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Abstract: Common Weakness Enumeration (CWE) refers to a list of faults caused from software or
hardware. The CWE includes the faults related to programming language and security. We propose
a technique to detect the vulnerabilities from incorrect use of a variable in C language. There are
various static/dynamic methods to detect the variable vulnerabilities. However, when analyzing the
vulnerabilities, a static technique causes a lot of false alarms, meaning that there is no fault in the
actual implementation. When monitoring the variable via the static analysis, there is a great overhead
during execution, so its application is not easy in a real environment. In this paper, we propose a
method to reduce false alarms and detect vulnerabilities by performing static analysis and dynamic
verification using machine learning. Our method extracts information on variables through static
analysis and detects defects through static analysis results and execution monitoring of the variables.
In this process, it is determined whether the currently used variable values are valid and whether
the variables are used in the correct order by learning the initial values and permissible range of the
variables using machine learning techniques. We implemented our method as VVDUM (Variable
Vulnerability Detector Using Machine learning). We conducted the comparative experiment with
the existing static/dynamic analysis tools. As a result, compared with other tools with the rate of
variable vulnerability detection between 9.17~18.5%, ours had that of 89.5%. In particular, VVDUM
detects ‘defects out of the range of valid’ that are difficult to detect with existing methods, and the
overhead due to defect detection is small. In addition, there were a few overheads at run time that
were caused during data collection for detection of a fault.

Keywords: software fault detection; machine learning; variable vulnerability

1. Introduction

Defects in design or implementation processes are common during software develop-
ment, which increase the susceptibility of the software or system as a whole. To prevent
this, common hardware and software vulnerabilities were identified in Common Weakness
Enumeration (CWE) [1]. CWE shows various types of vulnerabilities such as those of
programming language or security, and a variable occupies much of vulnerabilities of C
language, a programming language.

Typically, software programs use variables to save data. However, when a variable
is used incorrectly due to a mistake on the part of the programmer, the operation of the
program may be interrupted by various types of defects. For example, the program may
malfunction when the value of a variable is initialized incorrectly, is out of the permissible
range, or is input incorrectly. If local variables are used without initialization, defects can
be detected during compilation. However, in the case of global variables, defects remain
undetected even in the absence of initialization codes, as the compiler initializes their
values to 0. This can be a problem when certain initial values are already defined, or when
variables must or should not be initialized during program execution. According to CWE,
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weakness continues to increase due to such variables, i.e., vulnerabilities induced by the
use of such variables spread in various ways.

Several methods have been proposed to detect vulnerabilities associated with the
incorrect use of variables. In general, vulnerabilities are detected by static analysis on
a source code after completing implementation. Here, without the running of software,
static analysis measures the complexity or predicts an error that may be generated during
run time. Errors during run time include faults related to variables such as ‘use of an
undeclared variable’ or ‘use of a variable without initialization’. A program’s flow graph or
the syntax tree constructed from the source code is used to detect the flows associated with
the variables in advance via static analysis. However, since run-time defects detected via
static analysis are not based on actual execution, this involves false alarms [2]. Furthermore,
since the faults are detected on a non-execution basis, it has a low detection rate for faults
such as ‘a value out of bound’, which may be caused by a changed value of a variable
during run time. To overcome the limits of static analysis and increase the accuracy of
detection with the decreased false alarm, we conduct both static and dynamic analyses.
Through static analysis, we extract info related to a false variable or necessary for fault
analysis, such as the function a variable was used and the location where a variable was
first declared. Then, we collect actual execution results and detect faults.

Detection of a fault based on the actual execution may decrease false alarms through
dynamic verification. However, these incur significant overhead because of the need to
collect information or track execution. In particular, the detection of defects caused by
variables requires monitoring all locations where variables are used, resulting in significant
overhead. Furthermore, existing defects may be difficult to detect if they are not executed.
Moreover, when malfunctions are caused by the input of an incorrect value into a variable,
validation of the value may be difficult, thereby complicating defect detection. To over-
come such a limitation, we intend to decrease execution overhead by extracting a list and
information of variables causing false alarm through static analysis and then collecting
execution info about such a variable only.

