
Citation: Li, Q.; Li, H.; Meng, L. Deep

Learning Architecture Improvement

Based on Dynamic Pruning and

Layer Fusion. Electronics 2023, 12,

1208. https://doi.org/10.3390/

electronics12051208

Academic Editor: Donghyeon Cho

Received: 1 February 2023

Revised: 22 February 2023

Accepted: 1 March 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deep Learning Architecture Improvement Based on Dynamic
Pruning and Layer Fusion
Qi Li † , Hengyi Li † and Lin Meng *,†

Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan
* Correspondence: menglin@fc.ritsumei.ac.jp
† Current address: College of Science and Engineering, Ritsumeikan University, 1-1-1, Nojihigashi,

Kusatsu 525-8577, Japan.

Abstract: The heavy workload of current deep learning architectures significantly impedes the
application of deep learning, especially on resource-constrained devices. Pruning has provided a
promising solution to compressing the bloated deep learning models by removing the redundancies
of the networks. However, existing pruning methods mainly focus on compressing the superfluous
channels without considering layer-level redundancies, which results in the channel-pruned models
still suffering from serious redundancies. To mitigate this problem, we propose an effective compres-
sion algorithm for deep learning models that uses both the channel-level and layer-level compression
techniques to optimize the enormous deep learning models. In detail, the channels are dynamically
pruned first, and then the model is further optimized by fusing the redundant layers. Only a minor
performance loss results. The experimental results show that the computations of ResNet-110 are
reduced by 80.05%, yet the accuracy is only decreased by 0.72%. Forty-eight convolutional layers
could be discarded from ResNet-110 with no loss of performance, which fully demonstrates the
efficiency of the proposal.

Keywords: convolutional neural network; architecture improvement; dynamic channel pruning;
memory access improvement

1. Introduction

Convolution neural networks (CNNs) have been proven to be effective in various
applications [1–3]: object detection [4,5], cultural heritage protection [6], environment
monitoring [7], robotics [8–10] and healthcare [11].

CNNs are designed to extract features from the input, which are used to reflect
whether a region of the input has certain properties [12]. Based on these features, CNNs can
accomplish tasks such as classification or detection. For example, in drone-based disaster
management applications, CNNs techniques are used to quickly and accurately extract
features of disasters, such as forest fires, landslides, and volcanic eruptions, from images
captured by drone camera [13].

However, the enormous numbers of computations and parameters of CNNs hinder fur-
ther development. Thus, it is not practical to deploy heavy CNNs on resource-constrained
computing devices, such as embedded systems and mobile devices [14–16]. To address
the problems, substantial research efforts have been devoted to compression techniques:
channel pruning [17–20], low-rank decomposition [21–23], and weight quantization [24,25].
Channel pruning is performed by locating and removing redundant channels to reduce
the numbers of floating-point operations (FLOPs) and parameters. In addition, the pruned
model is intact in parallelism, which contributes to the efficient utilization of hardware
resources [26].

After the model is compressed by channel pruning, many convolutional layers are
equipped with only a few channels. These layers are defined as thin layers. Channel prun-
ing is designed to remove unimportant channels and keep relatively important ones, so the

Electronics 2023, 12, 1208. https://doi.org/10.3390/electronics12051208 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051208
https://doi.org/10.3390/electronics12051208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1963-5263
https://orcid.org/0000-0003-4112-7297
https://orcid.org/0000-0003-4351-6923
https://doi.org/10.3390/electronics12051208
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051208?type=check_update&version=2


Electronics 2023, 12, 1208 2 of 14

remaining channels have valuable contributions. However, since the residual connection is
effective, mainstream models [27] (such as ResNet [28], DenseNet [29], and MobileNet [30])
adopt design patterns where multiple layers form the bottleneck structure and residual
connection are applied to the input and output of the bottleneck structure. To maintain
the functional integrity of the residual connection, most pruning strategies [31,32] do not
modify the input channels of the first layer and the output channels of the last layer in the
bottleneck structure. Hence, even though the thin layer is important to the model, there
is a lot of redundancy in the corresponding bottleneck structure. It is feasible to further
compress the model by utilizing the redundancy in the bottleneck structure.

