:

(1) Preprocessing of the wind power data, including the division of data into training
and test sets, normalization, and the utilization of the sliding window method for the
construction of feature and response variables.

(2) Nine distinct models (ER, QRNN, LSTM, GRU, MLP, RNN, Transformer, Transformer-
ER, and CS-Transformer-ER) are employed for wind power series prediction, and four
commonly used evaluation metrics (MAE, RMSE, MAPE, and R2) are considered as
appropriate measures to compare the performances of the models.

(3) The structure of the optimal Transformer-ER network, as identified by the CS algo-
rithm, is implemented for point prediction at various levels τ, and the error evaluation
metrics are calculated for it.

(4) The point prediction results for various levels of τ are utilized as inputs for kernel
density estimation, the optimal bandwidth (h) is then determined through LOOCV,
and finally, probability density predictions are achieved accordingly.

(5) The results of probability density estimation are appropriately exploited to construct
point and interval predictions, and the evaluation metrics of point and interval esti-
mation of various models are separately obtained for comparison.
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3.2. Point Estimation Evaluation Metrics

In regression problems, four of the most commonly used and reliable evaluation
metrics for assessing the point prediction accuracy of different models are mean absolute
error (MAE), root mean square error (RSME), mean absolute percentage error (MAPE),
and coefficient of determination (R2). Their calculation formulas are given in the following
Equations (22)–(25):

MAE =
1
n

n

∑
t=1
‖ yi − ŷi ‖, (22)

RMSE =

√
1
n

n

∑
t=1

(yi − ŷi)
2, (23)

MAPE =
1
n

n

∑
t=1
‖ yi − ŷi

yi
‖, (24)

R2 = 1− ∑n
t=1(yi − ŷi)

2

∑n
t=1(yi − y)2 , (25)

where n represents the number of predicted samples, yi denotes the true value of the
response variable, ŷi is the predicted value, and y specifies the mean value of the real data.

3.3. Interval Prediction Evaluation Metrics

The quality of the prediction interval (PI) is a crucial feature in assessing the results of
probability density prediction. To evaluate the probability density estimation of the model,
herein, the following four metrics are employed for comparison: prediction interval cover-
age probability (PICP), prediction interval normalized average width (PINAW), prediction
interval estimation error (PIEE), and coverage width-based criterion (CWC).

The PICP is a crucial evaluation metric for PI; it represents the probability that future
wind power will be within the lower and upper limits of the forecast results, and it is
defined by the following equation:

PICP =
1
n

n

∑
i=1

Ci, (26)
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Ci =

{
1, yi ∈ [Li, Ui]
0, yi /∈ [Li, Ui]

(27)

where Li and Ui in order represent the minimum and maximum values of the prediction
interval for the i-th sample. The factor Ci denotes a Boolean variable, where Ci = 1 if the
real value falls within the prediction interval and Ci = 0 in other cases. It is evident that a
wide PI could result in a high PICP; nevertheless, it has minimal value for power planning
and decision making. With this in mind, the PINAW is introduced to evaluate PI; it is
defined by the following relation:

PINAW =
n

∑
i=1

Ui − Li
nR

, (28)

in which R denotes the difference between the maximum and minimum values of the
response variable y to be predicted, and it serves the purpose of standardizing the results
to objectively evaluate the width of PI. Lower values of the PINAW imply higher accuracy
of the interval prediction results.

The PICP only considers the probability of the real value falling within the prediction
interval, without dealing with the error magnitude between the prediction interval and
the real value. A relatively novel metric, PIEE [25], provides an understanding of the
estimation error of PI. This metric is implemented to more systematically evaluate the risk
outside the prediction interval; it is defined as follows:

PIEE =
n

∑
i=1

Ei
nR

, (29)

Ei =


yi −Ui, yi > Ui
0, Li < yi < Ui
Li − yi, yi < Li

(30)

The PIEE metric enables us to more precisely evaluate the estimation error of the true
value outside the model prediction interval. However, as with PICP, a too-wide PI could
result in a low PIEE, which is not significant. To ensure a more accurate and comprehensive
evaluation, the CWC metric is introduced. A combination of the three metrics PICP, PINAW,
and PIEE is employed to construct an improved CWC metric:

CWC = PINAW{1 + γPICP exp[−(1 + PIEE)(PICP− µ)] } (31)

γPICP =

{
0, PICP ≥ µ
1, PICP < µ

(32)

where the parameter µ represents the basic requirement for interval coverage probability,
and a PICP value less than µ leads to an exponential penalty. In the current investigation,
we set µ = 0.9. The penalty factor, denoted by 1 + PIEE, is exploited in the case of the
coverage probability requirement not being satisfied. Additionally, it can be observed that
the CWC metric takes into account the coverage probability, average width, and estimation
error of the prediction interval and serves as a comprehensive index. A smaller value of
the CWC implies a higher quality of the prediction interval.