This paper proposes a method to detect a fault caused from the use of a variable at
the verification phase after software implementation. It suggests a method for detecting
whether there was an actual fault via mixed use of static and dynamic verifications to
analyze the vulnerabilities of variables. The proposed method uses static analysis to extract
the initial values of the target variables, functions containing code that initializes them, and
their permissible ranges. Then, it detects defects based on the static analysis results and
execution monitoring. Machine learning (ML) techniques are used to learn the initial values
and permissible ranges of variables. Based on this, the validity of the current variable
values and that of their ordering are checked. This enables the detection of “defects induced
by incorrect values of variables”, which are difficult to detect using conventional methods.

The remainder of this paper is structured as follows. In Section 2, previous studies
on the topic of defect detection related to variables using ML methods are discussed. In
Section 3, we describe the techniques used to detect vulnerabilities caused from incorrect
use of a variable in software using our proposed machine learning technique. In Section 4,
the effectiveness of the proposed method is verified experimentally, and the conclusions
and prospective directions of future research are presented in Section 5.

2. Related Works

CWE provides the software/hardware-related weakness enumeration. The soft-ware-
related weakness enumeration is divided by programming language such as C, C++, Java,
php, and it may be divided again into various categories such as memory/ concurrency
faults, security vulnerability, and wrong control flow. Based on CWE, there exist various
methods to detect faults [3–24].

As for CWE, this paper deals with the vulnerabilities caused by the use of a vari-
able and the resulting faults. The faults by use of a variable include that of the unde-
clared/uninitialized variables and use of the values of invalid or out of bound variables.
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Static and dynamic analyses exist to detect these faults. Static analysis-based vulnerability
detection methods can be broadly classified into two categories—code similarity-based ones
and pattern-based ones. For instance, VUDDY and VulPecker analyze the similarity of codes
to detect vulnerabilities [13,14]. They show high accuracy for the locations where vulnerabil-
ities have occurred, but show high false-positive rates because several of the vulnerabilities
reported by tools are induced by code replication and defects that have not occurred.

On the other hand, pattern-based vulnerability detection methods use rules for de-
fect detection. CppCheck, Flawfinder, and Coverity are typical examples of rule-based
tools [15–17]. However, they also show high false-positive rates.

The static analysis, in which faults are detected based on a non-execution, reports the
fault regardless of its actual occurrence and so has a higher ratio of false alarm. In case of
such a higher ratio of false alarm, it takes a long time for the developer to analyze whether
the reported defect is an actual defect or not. Studies have been conducted to decrease or
discover false alarms reported from the static analysis [2,18], but they also have a lower
level of detection for faults caused only during the execution of software, such as ‘values
out of bound’ caused by modification by operation or external input during execution. We
conducted both static and dynamic analyses to overcome these limitations of static analysis
and raise the accuracy of detection with the decreased false alarm.

Dynamic verification means detecting a fault based on actual execution. According to
the types of faults occurring dynamically, there are methods to detect a fault of memory or
that of concurrency [19,20]. Particularly, as in this paper, there are methods that dynamically
detect vulnerabilities, such as those for detecting vulnerabilities using fuzzing or those for
detecting faults that cause a crash during the execution of a program [21–23]. However,
dynamic verification cannot detect vulnerabilities of a path unexecuted in software because
it is based on results of execution, so potential faults may still exist. In addition, since
it is based on the results of execution, it must collect data while working together with
software that is running. However, overhead makes it difficult to be applied in an actual
software execution environment. To overcome these limitations of dynamic verification, we
optimized the data to be collected and the location of their collection so that the execution
info can be collected in a lightweight manner.

There are also methods or tools that use artificial Intelligence (AI) for vulnerability
detection. Those methods include ML-based methods on learning pre-defined patterns,
such as Controlflag [24], and deep learning-based techniques [25–28], such as VulDeeLo-
cater, VulDeePecker, SySeVR, and mVulDeePecker. These methods use code similarity or
code patterns and show higher rates of vulnerability detection than static analysis-based
alternatives. However, these methods cannot detect vulnerabilities induced by the input of
incorrect values into variables. This is because they consider patterns of code where values
are assigned to the variables, but do not consider their values.