On the other hand, models with fewer layers have more benefits for hardware. In
recent years, the use of CNNs on resource-constrained devices has gained attention, e.g.,
the field-programmable gate array (FPGA). The combination of high performance and
high power efficiency is leading to the adoption of FPGAs in a variety of CNN-based
applications. However, since CNN models are designed to be bloated, a large number
of weights need to be stored in external memory and transferred to the FPGAs during
computation [33,34]. This process requires additional energy and time. The energy cost
due to the increased memory accesses and data movement even exceeds the energy cost
of computation [35–38]. As a result, the implementation of deep learning models on
FPGAs or other lightweight devices should be accompanied by optimizations, such as
model compression and weight quantization. Removing layers could further contribute
to solving this problem by reducing the load of the layer weights and the feature maps.
Thus, a method to remove thin layers and the corresponding bottleneck structure while
preserving the feature extraction capability is urgently needed [39].

Therefore, this paper proposes an architecture improvement approach for CNNs that
aims to improve the performance of a model on resource-constrained devices by optimizing
the model at the channel level and layer level. Specifically, first, the model is compressed
by dynamic pruning, where highly sparse channels are dynamically removed. Then
the channel-level compressed model is further optimized by layer fusion, the redundant
structure is removed, and other layers substitute its function. Moreover, knowledge
distillation and short–long fine-tuning are introduced to layer fusion to reduce performance
loss. As layer fusion proceeds, the optimal architecture for the current task is obtained.
The proposal was applied to various models, and experimental results show that the
improved models can achieve high performance with fewer computational resources.

The main contributions of the paper are as follows:

• A method for layer-level compression of CNNs is proposed. By introducing knowl-
edge distillation and short–long fine-tuning, redundant layers are removed with lower
accuracy loss.

• The proposal may provide an idea for applications that desire to reduce memory
access more than reduce computational complexity.

The rest of the paper is organized as follows: Section 2 introduces related works.
Section 3 details the methodology. Section 4 shows the experimental results. Section 5
concludes the paper. In addition, all the abbreviations and definitions are listed in the
Appendix A.

2. Related Work

This section reviews channel pruning and knowledge distillation, and then gives a
short introduction to the related work.

Channel pruning is an efficient approach to compressing CNN models. The challenge
of channel pruning is to remove channels with the minimal performance loss. He et al. [40]
proposed a new channel-pruning method. Inspired by tensor factorization improvement
based on feature-map reconstruction, the proposal fully exploits the redundancy of feature
maps between channels. Specifically, for the trained model, it aims to reduce the dimensions
of the input feature maps of the layer, while minimizing the reconstruction error of the
output feature maps, to achieve pruning of the layer. The minimization problem is solved



Electronics 2023, 12, 1208 3 of 14

by two key steps: in the first step, the most representative channels are selected based on
lasso regression, and the redundant channels are pruned. In the other step, the output of
the remaining channels are reconstructed with linear least squares. Experiments showed
that a 2× speed-up is achieved with a 1% accuracy loss.

As a representative method for model compression and acceleration, knowledge
distillation effectively can learn small student models from large teacher models [41].
Huang et al. [42] proposed a new type of knowledge from the teacher model and transferred
it to the student model. Specifically, the selective knowledge of neurons was exploited.
Each neuron essentially extracts a certain pattern from the raw input. If a neuron is
activated, that suggests some common property in the corresponding region that is relevant
to the target task. Such information is valuable for the student model, as it provides an
explanation for the prediction results of the teacher model. Hence, they proposed to align
the distribution of neuron selectivity pattern between the student model and the teacher
model. The maximum mean difference was introduced as a loss function to measure the
discrepancy between the output feature maps of the teacher and student intermediate
layers. The experimental results indicate that the proposal improves the performance of
the student model significantly.

In some studies, knowledge distillation and channel pruning are combined. Aghli et al. [43]
proposed a compression method for CNNs by combining knowledge distillation and weight
pruning based on activation analysis. In detail, a select number of the layers in ResNet are pruned
to avoid breaking the network’s structure. Then, a new knowledge distillation architecture
and loss function are used to compress the layers that were untouched in the previous step.
The proposal was applied to the image classification task of head pose. Experimental results show
that the model was significantly compressed while maintaining accuracy close to the baseline.