3.4. Probability Density Prediction Is Constructed as a Point Estimation

In order to compare the estimation of the probability density prediction with that of
the point prediction, the mode, median, and mean of the wind power probability density
prediction are selected as the point estimation results. The mode corresponds to the peak
value of the probability density curve. The median is defined as the middle value of
the prediction interval, representing the weighted sum of all probability densities and
their predicted values. Hence, this factor takes full advantage of the information from
the probability density function [27]. The predicted values of the wind power for the i-th
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sample, ŷi,1 ≤ ŷi,2 ≤ . . . ≤ ŷi,N , are denoted by pi,1 ≤ pi,2 ≤ . . . ≤ pi,N , which are their
corresponding probability values. The mode, median, and mean values are calculated by
the following Equations (33)–(35):

Mode = ŷi,argmax(pi,j)
, j = 1, 2 . . . , N (33)

Median =


ŷi, N+1

2
, N is odd(

ŷ
i, N

2
+ŷ

i, N+2
2

)
2 , N is even

(34)

Mean =
N

∑
j=1

pi,j·ŷi,j. (35)

4. Empirical Results
4.1. Data Sources and Preprocessing

In the current investigation, we use wind power data from the Elia Belgian power
grid company website as empirical data to verify and test the validity of the proposed
model. For this purpose, the data from the aggregate Belgian wind farms are chosen for a
period from 1 January to 28 February 2022. Since the original data have a 15 min frequency,
they are resampled to a 1 h frequency to lessen the computational effort and for the ease
of recording. According to the demonstrated processed data in Figure 5, it is evident that
the wind power series data are highly variable and random. As a result, the probability
density prediction of wind power is necessary for quantifying the uncertainty of wind
power output and providing results that would be more informative to relevant decision-
makers and stakeholders. About 80% of the data, the purple solid line part (from 1 January
2022 00:00:00 to 17 February 2022 03:00:00), are chosen to be exploited as the training set,
whereas the remaining 20% of the data, the brown dashed line part (from 17 February
2022 04:00:00 to 28 February 2022 23:00:00), are utilized as the test set. A sliding window
of 168 periods (seven days) is employed to construct the feature variables, meaning that
yt−167, yt−166, . . . , yt is employed to predict the value of yt+1. After the above process
is completed, the 3D tensor data from both the training and test sets are normalized to
prepare for the NNM fitting. Table 1 provides information on the main parameters of the
NNMs used in the present work.
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Table 1. The main parameters of the NNMs.

Parameter Value

Number of hidden layers 2
Number of neurons in the hidden layer [64, 32]

Batch size 32
Maximum number of iterations 50

Embedding layer dimension 32
Number of multi-head attention heads 4

Level τ 0.5

4.2. Comparison of the Model Prediction Results

Nine models are utilized for comparison in order to evaluate the prediction results
of classical point estimation methods. These models are appropriately analyzed via four
metrics: MAE, RMSE, MAPE, and R2. A comparison of the point prediction results of some
of the models is presented in Figure 6. The depicted results indicate that the predicted and
actual values for the four models are relatively close. The models exhibit highly accurate
prediction performance for intervals where the wind power data are monotonic, while
more deviations for intervals are observed for the cases in which the wind power fluctuates
and varies. Notably, the QRNN model predicts more dramatic fluctuations between 24
February 2022 and 27 February 2022, which could be related to its training process that
utilizes an absolute value loss function. The four error metrics calculated for all models on
the test set are given in Table 2.
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Table 2. Comparison of the point prediction results for all examined models.

