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Abstract: Deep map prediction plays a crucial role in comprehending the three-dimensional structure
of a scene, which is essential for enabling mobile robots to navigate autonomously and avoid obstacles
in complex environments. However, most existing depth estimation algorithms based on deep neural
networks rely heavily on specific datasets, resulting in poor resistance to model interference. To
address this issue, this paper proposes and implements an optimized monocular image depth
estimation algorithm based on conditional generative adversarial networks. The goal is to overcome
the limitations of insufficient training data diversity and overly blurred depth estimation contours in
current monocular image depth estimation algorithms based on generative adversarial networks.
The proposed algorithm employs an enhanced conditional generative adversarial network model
with a generator that adopts a network structure similar to UNet and a novel feature upsampling
module. The discriminator uses a multi-layer patchGAN conditional discriminator and incorporates
the original depth map as input to effectively utilize prior knowledge. The loss function combines
the least squares loss function and the L1 loss function. Compared to traditional depth estimation
algorithms, the proposed optimization algorithm can effectively restore image contour information
and enhance the visualization capability of depth prediction maps. Experimental results demonstrate
that our method can expedite the convergence of the model on NYU-V2 and Make3D datasets, and
generate predicted depth maps that contain more details and clearer object contours.

Keywords: autonomous mobile robot; conditional generative adversarial network; depth map
prediction; intelligent manufacturing

1. Introduction

Today, intelligent logistics has become an essential component of the promotion
of “intelligent manufacturing”. It is extensively used in production line assembly for
discrete manufacturing industries and material access in enterprise warehouse rooms.
Intelligent warehousing, a result of warehouse automation, can be achieved through
various automation and interconnection technologies that work together to enhance the
production efficiency of the production line and the distribution efficiency of the warehouse,
minimize labor, and reduce errors.

In intelligent logistics and warehousing, Automated Guided Vehicles (AGVs) [1]
and Autonomous Mobile Robots (AMRs) [2] play vital roles in handling materials such
as raw materials, tools, products, and accessories. Unlike AGVs, which require preset
guidance devices and simple programming instructions, AMRs can carry out more complex
operations and processing and provide greater flexibility. They can realize more intelligent
navigation functions such as map construction and autonomous obstacle avoidance, making
them the best choice for realizing intelligent logistics and warehousing.

As the environmental complexity increases in intelligent manufacturing enterprises,
two-dimensional maps are no longer sufficient for mobile robots’ environmental perception.
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Three-dimensional maps can provide more comprehensive environmental information and
are a current research hotspot in the field of mobile robot map construction [3].

The depth map is a common way of expressing 3D scene information, where the value
of each pixel in the map represents the distance between the corresponding point of the
object and the collector in the scene. Image depth prediction, widely used in autonomous
driving, robot obstacle avoidance, 3D map reconstruction, and object detection [4], is a
classic problem in computer vision research. When using two or more cameras to predict
the depth of the same object., the method is called binocular or binocular image depth
prediction. The method of monocular image depth prediction only requires obtaining a
large quantity of depth information from a single camera, which is low-cost and more
widespread, and increasingly a current research focus in the field of computer vision.

With the rapid development of deep learning, much progress has been made in
solving classical problems in computer vision. Deep learning has played an essential role
in addressing computer vision tasks such as object recognition, object tracking, and image
segmentation, resulting in significant improvements in efficiency and accuracy. The first
monocular image depth prediction method that utilized a convolutional neural network
was proposed by Eigen et al. [5] in 2014. Their approach, which employed an AlexNet-
based network structure, consisted of two scales: one to capture global information and
the other to capture local information. The global information capture was partly based
on AlexNet. This method achieved promising results on both the NYU Depth and KITTI
datasets. Since then, several monocular image deep models based on convolutional neural
networks have been proposed, resulting in a range of outcomes [6–8]. Although existing
models have shown effectiveness on standard public datasets, they rely too heavily on
specific datasets and are vulnerable to security attacks.

In practical applications, recognized objects can vary greatly in shape, and the lighting
of the environment can change. Intelligent warehousing scenarios pose particular chal-
lenges due to highly stacked objects, and the diverse shapes and sizes of goods, which can
make it difficult for intelligent vehicles to accurately estimate depth information. Moreover,
deep neural networks themselves are prone to security issues and can be vulnerable to
security attacks.

To improve the robustness and generalization ability of the deep estimation algorithm,
and to mitigate potential security threats, this article proposes an optimization algorithm for
monocular image depth estimation, based on conditional generative adversarial networks.