3. Methods

This paper intends to improve the architecture of CNNs. The proposals include
dynamic pruning and layer fusion. First, the unimportant channels in the trained model
are removed by dynamic pruning. Then, the redundant layers in the pruned model are
further removed by layer fusion. The flow of the proposed method is described in Figure 1.
In the next section, the details of each part are explained.

Figure 1. A diagram about the flow of proposed architecture-improvement strategy. The part enclosed
by the dotted line indicates the compressed channel.

3.1. Preliminary

First, the convolution operation is introduced. Fij indicates the filter that connects the
ith input channel to the jth output channel. With the batch size set to 1, the feature map is a
two-dimensional matrix that propagates between layers. If Mi denotes the input feature



Electronics 2023, 12, 1208 4 of 14

map on the ith channel, ~ and b denote the convolution operator and the bias, and then
the jth output feature map Oj is generated as

C

∑
i=1

Mi ~ Fij + b = Oj. (1)

The sparsity is introduced to describe the percentage of redundant data (i.e., zero
elements) in the feature map. Since the output feature map is the sum of the convolution
results of the input feature map and the filter, if the input feature map has high sparsity,
the convolution result of the corresponding element is close to zero and has no effect on the
output, which means the redundancy of input channels can be measured by the sparsity of
the input feature map and removes redundant channels while having a minor impact on
the model.

In addition, in CNNs, layers are tightly connected to each other by channels. Removing
an input channel is also removing the corresponding output channel from the previous
layer. As the highly sparse feature maps are generated from the corresponding output
channel of the previous layer, the loss of the entire output channel is acceptable to the
model. In detail, when the channel is removed, the corresponding filter is pruned and the
model is compressed.

3.2. Dynamic Pruning

In the previous section, the sparsity and redundancy were explained. This part
proposes a method to dynamically determine the pruning target based on the sparsity of
the feature map. Let the model infer the entire validation set, and calculate the average
sparsity of each feature map in each input channel. The average sparsity is defined as
channel sparsity, which is used to evaluate the importance of the channel. Here, the pruning
threshold is introduced to distinguish high sparsity from low sparsity. When the value
of channel sparsity is greater than the pruning threshold, the corresponding channel is
considered to be the pruning target. After pruning the model, fine-tune the remaining parts
of the model to restore accuracy. If a low pruning threshold is set, major parts of the model
are removed, which leads to difficulties in recovering the accuracy. Thus, determining an
appropriate pruning threshold is critical.

The investigation of different thresholds on pruning results is conducted. Figure 2
shows the results. It should be noted that the accuracy of the model after fine-tuning
is given in the figure. It can be seen that fine-tuning accuracy increases as the pruning
threshold increases. When the accuracy is close to the baseline, the effect of increasing the
pruning threshold is slight. In addition, according to Figure 2b, it can be concluded that the
smaller the pruning threshold, the greater the compression ratio.

We empirically summarize the following: (1) When the fine-tuning accuracy is lower
than the target accuracy, increasing the pruning threshold improves the fine-tuning accuracy.
(2) When the fine-tuning accuracy is higher than the target accuracy, the compression ratio
could be further enhanced by lowering the threshold slightly while the fine-tuning accuracy
remains at the same level. Note that the target accuracy is not the baseline. Considering that
the fine-tuning accuracy is unstable, target accuracy was set to slightly below the baseline
in the experiment.



Electronics 2023, 12, 1208 5 of 14

0.5 0.6 0.7 0.8 0.9 1.0
Prune Threshold

88

90

92

94

A
cc
ur
ac

y

Pruned Model
Baseline

(a)

0.5 0.6 0.7 0.8 0.9 1.0
Prune Threshold

20

40

60

80

C
om

pr
es
si
on

 R
at
io

FLOPs
Parameter

(b)

Figure 2. Results of pruning experiments on CIFAR10 with pruning thresholds from 0.5 to 1.0.
ResNet-56 model was pruned in the experiment. (a) Accuracy. (b) Compression ratio of FLOPs
and parameters.