3. Vulnerability Detection Method by Incorrect Use of Variable Using ML

In this paper, we propose a detection method for variable-related vulnerabilities in
software. Of the 81 vulnerability types related to the C language listed in CWE, 41 (50.62%)
are associated with the use of variables or shared resources. Among them, 28 are related
to variables. Although several methods have been proposed for the detection of most
vulnerabilities, there are almost no viable methods for the detection of vulnerabilities
caused by the incorrect use of variables, such as CWE-128 and CWE-457 [1].

We defined defect types to be detected by classifying vulnerabilities caused by incorrect
use of variable values, as presented in Table 1. F_01_UINIT_VAR denotes the defect caused
by the use of uninitialized variables. Local variables are usually detected by the compiler,
whereas global variables are initialized by it. Therefore, when a local or global variable
is not initialized with the correct value, it is classified as a defect. Furthermore, when the
initialization codes exist for local variables, the compiler usually does not detect them
as defects, except when they are used before initialization because of incorrectly ordered
calling functions. F_02_INVALID_INIT refers to the defect in which the value of a variable is
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changed to its initial value while using the variable in a function other than its initialization
function. F_03_OUT_OF_BOUND refers to the defect in which the value of a variable is out
of permissible range, which depends not only on variable type but also the semantically
permissible range.

Table 1. Target defects related to incorrect use of variables to be detected.

Defect ID Description Related CWE-IDs

F_01_UINIT_VAR Use of uninitialized variable CWE-457
F_02_INVALID_INIT Initialization during the use of the variable CWE-481
F_03_OUT_OF_BOUND The variable’s value is out of permissible range CWE-125, 128, 130, 131, 197, 805, 839, 843

Our method is divided into a training phase and a detection phase, as shown in
Figure 1. The training phase for vulnerability detection is depicted in Figure 1a, and the
detection phase, where the trained model is used to detect vulnerabilities, is depicted in
Figure 1b.
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3.1. Static Analysis for Detection of Vulnerability by Incorrect Use of Variable

The vulnerability detection targets include all local and global variables used in
the program. The detection of the defects listed in Table 1 for these variables requires
the definition of the maximum, minimum, and initial values of each variable and the
initialization functions, which change the values to the initial values. Before detecting
variable vulnerabilities, the source code is statically analyzed to extract the variable list and
each variable’s initial, maximum, and minimum values as variable information. The list of
functions that use the variables and the call relationships between the functions are also
extracted for execution analysis.

As shown in Figure 2, when a source code is inputted, after removing all codes irrelevant
to analysis such as annotations and blank lines from the source code, the code is read and
tokenized. Moreover, the syntax of each token is analyzed to identify whether it is a variable
and the value of the variable or a name of function, and then stored in variable information.
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The maximum/minimum values of the variables and the list of initialization func-
tions, which cannot be defined using static analysis, are defined during training using the
execution logs.
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3.2. Training for Detection of Vulnerability by Incorrect Use of Variable

After static analysis, the program is executed, and after collecting the execution logs,
a training model is constructed based on the execution log. To this end, the execution
logs are generalized into training data. Based on the execution logs, models are trained to
determine initialization locations and determine permissible ranges of the variable values
to detect vulnerabilities and evaluate the appropriateness of the values, respectively. The
machine learning algorithm used for training is selected by comparing its effectiveness
with that of the existing well-known algorithms.

Pre-processing execution log (Step 2-1) When a variable subject to monitoring is
accessed during the operation of the program, the call function location, variable name,
the variable values before and after access, and the call stack are included in the execution
log. To make the raw data contained in the log more suitable for training, they are pre-
processed to replace the call functions, variable names, and the call stack’s functions with
the respective function IDs and variable IDs.