The contributions to this article are as follows:
First, we present the conditional generative adversarial network (cGAN) structure as

the fundamental framework for the monocular depth estimation algorithm. The cGAN can
generate more realistic synthetic data, which increases the amount of available training
data. The model uses conditional variables, such as the depth map and original image, as
prior knowledge to enhance the accuracy of generated depth maps and the discrimination
ability of the discriminator. Moreover, the cGAN training improves the learning of the
mapping between input images and depth images, thereby enhancing the robustness of
the system.

Second, we introduce a novel feature upsampling module in the generator that im-
proves the resolution of the feature map. This is achieved by incorporating new decon-
volution layers into the existing upsampling module, thereby improving the accuracy of
the generated depth maps. We also use an improved loss function that combines the L1
norm loss with the least squares loss function. This resolves the issues of difficult conver-
gence and mode collapse commonly encountered in generative adversarial networks. The
improved loss function guides the model to generate more accurate depth maps.

The rest of this article is arranged as follows: Section 2 provides a brief overview of the
current state-of-the-art in monocular image deep estimation methods, as well as adversarial
generative networks based on convolutional neural networks. Section 3 delves into the
key techniques and algorithmic framework design. Section 4 presents the implementation
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results and their analysis. Finally, in Section 5, we draw conclusions from the results and
discuss the next work.

2. Related Work
2.1. Deep Estimation Methods for Monocular Images Based on Deep Learning

The monocular image deep prediction methods based on deep learning can be broadly
classified into three categories: supervised learning, unsupervised learning, and semi-
supervised learning. Supervised learning, which involves training a model on labeled
data, was pioneered by Eigen et al. in 2014 [5] and 2015 [6]. They used convolutional
neural networks, including AlexNet and VGGNet-16, to estimate monocular image depth.
In 2014, the author used AlexNet [5] as the fundamental model to produce an initial
global depth map. To refine the depth map, a local fine network structure was used in
conjunction with the original image information, which yielded favorable results at that
time. However, due to the limited expressiveness of the AlexNet network, the depth
prediction results were not satisfactory. Shortly after, in 2015, Eigen et al. [6] improved
this work by incorporating deeper and more multi-scale convolutional neural networks.
The authors employed VGGNet-16 for feature extraction and depth prediction, leading to
better performance on standard datasets. Laina et al. [7] proposed a fully convolutional
neural network structure based on deep residual networks to address the issue of excessive
network parameters in monocular depth prediction. To enhance the depth prediction
results, they introduced an up-projection module and utilized back-pooling to increase the
depth map resolution.

Monocular image depth prediction is a complex task that involves calculating the
depth value for each pixel in an image. Typically, this is treated as a high-dimensional
regression problem where the model estimates the difference between the predicted depth
value and the actual depth value, which is then used as the basis for the loss function.
However, a more efficient approach is to transform the problem into a classification problem
by dividing depth values into intervals and grouping pixels into corresponding bins,
similar to a histogram. Cao et al. [8] applied this technique to extract features using
deep residual networks, which were then fused using fully connected conditional random
fields. The resulting model was trained using cross-entropy loss in the classification model.
Liu et al. [9] used isolated conditional random fields for monocular image depth prediction.
SENet-154 [10] introduced a new Squeeze-and-Excitation (SE) network module, which
can adaptively learn the correlations between feature channels, thereby enhancing the
network’s representation and generalization capabilities. Meanwhile, the DenseDepth
algorithm [11] proposed a transfer learning-based method that fine-tunes pre-trained
models from large datasets like ImageNet for depth estimation. To further enhance the
robustness and precision of depth estimation, the AdaBins algorithm [12] presents an
adaptive depth estimation technique that adjusts the depth range in different scenarios
and employs a novel loss function. Finally, the GLPDepth [13] algorithm proposes a novel
Vertical CutDepth depth estimation method that leverages vertical information in-depth
images to improve accuracy and efficiency. The authors also suggest a global-local path
network architecture that captures both global and local information in scenes, leading to
more accurate depth estimation.