Model MAE RMSE MAPE R2

ER 428.4206 565.2859 1.8311 0.7672
QRNN 354.1195 460.9649 1.8252 0.8452
LSTM 207.8788 278.8663 1.7486 0.9434
GRU 228.8504 308.0818 1.7363 0.9309
MLP 361.4761 478.3939 1.8812 0.8392
RNN 239.0550 321.7016 1.7537 0.9246

Transformer 190.5266 269.8500 1.8787 0.9470
Transformer-ER 194.9061 268.8835 1.7945 0.9473
CS-Transformer-

ER 183.9616 252.6901 1.8142 0.9535

From the results presented in Table 2, the following conclusions can be drawn:
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(1) Among all the models, the transformer model has the best performance in predicting
wind power data. The prediction results of the Transformer-ER model when τ = 0.5
should be theoretically similar to those of the transformer model, and any minor
differences between them can be attributed to the numerical calculation variations.
In this type of sequential data, compared to the RNN-based model, the transformer
model demonstrates superior performance in capturing the internal correlation of
longer sequential data. In addition, based on the common sense of deep learning, this
effect becomes more noticeable as the amount of training data rises.

(2) The CS algorithm is effective in searching for hyperparameters of NNMs. Addi-
tionally, the achieved results from the CS-Transformer-ER model, which exploits the
hyperparameters found through the CS algorithm, also exhibit superior performance
in all four evaluation metrics. It is crucial to mention that the low MAPE values for
the GRU model could be skewed. The MAPE may not be as reliable as the other three
indicators in assessing the prediction performance of the models on the test set due to
the presence of intervals in the test set data that contain zero values or close to them.
This may lead to the calculated MAPE values tending towards infinity, making the
metric unreliable. Furthermore, further optimization of the CS algorithm with more
iterations could possibly lead to even better predictions.

(3) The linear model (i.e., ER) exhibits the worst performance among the benchmark
models. Although the MLP and QRNN models are essentially nonlinear, they fail in
full consideration of the temporal relationship between data and thus exhibit lower
prediction performance than the RNNs. Among the three recurrent neural networks,
namely RNN, LSTM, and GRU, the best performance is achieved for the LSTM, which
is exploited by most researchers. However, the corresponding MAE error metric of
the prediction results is almost 9% higher than that of the transformer model.

4.3. The Predicted Results Based on the Various Levels of τ

The model has been trained and tested with different levels of τ. The effect of the pre-
diction curve is presented in Figure 7, and the corresponding evaluation metrics calculated
are presented in Figure 8.
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Figure 7 illustrates the plotted prediction results based on different τ values. It is
apparent that the prediction curves are highly similar in trend and degree of fluctuation and
are superimposed to configure a confidence interval covering the actual value. It is feasible
and reliable to use these predicted values to construct probability density estimation curves.

From Figure 8, it is obtainable that the prediction performance is better and more
consistent with less error in the case of τ in the range of 0.4 to 0.85. When the value of τ is
considered too large or too small, it leads to a strong asymmetry in the loss function, which
is appropriate for describing the corresponding conditional distribution, but the overall
prediction performance is poorer.
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4.4. Probability Density Prediction Results

Before performing the kernel density estimation, the optimal bandwidth size selected
is appropriately verified by a leave-one-out cross-validation for each group of bit data
in the test set. The box plots of all optimal bandwidths (h) are demonstrated in Figure 9.
Figure 9 clearly displays that the majority of the optimal bandwidths (h) are in the range of
40–90.
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Figure 9. Optimal range of the bandwidth.

The first nine points of the test set (from 17 February 2022 04:00:00 to 17 February
2022 12:00:00) are chosen, and the actual values and probability density curves of the wind
power are demonstrated in Figure 10. The blue curve and the red dashed line represent the
kernel density estimation curve and the actual values of the test set, respectively. All the
actual values clearly fall within the predicted probability density curve, with the majority
of the values being concentrated around the peak of the estimated probability density. This
indicates that the estimated probability density effectively captures the inherent uncertainty
in wind power generation. The location of the estimated probability density curve peak
may be the true value of the wind power data. The probability density estimation offers
several advantages such as quantifying uncertainty and improving prediction accuracy,
providing decision-makers with more precise information about the WPF.
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The results of the probability density estimation for the proposed model, QRNN, and
ER are compared in Table 3. The evaluation metrics for the point estimates (i.e., mode,
median, and mean) constructed from the probability density estimates of each model are
given in this table. Additionally, the corresponding histograms are presented in Figure 11,
providing a visual representation of the performance of each model.

Table 3. The evaluated metrics for point estimation based on several approaches.