Therefore, the binary search algorithm is introduced to adjust the pruning threshold
based on feedback from fine-tuning. Algorithm 1 describes the proposal in detail. Pu
and Pl are the two endpoints of the search interval for the optimal pruning threshold
and are initialized to 1 and 0.5, respectively. Pc is the current pruning threshold and is
initialized to the midpoint of the search interval. The pruning process is simplified into the
following steps: (1) Load the original trained model, or the compressed model, from the
previous iteration. (2) One pruning attempt is performed based on Pc, and then the model
is fine-tuned to get the corresponding accuracy. (3) If the fine-tuning accuracy is higher
than the target accuracy, the upper endpoint, Pu, is updated to Pc. Then, Pc is reduced by a
quarter of the search interval. If the fine-tuning accuracy is lower than the target accuracy,
the lower endpoint Pl is updated to the value of Pc. Then, Pc is increased by half of the
search interval. The above steps repeat until the gap between Pl and Pu is less than 0.03,
an empirically determined termination condition. When the loop ends, the compression
result of this iteration is obtained.

Algorithm 1: Algorithm for dynamic pruning.
Data: Pre-trained network
Result: The compressed network
initialization: the current pruning threshold Pc;
upper endpoint of target interval Pu = 1.0;
lower endpoint of target interval Pl = 0.5;
Pc ← (1/2Pu + 1/2Pl) ;
while Pu − Pl > 0.03 do

load trained network;
select and delete channels based on Pc;
fine-tune the pruned network and measure accuracy;
if accuracy ≤ target accuracy then

Pu ← Pc;
Pc ← (3/4Pu + 1/4Pl) ;
save current network as the result;

else
Pl ← Pc;
Pc ← (1/2Pu + 1/2Pl) ;

end
end



Electronics 2023, 12, 1208 6 of 14

In addition, dynamic pruning is iterative to get better compression results. The com-
pressed model of the previous iteration is the original model of this iteration. By analyzing
the experimental data, too many pruning iterations make little improvement on the com-
pression result; thus, the iterations were set to 3 by us.

3.3. Layer Fusion

After dynamic pruning, the pruned model has multiple thin layers. This part intends
to deprecate these thin layers by layer fusion, causing slight performance loss.

The bottleneck structure where the thin layer lies is defined as the material structure.
Another bottleneck structure in the fusion operation is defined as the carrier structure
(described in Figure 1). The challenge of layer fusion is that the impact of losing an
entire layer on feature propagation is serious; thus, the carrier structure should undertake
the function of the material structure. Therefore, the nearest bottleneck structure of the
material structure is chosen as the carrier structure. Normally, carrier structure is the layer
before the material structure. Then, the model is fine-tuned to adjust the output of the
carrier structure to be similar to that of the material structure, so the carrier structure is
functionally equivalent to the two layers before fusion. If x represents the input, and F ()
and G() represent the carrier structure and the material structure, respectively, then the
fused layerH() should function as:

H(x) = G(F (x)). (2)

There are two key points in layer-fusion fine-tuning: knowledge distillation and
short–long fine-tuning.

3.3.1. Knowledge Distillation

Knowledge distillation [44] is a method for transferring knowledge from a complex
teacher network to a simple student network. A critical part of knowledge distillation is
the soft label, which is a learning objective obtained from the output of the teacher network.
The soft label is defined as:

qi =
exp (zi/T)

∑j exp (zj/T)
. (3)

Here, zi is the probability of the ith class and T is the temperature of knowledge
distillation. In knowledge distillation, the student network is optimized according to
the soft labels and the ground-truth labels to get better training results. Benefiting from
knowledge distillation, the student network is trained to generalize in the same way as the
teacher network, and the training difficulty of the student network is reduced.

Therefore, in layer fusion, knowledge distillation is introduced as the fine-tuning
method. After a material structure is removed, a sub-network with a simpler structure
is obtained. The model compressed by dynamic pruning is considered as the teacher
network, and the sub-network is considered as the student network. The sub-network is
fine-tuned with knowledge distillation after removing one material structure. Fine-tuning
with knowledge distillation could optimize the output of the carrier structure to close to
the material structure, which means the loss of layer fusion is minimal.