In the field of unsupervised and semi-supervised learning, several researchers have
proposed innovative methods to improve the accuracy and robustness of depth prediction
and camera motion estimation. Godard et al. [14] utilized left-right view consistency for
unsupervised depth prediction, which improved robustness by leveraging parallax and
optimizing performance. Kuznietsov et al. [15] proposed a semi-supervised approach that
utilizes sparse deep images as labels to achieve better performance. Mahjourian et al. [3]
proposed an end-to-end learning approach that uses view synthesis as a supervised signal,
resulting in a video sequence-based unsupervised learning framework for monocular image
depth and camera motion estimation. Bian et al. [16] leveraged geometric consistency
constraints to achieve scale consistency between adjacent frames and used this to detect
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and remove dynamic objects and masked regions. This approach outperforms previous
algorithms trained on binocular video. Casser et al. [17] proposed a model that takes RGB
image sequences as input and is supplemented by a pre-computed instance segmentation
mask. Bhutani et al. [18] proposed a Bayesian inference-based method for monocular
image depth estimation and confidence prediction. This method estimates the posterior
distribution of each pixel’s depth and confidence through a combination of a neural network
that estimates the prior distribution of pixel depth and a noise model, and the pixel
values of the input image. Almalioglu et al. [19] proposed a monocular visual odometry
(VO) and depth estimation algorithm based on depth learning. This method trains an
unsupervised monocular VO and depth estimation model using geometric constraints
from binocular vision, allowing for motion estimation and scene depth estimation even
in extreme environments. The method introduces a new “Persistent” loss function which
enables the network to learn persistent estimation of optical flow and scene depth, while
reverse depth estimation and optical flow prediction increase the loss function’s robustness.
The method also employs a pyramid depth network, designed to extract depth information
from various scale feature maps, resulting in more accurate and robust depth estimation.

Although the results may not always be outstanding, these methods and their practical
applications are still worth exploring.

2.2. Current Status of Generative Adversarial Networks

In 2014, Ian J. Goodfellow [20] introduced Generative Adversarial Networks (GANs),
which consist of a generator and a discriminator. The generator takes a high-dimensional
noise vector as input and generates data that is fed into the discriminator. The discriminator
then determines whether the input is a real sample or a fake sample generated by the
generator. GANs use an unsupervised learning approach and reach an equilibrium point
through a two-player game. at which point the generator can produce data that the
discriminator cannot effectively distinguish as fake.

However, early GANs faced issues with training stability and the lack of control
over the output. To address these problems, researchers introduced conditional GANs
(cGANs) [21] in 2014, which incorporate additional conditional information during training
to ensure the generator produces specific content. Despite these efforts, GANs are still
challenging to train. The literature proposes various modifications to improve training
stability, including Deep Convolutional Generative Adversarial Networks (DCGANs [22]),
least squares loss functions (LSGANs [23]), Wasserstein loss functions (WGANs [24]),
gradient normalization (WGAN-up [25]), and proportional control (BEGAN [26]).

In the context of monocular image depth prediction, GANs can partially solve the
problem of over-smooth or under-detailed depth prediction. By training a GAN to measure
the similarity between the predicted depth graph and the original depth label, the visual-
ization of the depth estimate can be improved. Lsola et al. [27] propose a general model
based on conditional GANs to solve image-to-image translation problems, including the
monocular image depth prediction problem.

3. Methods

Similar to the conditional generative adversarial network structure proposed in the
literature [27], we utilize an enhanced conditional generator and conditional discriminator
for our GAN model. Specifically, we incorporate a generator structure based on deep
residual networks, which includes a new up-sampling module (labeled as Up-Decon). Our
discriminator classifier structure is based on the conditional patchGAN classifier introduced
in literature [27], but with modifications to the loss function to enhance the performance of
the generative adversarial networks.

3.1. Network Structure

The original GAN structure generates images by processing random noise through a
neural network, which can lead to uncontrolled output content. To overcome this limitation,
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additional constraints must be imposed on the original GAN. This paper proposes an
optimized conditional GAN (op-cGAN) for monocular image depth estimation, which is a
visual task performed at the image-to-image level. The specific model structure is depicted
in Figure 1. The generator (G) takes the original image (x), the depth map (y), and random
noise (z) as inputs, and outputs the predicted depth map (y’). The discriminator (D) takes
the original image (x) and depth map as inputs and determines whether the depth map is
from the training dataset (y) or generated by the generator (y’). A “fake” output from the
discriminator indicates that the depth map is generated; while a “real” output indicates
that the depth map is from the training dataset. By including the original image (x) as a
constraint, the discriminator has access to additional priori knowledge, resulting in a more
accurate and detailed depth map generation.
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3.2. Generator

The generator section of the model follows an encoder-decoder structure, where the
encoder extracts features and the decoder transforms these features into the final output. As
shown in Figure 2, the generator employs a network structure based on deep residuals. The
feature extraction process is aligned with the ResNet And begins with a stride-convolution
and max-pooling to reduce the input image’s resolution and minimize the number of
parameters. The feature map then passes through four ResBlock, which reduces the feature
map’s resolution by half after each ResBlock while doubling the number of feature map
layers. This process results in a feature map resolution that is 1/32 of the input resolution.