Model Training to Determine Variable Initialization Locations (Step 2-2) In our
method, the criteria for determining vulnerabilities related to the initialization of variables
are related to the initialization of the variables, the changes in their values, and the call
functions. ML is used to determine whether a function using variables (call function)
initializes their values (initialization function). The aim of training is to enable the model
to classify “global variable-call function” pairs as initialization functions. To this end, we
use the decision tree method, which is a typical ML-based classification model. Various
algorithms exist for the decision tree method, such as ID3, C4.5, CART, and ensemble
algorithms. We compared the prediction performance of each algorithm using the NASA
Nearest Object dataset, which is a dataset similar to the raw data type for prediction of the
initialization function. Since RandomForest performs the best, as depicted in Figure 3, it is
used to learn the initialization functions for variables.
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Model Training to Determine Permissible Ranges of Variable Values (Step 2-3) De-
termining permissible ranges of variable values refers to learning the maximum and
minimum values that can be taken by a variable and determining whether the current value
is in between them. Since our method records a log of changes in variable values whenever
a variable is used, the maximum and minimum values are derived by regression analysis
of the change trend of variable values. There are various regression-based learning meth-
ods, such as linear, ridge, logistic, and polynomial methods. The Motor Trend Car Road
Tests [29] dataset was used to compare the various methods in terms of effectiveness—the
results are depicted in Figure 4. The polynomial method shows the highest score; thus,
polynomial regression was used to determine the permissible range by calculating the
maximum and minimum values of the variable. Polynomial regression is a type of linear
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regression, and training is performed by applying LinearRegression after converting data
into scikit-learn’s polynomialFeatures class.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

value is in between them. Since our method records a log of changes in variable values 

whenever a variable is used, the maximum and minimum values are derived by regres-

sion analysis of the change trend of variable values. There are various regression-based 

learning methods, such as linear, ridge, logistic, and polynomial methods. The Motor 

Trend Car Road Tests [29] dataset was used to compare the various methods in terms of 

effectiveness—the results are depicted in Figure 4. The polynomial method shows the 

highest score; thus, polynomial regression was used to determine the permissible range 

by calculating the maximum and minimum values of the variable. Polynomial regression 

is a type of linear regression, and training is performed by applying LinearRegression 

after converting data into scikit-learn’s polynomialFeatures class. 

 

Figure 4. Comparison of algorithms for determining permissible ranges of variable values. 

3.3. Variable Vulnerability Detection 

To detect defects related to variable vulnerabilities, we use the “variable-initialization 

function” pair (the corresponding training is performed using the model used to deter-

mine the initialization locations of variables in Section 3.2) and each variable’s maximum 

and minimum values (the corresponding training is performed using the model used to 

determine the permissible ranges of variable values). The data structure depicted in Fig-

ure 5 is used to detect defects. 

 

Figure 5. Defect detection flag. 

Figure 4. Comparison of algorithms for determining permissible ranges of variable values.

3.3. Variable Vulnerability Detection

To detect defects related to variable vulnerabilities, we use the “variable-initialization
function” pair (the corresponding training is performed using the model used to determine
the initialization locations of variables in Section 3.2) and each variable’s maximum and
minimum values (the corresponding training is performed using the model used to deter-
mine the permissible ranges of variable values). The data structure depicted in Figure 5 is
used to detect defects.
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Defects induced by variable vulnerabilities are determined according to the following
defect detection algorithm illustrated in Figure 6. Here, the defect detection flag depicted
in Figure 5 is used.

F_01_UINIT_VAR: Use of Uninitialized Variable
When the value of a variable is not initialized simultaneously with the declaration,

‘the uninitialized variable use’ defect is identified if the variable is used by a function other
than the initialization function or if the variable’s value is read at the location where it
is used for the first time. Since the model can be trained to detect whether the function
writing a value to a variable is an initialization function, it is determined as a candidate for
an ‘uninitialized variable use’ defect.
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F_02_INVALID_INIT: Initialization During the Use of Variable
When there exists an initial value of the variable, if the value that changed during the

use of the global variable is the initial value and the calling function is not the initializa-
tion function, then the defect is identified to be initialization during the use of a global
variable. In particular, if the value of a global variable changes to the initial value after
increasing or decreasing continuously, a defect is flagged; otherwise, it is only flagged as
a defect candidate.