3.3.2. Short–Long Fine-Tuning

In general, training the model optimizes all of the parameters. However, after the
material structure is removed, only the carrier structure needs to be fine-tuned. Optimizing
the entire network would increase the difficulty of searching for the optimal solution. This
part is intended to keep the fine-tuning focused on the output of the carrier structure. Thus,
after removing the material structure, only the weights of the carrier structure are tuned,
and other layers are frozen. As a result, it is enough to take a small number of epochs for



Electronics 2023, 12, 1208 7 of 14

fine-tuning only the carrier structure of the network, the process of which is denoted as
short fine-tuning. The short fine-tuning is done after each material structure is removed.

In addition, it is difficult to fine-tune the output of the carrier structure to be exactly
the same as that of the material structure. A tiny offset remains in the fused layers after
short fine-tuning. When the offsets accumulate too much, the performance of the model
is severely degraded. Thus, after four bottleneck structures are fused, the model is fine-
tuned without freezing. This process requires more iterations and is defined as long
fine-tuning. Introducing long–short fine-tuning contributes to providing layer fusion with
a low performance loss.

3.3.3. Iterative Layer Fusion

Layer fusion is an iterative process. After one bottleneck structure is fused, the next
set of material and carrier structures is searched by the new model.

Algorithm 2 describes the flow of layer fusion. In detail, the duplicate of the pruned
model always serves as the teacher model for knowledge distillation. First, find the
bottleneck structure with the lowest number of channels as the material structure, and select
the previous bottleneck structure as the carrier structure. Then, remove the material
structure and short fine-tune the model. After repeating these two steps four times, a long
fine-tuning is conducted. The above steps are repeated until the drop in accuracy is greater
than 3%. Although the architecture is compressed by layer fusion, the model performance
does not keep decreasing. When the model is modified to the appropriate architecture,
the model’s performance increases. Both increases and decreases in model accuracy are
possible after each long fine-tuning, so a loose termination condition is adopted. The results
after each long fine-tuning are kept, and we evaluate them in terms of compression ratio
and performance.

Algorithm 2: Flow of layer fusion.
Data: The pruned model
Result: The model with improved architecture
duplicate the pruned model as the teacher model;
while accuracy drop less than 3% do

for iterations to 4 do
select the bottleneck structure with the least number of channels as the
material structure;

select the previous layer of the element layer as the carrier structure;
remove the material structure from model;
freeze weights except for the carrier structure;
short fine-tuning with knowledge distillation;

end
long fine-tuning with knowledge distillation;
save model;

end

4. Experimental
4.1. Experimental Configuration

The proposal was applied to the ResNet and DenseNet models to evaluate the im-
provement effect. CIFAR10 and ImageNet50 [45] were adopted as experimental datasets.
CIFAR10 contains 50k training images and 10k test images, all of which are 32 × 32. Ima-
geNet50 consists of 50 random classes chosen from the ILSVRC2012 dataset. It contains
51,614 training images, 6490 validation images, and 6440 test images, all of which are
224 × 224. Common ResNet models, such as ResNet-50 and ResNet-101, are designed for
ImageNet, and their architectures are too complex for CIFAR10. ResNet-56 and ResNet-110
have been designed for CIFAR10 with a simpler architecture, and they expect an input size
of 32 × 32. Therefore, ResNet-56 and ResNet-110 have been adopted as the base model for



Electronics 2023, 12, 1208 8 of 14

the CIFAR10 compression experiment. For the same reason, DenseNet-40 was adopted
as the base model for the CIFAR10, and DenseNet-121 was compressed in the experiment
on ImageNet50.

Each base model was trained on the datasets with a 5-epoch warm-up and 320 epochs,
from scratch. The momentum was set to 0.9, the weight decay factor was 10−4, and the
batch size was 64. Experiments were conducted on the Nvidia GeForce GTX 3080 Ti GPU
and Intel i9-10900 CPU, and the models were implemented by pytorch.

In the dynamic pruning phase, the optimizer SGD with a learning rate initialized to
0.01 was adopted. The learning rate was decayed by cosine annealing [46] with a period
of 320 epochs and restarted at epoch 160. The network was fine-tuned on the training set,
and the number of epochs was set to 320. When the best accuracy was not updated for
more than 20 epochs, the fine-tuning was stopped. About the pruning strategy, only the
input channels of second convolutional layers in bottleneck structures were selected as
pruning targets. In DenseNet40, since a more dense structure than the bottleneck structure
which contains one convolutional layer is adopted, the highly sparse output channels of
each convolutional layer and all the corresponding input channels are removed.