After extracting the upper feature map, a 1 × 1 convolutional kernel integrates the
features. Next, the feature map passes through four Up-Decon modules, each consisting
of three parts. The first part is a convolutional layer, followed by a concatenation layer
that directly concatenates features of the same resolution extracted from the previous
feature extraction stage. Lastly, a deconvolution layer is used to increase the feature
map’s resolution. The convolutional layer uses a 1 × 1 kernel to integrate cross-channel
information and adjust the number of feature map channels. The concatenation layer uses
concatenation or bitwise addition to combine the features and the deconvolution layer uses
a 4 × 4 kernel with a stride of 2 and padding of 1 to double the feature map’s resolution.
After the Up-Decon modules, the feature map is processed by two convolutional modules
to generate a depth prediction map with half the input resolution. Each pixel in the depth
prediction map represents a predicted depth value in meters and is stored as a 32-bit
floating-point number.
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3.3. Discriminator

To extract local image information, we adopt a conditional patchGAN discriminator,
similar to the one proposed in reference [27]. As shown in Figure 3, the discriminator
comprises a 5-layer full convolution network, which takes a concatenation of the depth
map and the original image as input, without the sigmoid function on the last layer, since
we use the least square function for loss calculation in this work. The original image serves
as a conditional vector to guide the discriminator’s classification. During training, the
predicted depth map and the original image are concatenated as the negative samples, while
the depth map from the training dataset and the original image are the positive samples.
PatchGAN partitions the image into multiple patches and computes the classification
results for each patch, thus treating the image as a Markov random field and assuming
the independence of pixels across different patches. The final output of the discriminator
is obtained by averaging the output of each patch. The loss function is calculated using
convolution, enabling the use of smaller block sizes.
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3.4. Loss Function

The loss function of traditional GAN is:

min
G

max
D

VGAN(D, G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))] (1)

in which G is a generator, D is a discriminator, z is a noise variable sampled from a
normalized or Gaussian distribution, pdata(x) represents the probability distribution of real
data x, and pz(z) represents the probability distribution of z, Ex∼pdata(x) is the expectation
value of x and Ez∼pdata(z) is the expectation value of z. The goal is to train G to generate
samples that are indistinguishable from real data, while D tries to correctly distinguish
between real and fake samples. However, a major issue with traditional GAN training is
that as D gets better, the gradient signal that G receives becomes weaker, which leads to
poor sample quality. To address this problem, LSGAN (Least Squares GAN) [23] replaces
the binary classification objective of D with a least squares regression objective, which
removes the sigmoid activation function from its final layer. This change has two main
benefits: (1) LSGAN assigns a penalty to samples based on their distance from the decision
boundary, which ensures that G generates samples that are closer to the boundary, and
(2) LSGAN generates stronger gradients for samples that are far from the boundary, which
mitigates the gradient vanishing problem in traditional GAN. The optimal loss functions
proposed in this paper are as follows:

min
D

VLSGAN(D) =
1
2
Ex∼pdata(x)

[
(D(x)− 1)2

]
+

1
2
Ez∼pz(z)

[
(D(G(z)))2

]
(2)

min
G

VLSGAN(G) =
1
2
Ez∼pz(z)

[
(D(G(z))− 1)2

]
(3)

According to reference [21], experiments have shown that adding the L1 loss function
to the original loss function during the training of adversarial networks can lead to the
generation of more realistic images. The L1 loss function is defined as follows:

LL1(G) = Ex,y,z[ ||y− G (x, y, z) ||1 ] (4)

in which y refers to the depth map from the training datasets that correspond to the real
image x. As a result, the final loss function used in this paper can be expressed as follows:

min
D

VcGAN(D) =
1
2
Ex,y

[
(D(x, y)− 1)2

]
+

1
2
Ex,z

[
(D(x, G(x, y, z)))2

]
(5)

min
G

VcGAN(G) =
1
2
Ex,z

[
(D(x, G(x, y, z))− 1)2

]
+ λLL1(G) (6)

4. Experimental Results and Analysis

This section describes the experimental process and results of the monocular image
depth prediction algorithm proposed in this study, which is based on op-cGAN.