F_03_OUT_OF_BOUND: The Variable Value Lies Outside the Permissible Range
During the extraction of a defect detection target, the global variable’s name, data

type, and initial value are extracted. If the value lies outside the range demarcated by the
maximum and minimum values of the extracted data type, the defect is determined to be
an access outside the range of the variable. As depicted in Figure 6, a flag is used to manage
whether the variable’s value continues to increase or decrease. However, if the value is set
even after the completion of all executions, it can be concluded that the variable was not
initialized during its use. Moreover, since its value can deviate from its permissible range
when used for a long time, this case is determined as a defect candidate corresponding to
access outside the variable’s range.

Furthermore, when the variable’s maximum and minimum thresholds are set based on
training, an ‘access outside the variable’s range’ defect is identified whenever the variable’s
value transcends the thresholds.

3.4. Automation

We implemented our method as VVDUM (Variable Vulnerability Detector Using
Machine learning). The C language and Python are used as illustrated in Figure 7.
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The module for the static analysis of a source code tokenizes the code inputted and
performs the syntactic analysis on each token. As a result of the syntactic analysis, it extracts
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a variable, variable data type, function name, and variable enumeration used in function. In
case the variable was initialized at the time of declaration, its initial value is also extracted.
Here, the maximum/minimum values of each variable are the maximum/minimum per-
missible range according to the data type of the variable. The initialized function comes to
also be stored in the variable information and in this module function is to be added to the
initialized function enumeration of the variable only when the declaration and initialization
of the variable occur at the identical function.

After the static analysis of the source code, execution logs are collected by running the
software to detect an actual fault on the target.

The variable vulnerability detection training module and the variable vulnerability
detection module train the model using the execution logs collected during execution at
the target site to predict the initialization function list and the permissible range of each
variable for variable vulnerability detection and detect defects based on this information,
respectively. Figure 8 illustrates the internal learning processes of these modules.
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Figure 8. Variable vulnerability detection training module and variable vulnerability detection module.

Log parser: The log parser generates a train.csv file from the collected execution logs.
As depicted in Figure 9, the train.csv file contains the following data: the name of the calling
function (FuncName), the variable name (VarName), the number of times the variable is
called by the function (CallCount), whether the keywords related to the initialization, such
as init, set, clear, and reset, are included (KeywordIncluded), the variable’s final value
after alteration (Value), the variable’s initial value (InitValue), and data indicating whether
the calling function is the initialization function (InitFunc). FuncName and VarName
utilize the calling function ID and the global variable ID, respectively, in the static analysis
module of the source code for scaling, rather than text characters. A weight is inputted
to KeywordIncluded depending on the keywords that are included—its value is 10 if init,
reset, and clear are included, 5 if set is included, and 0 if none are included. Y or N is input
into InitFunc; Y is entered for only the initialization function derived during the extraction
of the defect detection target in the first training phase, and N is entered for the remaining
functions. However, this value changes if an initialization function is added, as training is
performed repeatedly.
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Calling Python module: This module uses the Python library in the C system. The
Python file’s name and the training function are used to begin training, and the prediction
function is called with the test data as a parameter to determine whether it is an initialization
function or not.
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Training using RandomForest or linear regression is performed in the Python system.
The training process performed in the Python system can be broadly subdivided into
scaling, classification, and prediction.

Scaling: The training data used for training shows unique characteristics and
distribution—their use as is causes performance degradation (i.e., training may take a
long time). Therefore, the scaler, StandardScaler, is used to adjust the data to ensure
distribution of the training data within a certain range.

Classification: The random forest classifier and linear regression are used to perform
training using the data. In this step, the maximum and minimum values of each variable
are extracted.

Prediction: When an execution log is inputted using the final training model, it returns
a result indicating whether the function used in the log is an initialization function.