In the layer-fusion phase, normally, the carrier structure is the previous bottleneck
structure of the material structure. However, layer fusion should not fuse two layers with
different sizes of output feature maps. When the output size of the previous bottleneck
structure is different, the following one is picked as the carrier structure. The temperature
of the knowledge distillation was set to 4. The number of epochs for short fine-tuning was
set to 50, and 200 for long fine-tuning. The other settings of fine-tuning were the same as in
dynamic pruning.

4.2. Experiments on CIFAR10

The experimental results of dynamic pruning on CIFAR10 are shown in Table 1. Top-1
accuracy and FLOPs are the focuses. The compression effect is noticeable on the ResNet
series, especially ResNet110, which compresses 75.75% of FLOPs with a 0.42% drop in
precision. In addition, layers with less than six output channels are considered thin layers,
and the number of such layers is listed in the table. It can be seen that the number of thin
layers after pruning was considerable, especially for ResNet110, which had 31 thin layers.
In the next phase, layer fusion was mainly focused on these thin layers.

Table 1. Results of dynamic pruning on CIFAR10. “Acc.” indicates accuracy. “Acc. ↓” and
“FLOPs ↓” denote reductions compared to the base models. The other tables and figures follow the
same conventions.

Baseline
(%)

Pruned
Acc. (%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%)

Thin
Layers

ResNet-56 93.52 93.1 0.42 50.92 60.10 10
ResNet-110 93.76 93.34 0.42 62.34 75.75 31

DenseNet-40 94.53 94.07 0.46 210.56 28.03 10

Table 2 details the experimental results of layer fusion. The effect of layer fusion was
most significant on ResNet-56 and DenseNet-40. Compared to the results of dynamic
pruning, the compression ratio was improved by 12.01% on ResNet-56, and the accuracy
was further reduced by 0.35%. Additionally, FLOPs were further reduced in number by
11.78% in DenseNet-40, along with a further loss of 0.41% in accuracy. For ResNet-110,
although only 4.3% of FLOPs were eliminated by layer fusion, up to 64 convolutional layers
were fused, and the accuracy reduction was 0.3%. The results of the layer fusion, in order
to prioritize the performance, are also listed in the table. It indicates that multiple layers
were removed from the models with less than 0.07% in accuracy degradation. Specifically,
after fusing the 48 convolutional layers in ResNet-110, the accuracy rose by 0.04% compared
to the pruned model.



Electronics 2023, 12, 1208 9 of 14

Table 2. Results of layer fusion on CIFAR10. The depth and fused layers refer to numbers of
convolutional layers. ResNet-56∗ indicates the layer fusion results of the priority selection according
to the precision, and same for ResNet-110∗ and DenseNet-40∗.

Fused
Acc. (%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%) Depth Fused

Layers

ResNet-56 92.75 0.77 35.59 72.11 24 32
ResNet-110 93.04 0.72 51.28 80.05 46 64

DenseNet-40 93.66 0.87 176.10 39.81 24 16

ResNet-56∗ 93.04 0.48 46.85 63.29 40 16
ResNet-110∗ 93.38 0.38 57.14 77.77 62 48

DenseNet-40∗ 94.07 0.46 187.54 35.90 28 12

4.3. Experiments on ImageNet50

The proposal achieved satisfactory results on CIFAR10. However, mainstream models
are considered too complex for CIFAR10, which means there are plenty of redundant
structures that can be easily removed from the model. Therefore, as a complement, the ex-
periments were performed on ImageNet50, which consists of large input images. Since
ImageNet50 is more complex compared to CIFAR10, it is challenging to compress the mod-
els without accuracy loss. Table 3 provides the results obtained in the experiment. As can
be seen in the table, 34.54% of the FLOPs of DenseNet121 were compressed, and there was
a 0.65% accuracy reduction. Then, layer fusion improved the compression of FLOPs to
36.48% while resulting in an overall accuracy loss of 0.92%. In detail, 32 convolutional
layers of DenseNet121 were fused in the layer fusion.