4.1. Experimental Design

To take into account the complex and unique convergence process of cGAN training,
we conducted our experiments in two stages. In the first stage, we compared our op-cGAN
algorithm with several monocular image depth prediction algorithms based on classical
deep learning models. This is because cGANs are generative models, and the generator in
a cGAN can be trained to generate the predicted depth map y’ from an observed image
x and a random noise vector z. In the second stage, we compared the monocular image
depth prediction algorithm based on op-cGAN with the one based on the original cGAN.
We evaluated the performance of these algorithms from both quantitative and qualitative
perspectives. To conduct a comprehensive evaluation, we used two datasets: NYU-V2 for
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indoor scenes and Make3D for indoor and outdoor scenes. We utilized industry-standard
valuation metrics to assess the effectiveness of depth prediction from different viewpoints.
Assuming that yi is the actual depth value, yi* is the predicted depth value, and T represents
the number of effective pixels, the evaluation metrics are described as follows:

Absolute Relative Difference(rel) = 1
|T| Σ

y∈T
|y− y∗|/y∗

Root Mean Squared Error(rmse) =

√
1
|T| Σ

y∈T

∣∣∣∣∣∣∣∣y− y∗
∣∣∣∣∣∣∣∣2

Root Mean Squared Log-Error(rmse(log)) =

√
1
|T| Σ

y∈T

∣∣∣∣∣∣∣∣log y− log y∗
∣∣∣∣∣∣∣∣2

Mean log 10 Error : 1
|T| Σ

y∈T

∣∣log10(y)− log10(y
∗)
∣∣

(7)

4.2. Training Method of Model

Unlike the general deep learning network model, cGAN has its own training method.
Algorithm 1 shows the pseudo-code for the training procedure of monocular image depth
prediction based on the op-cGAN.

Algorithm 1: Pseudo-code of monocular image depth prediction based on the cGAN

For the number of training iterations, do:
For k steps do:

• sample minibatch of m images { x(1), . . . , x(m)} and corresponding depths images
{ y(1), . . . , y(m)}

• sample minibatch of m noise images { z(1), . . . , z(m)}
• update discriminator by descending its stochastic gradient when fixed generator gradient:

min
D

VcGAN(D)

End for

• sample minibatch of m images { x(1), . . . , x(m)} and corresponding depths images
{ y(1), . . . , y(m)}

• sample minibatch of m noise images { z(1), . . . , z(m)}
• update generator by descending its stochastic gradient when fixed discriminator:

min
G

VcGAN(G)

End for

Training a neural network from scratch can be extremely challenging. Therefore, to
achieve better results, the academic community usually relies on pre-trained network
models. In this study, we pre-trained our model on ImageNet. Pre-training on ImageNet
offers two benefits: (1) it speeds up the training process as the pre-trained model has learned
feature extraction methods on millions of training examples, and fine-tuning is sufficient to
achieve better results on small datasets; (2) it improves the results on the training set, as
deep networks are challenging to train, and the millions of training examples on ImageNet
can enhance the network’s expressive power. In our experiment, we set the K value to 1
because the generator’s main body is pre-trained with ResNet-50, which provides it with a
strong feature extraction ability.

Furthermore, Batch normalization is highly effective in aiding the flow of gradients
flow within the network and reducing the impact of parameter initial values on the training
process. This allows for a higher learning rate during training and also helps to regularize
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the model, reducing the need for Dropout operations. The formula for batch normalization
is as follows:

x̂(k) =
x(k) − E

[
x(k)

]
√

Var
[
x(k)

] (8)

where x(k) represents the output of each layer’s linear activation function. Batch Normal-
ization is applied to this output by subtracting the mean and standard deviation of the
minibatch it belongs to. This normalization transforms x̂(k) into a normal distribution with
mean 0 and variance 1, effectively solving the “internal covariate shift” problem. However,
this transformation can reduce the expressive power of the network. To address this issue,
the authors of [28] introduced two learnable parameters, scale, and shift, to each layer’s
output. With the addition of these two parameters, the original normalization method is
modified into y(k) = r(k) x̂(k) + β(k), in which r(k) and β(k) has a size equal to the original
batch size.

However, a drawback of this approach is that during inference, when there is only an
input instance (i.e., batch size of 1), the statistics used for normalization become meaningless.
To address this, practical deep-learning frameworks do not use batch normalization during
inference. During training, the batch mean and variance are computed in the same way,
but additional variables that are independent of batch size are retained to calculate the
global mean and variance. During inference, batch normalization uses the global mean and
variance that was calculated during training.

4.3. Experimental Results and Conclusions
4.3.1. NYU-V2 Dataset

We demonstrate the efficacy of our proposed algorithm using the NYU-V2 dataset,
which is one of the largest indoor depth datasets worldwide. The NYU-V2 dataset consists
of video sequences captured by Microsoft’s Kinect camera. The dataset is divided into
groups of continuous frames containing image and depth information, with some images
being manually annotated with pixel categories. The dataset includes:

1. 1449 densely annotated aligned image-depth pairs;
2. Data from 464 new scenes across 3 cities;
3. 407,024 unannotated frames.