Once training is complete, the initialization function list and each variable’s maximum
and minimum threshold values are determined. The variable vulnerability detection mod-
ule uses this information to analyze the execution log, as depicted in Figure 6, and detects
potential defects. The type of any detected defect, the location where the vulnerability is
detected, and the variable name are output together, as depicted in Figure 10.
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4. Experiments

The following research questions were answered based on experimental results.
RQ1. How Effective Is VVDUM in Variable Vulnerability Detection?
We analyzed the effectiveness of VVDUM by comparing it with that of other methods.

To this end, defects induced by variables were artificially injected into a well-known
Linux program. Then, the performances of the proposed method and baseline methods
were evaluated.

RQ2. Is ML Effective for Variable Vulnerability Detection?
If the defect detection rate is high without the use of ML, then the application of

ML may be insignificant at the cost of a large overhead. Therefore, the suggested defects
were analyzed to evaluate the need for ML. The variable vulnerability detection method
without ML was compared to the variable vulnerability detection method using ML in
terms of detection performance to analyze the effectiveness of applying ML to variable
vulnerability detection.

RQ3. Is VVDUM Applicable in Practical Settings?
VVDUM collects execution logs dynamically and uses them for training. During

the operation of actual software, the overhead incurred by collecting execution logs may
affect the actual execution. Therefore, the overhead incurred by VVDUM was measured to
evaluate its applicability to software in real-world settings.
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4.1. Experimental Environment

We conducted experiments in the Linux Unubtu environment. Table 2 presents the
applications considered in the experiments. Seven well-known Linux applications were
selected. The execution logs used for training were collected by running sample scripts of
the Linux manual page, test cases provided by SARD [30], and test cases of the Linux Test
Project (LTP) [31] for each application.

Table 2. Target applications considered in the experiments.

Application
Test Case for Collecting Execution Logs Used for Training

Name Description Size (LOC)

grep Search utility 5317 Linux manual-sample scripts, SARD
gzip Compression program 7592 Linux manual-sample scripts, LTP
bc Shell calculator 8803 Linux manual-sample scripts
wc Word counter 1126 Linux manual-sample scripts, LTP
sort Sorter 4850 Linux manual-sample scripts
sed Script editor 5234 Linux manual-sample scripts

jpegtran jpeg transformation 31,839 Linux manual-sample scripts

Defects were introduced into applications artificially using Clang-SFI [32] to detect
vulnerabilities induced by variables. Table 3 lists the defect types corresponding to variable
vulnerabilities related to the proposed method among the defects injectable using Clang-
SFI. Local and global variables were extracted from the applications of Table 2, and the
defect types listed in Table 3 were injected at each extracted location. In the case of the
‘Wrong value assigned to variable’ (WVAV) defect type, Clang-SFI toggles the value if it is
the Boolean type; otherwise, it injects the 0xFF value as a wrong value. However, for the
verification of more diverse cases, the type of defect injected using Clang-SFI is denoted by
WVAV_1, the case of injecting the maximum and minimum values for the variable’s type is
denoted by WVAV_2, and the case of injecting a value selected randomly from the values
that the variable can have is denoted by WVAV_3.

Table 3. Defect injection type.

Defect Type Description
Injection Example

Before Defect Injection After Defect Injection

MVAE Missing variable assignment with
an expression

hash ˆ= s -> elems [i].
index + s -> elems [i].
constraint;

-

MVAV Missing variable assignment using
a value options = 0 -

MVIV Missing variable initialization using
a value int options = 0; int options;

WVAV_1

Wrong value assigned to variable state_newline = 0

state_newline = 1894;
(value returned from Clang-SFI)

WVAV_2 state_newline = INT_MIN;
state_newline = INT_MAX;

WVAV_3 state_newline = rand()

Typical tools for vulnerability detection are listed in Table 4. Static analysis-based
variants are divided into two types—tools that detect vulnerabilities by comparing source
codes in terms of similarity and tools that detect vulnerabilities based on patterns. Since
vulnerabilities to be detected by each tool are the same as the CWE vulnerabilities, a
relatively recent tool based on ML/deep learning was selected alongside one that does
not use ML. In the case of dynamic defect detection methods, we could not find any tool
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based on ML. Therefore, MemCheck was selected as the most relevant tool for the defects
selected for detection. MemCheck usually detects memory defects, but since defects may
occur due to incorrect memory access if the targeted defect is not initialized during the use
of the variable, this tool was a viable candidate for comparison.