Methods Point Estimates MAE RMSE MAPE R2

Transformer-ER
Mode 203.1176 282.0029 1.9020 0.9421

Median 191.4592 271.6375 1.8843 0.9463
Mean 187.0430 263.9477 1.8611 0.9493

QRNN
Mode 334.9645 428.0405 1.8301 0.8665

Median 310.3674 419.9150 1.7790 0.8716
Mean 303.6449 411.5041 1.7964 0.8767

ER
Mode 428.8808 564.8208 1.8274 0.7676

Median 430.2076 566.8995 1.8285 0.7659
Mean 430.0491 566.1494 1.8323 0.7665

The presented results in Table 3 and Figure 11 display that the point prediction errors
based on the probability density estimation of the proposed Transformer-ER model are
substantially lower in comparison to those of the QRNN and linear ER models, which do not
take into account temporal effects. Additionally, regardless of the model or method used,
the mode, median, and mean values of the probability density predictions are relatively
similar in terms of performance. The mean accuracy is slightly higher than mode and
median accuracies because it takes into account all the information of the predicted data.
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Among all the models and methods, the Transformer-ER model exhibits the lowest MAE
and RMSE and the highest R2 for the mean probability density, making it the best point
prediction result. Its error metric is smaller than the point prediction results of almost all
models in Table 2. It is worth mentioning that the exploitation of the MAPE may not be
reliable due to the presence of values close to or equal to zero in the test set.
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The evaluation metrics for interval estimation are provided in Table 4. The PICP
values of the Transformer-ER, QRNN, and ER models are remarkably different. The QRNN
model presents a high PICP, accordingly presenting a low PIEE. The ER of the linear model
fails to satisfactorily fit the uncertainty of the wind power data, with a PICP value of
only 42.25%. However, the higher PICP of the QRNN is derived from a larger average
width of the prediction interval. This means that the QRNN gives an extensive prediction
interval, which is of little significance for practical decision making. On the contrary, the
Transformer-ER-based model exhibits a more moderate PICP and a smaller PINAW, and its
composite index CWC has the smallest value. Therefore, the probability density prediction
interval of the Transformer-ER model exhibits higher quality than that of other models.

Table 4. Evaluation metrics for the interval prediction of various approaches.

Methods PICP PIEE PINAW CWC

Transformer-ER 0.8697 0.0064 0.1728 0.3510
QRNN 0.9824 0.0008 0.5580 0.5580

ER 0.4225 0.0572 0.1781 0.4732

As can be observed from Figures 12 and 13, while the PIs obtained from the QRNN
model cover a majority of the actual values of the wind power, they also exhibit a broader
range compared to the PIs from the Transformer-ER model. This broader range of PIs from
the QRNN model could lead to a growth of uncertainty in the prediction of wind power
forecasting; thus, it could not be beneficial in power planning and decision making. The
PIs of the Transformer-ER model are more precise, as they are narrower in zones where the
wind power data exhibit a monotonic increase or decrease and broader in zones where the
wind power is volatile and variable. This issue would be effectively helpful in capturing
the uncertainty in wind power forecasting, providing decision-makers with more relevant
and useful information.
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5. Conclusions

In the current investigation, a combination of the transformer network that performed
best in the sequential data task and expectile regression is proposed for effective wind
power prediction via an ERNN structure. The model is optimized by employing the
cuckoo search algorithm. The methodology of kernel density estimation is then exploited
to achieve the complete probability density curve, which is then built into the point and
interval prediction. These predicted results are separately evaluated to provide compre-
hensive information on the uncertainty of the wind power. The proposed approach is then
validated and tested based on the wind power generation data from the Belgian power
grid company Elia. The major obtained conclusions are as follows: (1) The proposed model
effectively addresses the volatility and stochastic nature of wind power data, provides
comprehensive and accurate prediction, reduces the operational risks associated with
wind power generation, and enhances the stability of power systems. (2) The transformer
network, when compared to the commonly exploited recurrent neural networks, demon-
strates the superior capability to capture the internal correlations and dependencies in long
sequences and yields a higher level of prediction accuracy. (3) The proposed probability
density prediction approach in this paper is capable of providing more comprehensive
information for relevant stakeholders and decision-makers and has been proven to be more
robust and accurate than point predictions. (4) The proposed ERNN-based model produces
more accurate and narrow prediction intervals compared to QRNN models and thereby
leads to higher quality prediction intervals in general.
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