We sampled around 5000 data pairs evenly from the original dataset, with a pixel
resolution of 480 × 640. As the dataset was collected over an extended period, there are
many invalid pixels in the surroundings with a depth value of less than 0. To mitigate the
impact of these invalid pixels, we excluded them during data processing by determining
the average range of invalid pixels in all images and subtracting it from the correspond-
ing training pairs in the original dataset. We then downsampled the data to 224 × 256,
and to increase the training data diversity and avoid overfitting, we employed two data
augmentation methods:

1. Random noise addition: Add some noise to each random vector during each training
epoch, where the noise is sampled from a Gaussian distribution with a mean of 0 and
a variance of 1.

2. Conditional vector addition: Use room type, indoor furniture, lighting, and other
information vectors as conditional inputs to the generator to generate realistic images.

Each training data pair was augmented with one of these methods, resulting in a final
set of 150,000 training pairs.

In the first stage of the experiments, we evaluated the performance of our op-cGAN-
based monocular depth estimation model in comparison with established models such as
AlexNet [5], VGGNet [6], ResNet [7], DORN [29], and the SOTA algorithm PixelFormer [30].
We carried out quantitative and qualitative assessments, and Table 1 shows the quantitative
results. All evaluation metrics in this paper are sourced from the original papers. The
generator named ResNet-Up-Decon in our op-cGAN model used the following parameters:
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the learning rate r was set to 0.01, the optimization algorithm used was momentum = 0.9,
the model was trained for 10 epochs, and the loss function is L1.

Table 1. Comparison of the proposed approach against other methods on the NYU-V2 dataset.

NYU V2 REL RMSE RMSE (log) δ<1.25 δ<1.252 δ<1.253

Eigen et al. [5] 0.215 0.907 0.285 0.611 0.887 0.971
Eigen and Fergus [6] 0.158 0.641 0.214 0.769 0.95 0.988

Laina et al. [7] 0.127 0.573 0.195 0.811 0.953 0.988
DORN [29] 0.115 0.509 - 0.828 0.964 0.992

PixelFormer [30] 0.090 0.322 - 0.929 0.992 0.998
ours 0.115 0.492 0.167 0.878 0.972 0.992

Our proposed method outperforms all previous algorithms except for the latest al-
gorithm PixelFormer, as measured by all metrics. While literature [5,6] use AlexNET and
VGGNet as the model backbone, our method, which benefits from ResNet’s stronger net-
work representation, far exceeds the methods presented in these two papers in terms of
results. Additionally, our method produces depth estimation images with higher resolution.
It is worth mentioning that compared to [7], which also uses pre-trained ResNET-50 as the
model backbone, our proposed method achieves a decrease of 0.11 in the rel metric, 0.081 in
the rmse metric, and 0.28 in the rmse(log) metric. Most importantly, our method increases
by 0.067 on the metric δ < 1.25, which means that 5% more pixels fall within this range of
estimated depth values than in [7]. This demonstrates the effectiveness of our proposed
method and the improved depth estimation prediction resolution module. Compared with
the DORN algorithm [29], which uses the spacing-increasing discretization (SID) strategy,
our method still outperforms it in the rmse, log10, δ < 1.25, and δ < 1.252 metrics.

The latest algorithm, PixelFormer [30], uses an improved attention module (Skip
Attention Module) and Bin Center Predictor (BCP) module. Based on the experimental
results of the original paper, PixelFormer outperforms the proposed algorithm across all
metrics. As the actual training data used by our algorithm is not exactly the same as the
standard NYU-V2 dataset, the absolute difference in evaluation metrics between the two
algorithms has little reference value. Nonetheless, PixelFormer still exhibited superior
performance. In future work, we will integrate the Skip Attention Module and Bin Center
Predictor module into the conditional generative adversarial network framework, and
compare it to PixelFormer to explore the impact of the conditional generative adversarial
network framework on depth estimation algorithms.

Figure 4 displays the visual results of two depth prediction algorithms based on the
VGGNet [6] and ResNet model [7], both implemented by the authors and with model
parameters provided in the published parameter files. The visualization shows that the
method proposed in [6] can generate relatively good depth map estimations. However,
the limited expressive power of the VGGNeT model used for feature extraction, results in
many predicted depth values being significantly different from the actual values. Finally,
our proposed method not only achieves more accurate depth estimation results, but also
resolves the issue of overly smooth depth estimations to a certain extent.