Table 4. Vulnerability detection tools.

Category Tool Name Detectable Defect Type Application of
AI/ML Method

Applied in
Experiment

Static

Code-based

VUDDY CWE vulnerability X O

VulPecker CWE vulnerability X X

VulDeeLocater CWE vulnerability O X

VulDeePecker CWE vulnerability O X

mVulDeePecker CWE vulnerability O X

SySeVR CWE vulnerability O O

Pattern-based

cppcheck
Use of uninitialized variable,
type conversion error,
out-of-bound access to array

X O

flawfinder CWE vulnerability X X

coverity CWE vulnerability X X

controlflag CWE vulnerability O O

Dynamic Memcheck Memory defect X O

Four metrics were used to evaluate the effects. True Positive (TP) denotes the number
of defects detected as vulnerabilities. True Negative (TN) denotes the number of non-defects
not detected as vulnerabilities. False Positive (FP) denotes the number of non-defects
detected as vulnerabilities. False Negative (FP) denotes the number of undetected defects.

False positive rate =
FP

FP + TN
× 100 (1)

Accuracy =
TP + TN

Total number of experiments
× 100 (2)

Precision =
TP

TP + FP
(3)

Variable vulnerability detection rate =
TP

Total number of injected flaws
(4)

4.2. Experimental Results
4.2.1. RQ1. How Effective Is VVDUM in Terms of Variable Vulnerability Detection?

To evaluate the effectiveness of VVDUM, experiments were conducted on VUDDY,
SySeVR, CppCheck, and ControlFlag, i.e., both code-based and patterns-based methods,
and the results were compared. VUDDY and CppCheck do not use ML or artificial
intelligence, whereas SySeVR and ControlFlag do use them.

In the case of ControlFlag, the CPP source code provided by Intel comprised the
training dataset. However, neither the small dataset nor the large dataset were effective.
Training was performed using the source codes of the experimental target applications,
and the results were examined.

The experimental results are presented in Table 5. The FP rate, accuracy, precision, and
variable vulnerability detection rate corresponding to each defect type were analyzed—the
values for the proposed method are 0%, 89.5%, 100%, and 89.5%, respectively. On the other
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hand, the variable vulnerability detection rates of the other methods are observed to lie
between 6% and 18.5%, which are significantly lower than that of the proposed method.

Table 5. Comparison of variable vulnerability detection results.

Tools False Positive Rate
(%)

Accuracy
(%)

Precision
(%)

Variable Vulnerability
Detection Rate (%)

Code Similarity
Comparison

VUDDY 0 9.17 100 9.17

SySeVR 22.9 18.5 77.08 18.5

Pattern-Based
CppCheck 36.84 77.92 63.16 15.58

ControlFlag 0 9.5 100 9.5

VVDUM 0 89.5 100 89.5

VVDUM without ML 0 83.5 100 83.5

In the case of the ‘variable value lies outside the permissible range’ defect, the variable
vulnerability detection rate is the lowest, and the FP rate, accuracy, and precision are low.
This is because this defect includes two cases—when the permissible range of the variable
value simply deviates from that corresponding to its type and when it deviates from the
intended range indicated by the developer.

4.2.2. RQ2. Is ML Effective for Variable Vulnerability Detection?

With regard to the detection of the vulnerability types, the performances of the pro-
posed method and vulnerability detection methods that do not use ML were compared.
Figure 11 depicts the results.
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The variable vulnerability detection rates of VVDUM and SySeVR, which use ML,
are higher than those of CppCheck, VUDDY, and MemCheck, which do not use ML. Even
though ControlFlag uses ML, its detection rate is the lowest owing to inadequacies of the
training dataset.