In the second stage of the experiment, we compared the performance of the standalone
generator model proposed in this paper with the op-cGAN model as a whole.

During the training of the standalone generator model, we used the momentum
optimization algorithm with momentum set to 0.9, a batch size of 8, and an L1 loss function.
The learning rate was set to 0.01, and we did not use a learning rate decrease method.
The model was trained for 10 epochs, and the best-performing model on the test set was
selected from the 10 trained models.

The cGAN training is different from traditional deep learning networks. After numer-
ous experiments, we obtained a set of relatively good training parameters. The generator’s
learning rate was set to 0.0001, and we used the Adam optimization algorithm. In the
loss function, we set the λ value to 10. For the discriminator, we set the learning rate to
5 × 10−4, the batch size to 8, and used the Adam optimization algorithm.
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Figures 5–7 show the experimental results of the two models under different evaluation
metrics and training epochs.
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Figure 5 depicts the models’ performance under different training epochs with a
particular evaluation metric δ < 1.25. The op-cGAN model significantly outperformed the
standalone generator model after the first epoch and gradually improved in the following
epochs. Moreover, the op-cGAN model exhibited greater stability and minimal fluctuations.
After ten epochs, the op-cGAN model achieved a depth error value of 0.85, indicating that
over 85% of the pixels’ depth estimation values were smaller than the actual depth value.
These results demonstrated the effectiveness of the op-cGAN model.

Figures 6 and 7 show the performance of the op-cGAN model compared to the stan-
dalone generator model in the evaluation metrics rmse and rmse (log) under different
training epochs. The figures indicate that the op-cGAN model has a faster convergence
rate and higher stability in these two evaluation metrics and outperformed the generator
model significantly after the 5th epoch.

As this paper aims to address the issue of blurry depth maps generated by existing
monocular image depth prediction algorithms, the visualization results are crucial. We
saved the depth map visualization results to a file, adding a “0” as a separator between each
depth map. Figure 8 shows selected depth estimation results from the test set, including the
ground truth of the depth map, the depth map generated by the standalone generator, and
that generated by the op-cGAN model from left to right. The visualization results indicate
that the op-cGAN model generates clearer and more accurate depth maps, as demonstrated
by the clear display of the windows in the first image’s ground truth, object contours in the
second image’s ground truth, and the door and window in the third image’s ground truth.
These results confirm the effectiveness of our proposed op-cGAN model.

4.3.2. Make3D Dataset

Next, we will evaluate the performance of different depth estimation algorithms on
the Make3D dataset. This dataset contains depth maps of indoor and outdoor scenes
obtained from LIDAR scans. The official split includes 400 aligned image-depth pairs for
training and 134 images for testing. Due to the age of this dataset, the resolution of the
depth map is only 305 × 55, while the resolution of the images is 1704 × 2272. Therefore,
during preprocessing, we first adjust the resolution of all training data to 256 × 192 using
bilinear interpolation to serve as input to the model. Furthermore, because 400 image-
depth pairs are insufficient for training a neural network, we use the following offline data
enhancement methods to expand the training dataset.
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1. Scaling: the Input and target images are scaled with the corresponding depth data
divided by s ∈ [1, 1.5].

2. Rotation: the input and target images are rotated by r ∈ [−5, 5] degrees.
3. Color adjustment: the Input image is multiplied by a random RGB value c ∈ [0.8, 1.2].
4. Flips: the Input and target images are horizontally flipped with a 0.5 probability
5. Adding conditional vector: information vectors such as city or rural, lighting, and

roads can be added as conditional vectors to the generator to generate realistic images.

Specifically, we applied the first four data enhancement methods to each of the original
400 training pairs to generate new training data pairs, which we repeated 10 times. Finally,
one of the conditional information from the 5th method is chosen to obtain 50 K training
data pairs.

In the first stage of the experiment, we compare the performance of the depth estima-
tion algorithms based on the DCNN model and CRF model [31,32], ResNet model [7], and
the generator in the op-cGAN model proposed in this paper, from both quantitative and
visual perspectives. Because there are limited evaluations on this dataset, we used results
reported in the literature for the quantitative comparison. For the visual results, we could
not access the authors’ visualization results, so we only present the results of the generator
in the op-cGAN model proposed in this paper.

During training, we used the L1 loss function and momentum optimization algorithm
with a value of 0.9. The generator was trained for 40 epochs, with the learning rate halved
every 20 epochs. The quantitative results are shown in Table 2, where we observed that
the proposed method in this paper has improved in all evaluation metrics except for the
rmse metric, which is lower than the method proposed in [7]. The reason could be that the
dataset is too small and of low quality, making it difficult to train such a large network.

Table 2. Comparison results of different algorithms in the Make3D dataset.

Make 3D REL RMSE Log10

Li et al. [31] 0.335 9.39 0.137
Liu et al. [32] 0.278 7.19 0.092
Laina et al. [7] 0.223 4.89 0.089

ResNet-Up-Decon 0.214 6.99 0.083
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The visual results are shown in Figure 9, from which we can see that the proposed
method can predict the contours of the depth map well and has no scale prediction error,
validating the effectiveness of our method. Due to the limitation of the original training set,
the resolution of the image in the training dataset is much higher than that of the depth
images, leading to many mismatches.
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In the second stage of the experiment, we compared the performance of a generator in
the op-cGAN model with the full op-cGAN model for monocular depth estimation.

During the experiment, we trained the ResNet-Up-Decon model on the Make3D
dataset, with all hyperparameters the same as those used for the NYU-V2 dataset, except
for the number of training epochs, which was set to 20. Similarly, for the full op-cGAN
model, we used the same hyperparameters as those used for NYU-V2, except for the
number of training epochs, which was also set to 20.

Figures 10 and 11 display the experimental results of these two models under different
training iterations. Specifically, Figure 10 presents the performance of the absolute relative
difference metric for different training epochs. It can be observed that the depth estimation
algorithm based on the cGAN model is superior to the ResNET-Up-Decon model in terms
of stability and convergence speed. The former achieved a very low error rate in the first
epoch and continued to reduce the error in subsequent epochs.

Figure 11 shows the performance of the log10 error evaluation metric across different
training epochs. Invalid values (represented by 0) are caused by negative predicted depth
values, which result in an invalid log10 error. The ResNet-Up-Decon model displays fewer
invalid values than the op-cGAN model, indicating greater stability. Regarding the error
values, the op-cGAN model has low errors, thus providing some validation of the proposed
algorithm’s effectiveness.

Figure 12 presents the visual results of the two models. For a fair comparison, all
final depth values were scaled to the same scale. Values closer to the original depth pixel
values are indicative of more accurate results. The op-cGAN model proposed in this paper
performs better at recovering contour information from the images, which was attributed
to the use of original images in the discriminator’s input and the high pixel quality of the
original images in the Make3D dataset, leading to the deep neural network learning the
details of the original images.
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5. Limitation

The limitations of our approach primarily consist of two aspects:

1. The primary drawback of using GANs is that they can be challenging to train. Despite
the implementation of various empirical tricks to improve efficiency (such as using
batch normalization in our proposed method), GANs remain difficult to train.

2. Compared with the latest monocular image depth estimation algorithms, the perfor-
mance of our algorithm is not outstanding enough, possibly because we have not opti-
mized the generator structure optimization well, especially since the attention module
has not been added. Experiments have shown that the attention mechanism can
significantly improve the accuracy and detail extraction of image depth estimation.

6. Conclusions

Mobile robot plays an important role in the intelligent logistics and intelligent ware-
housing applications of the smart manufacturing industry. 3D map reconstruction is a core
problem, which can help mobile robots achieve autonomous cruising and automatic obsta-
cle avoidance in a complex environment. Monocular depth prediction is a fundamental
method for understanding the 3D map’s geometric information. This paper proposed an
improved monocular image depth prediction method based on a conditional generative
adversarial network to address the problem of insufficient diversity of training data and of
overly blurry depth maps in monocular image depth prediction. Our method employed an
improved monocular image depth estimation model based on depth residual networks as
the generator of the conditional GAN, with a 5-layer patchGAN network as the discrimina-
tor. We combined the LSGAN loss function with the L1 loss function for the generator’s
loss function. Experimental results indicated that our proposed method can accelerate the
convergence on the small Make3D dataset and can achieve a more optimized model on the
larger NYN-V2 dataset, despite slower initial convergence. The visualization results show
that our method can recover images with more detailed and clearer contours.

Although our proposed monocular depth estimation methods based on cGANs face
difficulties in GAN network training and do not have the best performance on the evalua-
tion metrics compared to the latest algorithm PixelFormer, their strong anti-interference
with training sample and good model stability make these drawbacks acceptable. In the
future, we will integrate the Skip Attention Module and Bin Center Predictor module into
the conditional generative adversarial network framework, and compare it to PixelFormer
again to explore the impact of the conditional generative adversarial network framework
on depth estimation algorithms.
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