The ‘F_01_UINIT_VAR—Use of uninitialized variable’ defect (MVIV, MVAE, MVAV)
was detected for local variables, irrespective of whether ML is applied.

Overall, 83.33% of the injected defects of the type ‘F_02_INVALID_INIT—Initialization
during the use of variable’ (WVAV_1) were detected by VVDUM. However, in the case
of CppCheck, VUDDY, and MemCheck, the detection rates for this defect type are 12.5%,
8.33%, and 4.17%, respectively. Both CppCheck and MemCheck determine whether the
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variable is properly declared syntactically and whether the value after initialization is
within the permissible range according to the variable type. After variable declaration and
initialization, if the value does not exceed the permissible range of the variable type, both
of tools are classified as normal. Determining whether the value of a variable is correct is to
detect a semantic error. However, neither tool detected this. All cases detected as defects
by MemCheck were detected during the process of using the initialized value after the
injection of the ‘initialization during the use of variable’ defect.

VVDUM was observed to detect 61.22% of the ‘F_03_OUT_OF_BOUND—The variable
value is out of the allowable range’ defects (WVAV_2, WVAV_3) injected in the experiments.
In comparison, CppCheck, VUDDY, and MemCheck detected 10.2%, 12.24%, and 6.12%,
respectively, as in the case of the ‘initialization during the use of variable’ defect. The
comparison baselines detected the defect when the variable value is out of the permissible
range. However, they failed to detect defects at all when the permissible range of variable
values deviates from the range intended by the developer.

Finally, the variable vulnerability detection rates of VVDUM before and after the
application of ML were compared. VVDUM detected 83.5% of defects without applying
ML, but the defect detection rate improved to 89.5% when ML was applied. In particular,
for the F_02_INVALID_VAR and F_03_OUT_OF_BOUND defects, whose detection rates
were very low without using ML, the detection rate was increased by 14.28–20.84% after
the application of ML, indicating the positive effect of the latter.

We targeted semantic defects such as determining whether a variable value is valid
or not, rather than syntax defects. Conventional methods that do not use ML struggled to
detect these defects. Our results clearly suggest that the application of ML enhances defect
detection for the variable vulnerabilities considered in this paper.

4.2.3. RQ3. Is VVDUM Applicable in Practical Settings?

VVDUM analyzes the source code and execution logs on the host’s end instead of the
execution environment, and, thus, has no impact on the execution of the software. The
overhead incurred by it was measured to be 6.1%, as shown in Figure 12.
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There is no clear standard on the permissible threshold for overheads during the
execution of software. However, the overhead incurred by dynamic verification methods
lies between 6.67% and 36.0%, approximately, and if reference values are used [33,34], the
overhead incurred during the collection of execution logs is even lower. In other words,
the incurred overhead does not affect execution significantly. Therefore, VVDUM can be
applied to software in real-world settings
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5. Conclusions

In this paper, we proposed a method that combines static analysis and dynamic
verification to detect defects related to the use of variables. The proposed method uses
static analysis to extract the information about the target variables for defect detection
and detects defects by monitoring the execution of the software for each variable. In this
process, ML is used to learn each variable’s initial value and its permissible range. Based on
this, the validity of the currently used variable value and the order of use is evaluated. This
enables the proposed method to detect even ‘malfunctions caused by incorrect variable
values’, which are difficult to detect using conventional methods.

The effectiveness of the proposed method was evaluated by implementing it in a Linux-
based automated tool, VVDUM, and applying it to seven well-known Linux applications.
VVDUM showed a high defect detection rate for defects that are difficult to detect using
conventional variable vulnerability detection methods. By design, it detects defects by
evaluating whether each variable’s value lies within the permissible range. Based on this
analysis, it also detects defects that cannot be detected using conventional methods. Further,
VVDUM can be used during the execution of programs, as the execution overhead incurred
while collecting execution logs is small.

In our method, since fault detection rate may vary depending on a data set on which
training is done or a frequency with which a variable is used, we plan to extend the related
research. In addition, we also plan to continue research on the application of machine
learning not only to detect a fault but to analyze its cause.
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