Table 3. Compression results of DenseNet-121 on ImageNet50. “After layer fusion” indicates the
result of layer fusion after dynamic pruning.

Acc.
(%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%)

Baseline 90.21 - 59.2 -
After dynamic pruning 89.56 0.65 38.75 34.54

After layer fusion 89.29 0.92 37.60 36.48

4.4. Analysis

The results of all experiments are summarized in Table 4. In addition, the intermediate
results of layer fusion are analyzed. Figure 3 presents the layer fusion details of the
experiments on CIFAR10. The baseline is the model’s accuracy after dynamic pruning. It
can be noticed that the accuracy is not continuously decreasing as the layers are fused. In the
layer-fusion experiments on ResNet-110, the accuracy was higher than the baseline four
times. Additionally, for DenseNet-40, there was a significant increase in accuracy of 0.38%
after the first four layers were fused. Afterward, when the 12 convolutional layers were
discarded, the accuracy was the same as the baseline. These data suggest that it is feasible
to improve the compressed model’s performance by layer fusion. Moreover, the variations
in FLOPs are also shown in the figure. It can be found that since the bottleneck structure
with the fewest channels was fused, the reduction in computational resources by layer
fusion was not significant. However, considering that it was a further reduction of FLOPs
from a compressed model, the enhanced compression ratio is valuable.



Electronics 2023, 12, 1208 10 of 14

Table 4. All compression results by our proposed method.

Dataset Model Original
Acc. (%)

Compressed
Acc. (%)

Acc. ↓
(%)

Original
FLOPs (M)

Compressed
FLOPs (M)

FLOPs ↓
(%)

CIFAR10
ResNet-56 93.52 92.75 0.77 127.62 35.59 72.11

ResNet-110 93.76 93.04 0.72 257.09 51.28 80.05
DenseNet-40 94.53 93.66 0.87 292.56 176.1 39.80

ImageNet50 DenseNet-121 90.21 89.29 0.92 59.20 37.60 36.48

0 8 16 24 32 40 48 56 64 72 80 88 96
Number of fused layers

91.0

91.5

92.0

92.5

93.0

93.5

94.0

A
cc
ur
ac

y(
%
)

Baseline
Accuracy 20

40

60

80

F
LO

P
s(
M
)

FLOPs

(a)

0 4 8 12 16 20 24 28
Number of fused layers

90

91

92

93

94

95

A
cc

ur
ac

y(
%

)

Baseline
Accuracy

100

150

200

250

F
LO

P
s(

M
)

FLOPs

(b)

Figure 3. Layer fusion details of ResNet-110 and DenseNet-40. The accuracy and FLOPs of the model
after all four layers are fused are shown in the figure. (a) ResNet-110. (b) DenseNet-40.

Moreover, comparison experiments were conducted to analyze the proposal:

• Knowledge distillation was replaced by cross-entropy loss in the fine-tuning.
• No short fine-tuning was performed after each structure was fused; only long fine-

tuning was conducted after four layers were fused.
• We trained models from scratch with the optimized architectures.

Figure 4 presents the experiment without knowledge distillation on DenseNet-40.
From the figure, it can be seen that without the benefit of knowledge distillation, it is difficult
to recover the model accuracy to a satisfactory level. After 20 layers are fused, the model’s
accuracy degrades more seriously. Additionally, Figure 5 presents the experiment with
no short fine-tuning on ResNet-110. After removing short fine-tuning, seven fine-tuning
results were worse than before, and the accuracy dropped more severely after 44 layers
were fused.

Since the complexity of the model architectures was reduced without a significant drop
in performance, we can say that they nearly retain the performance of the complex models
even though the architectures are relatively simple. To demonstrate that, models with
architectures the same as those of the compressed models were built and then trained from
scratch with the same training settings as the base models. The results are listed in Table 5.
Acc. improved indicates the accuracy improved by the proposal compared to training



Electronics 2023, 12, 1208 11 of 14

from scratch. These data show that with similar complexity, the models compressed by the
proposed method have higher performance.

0 4 8 12 16 20 24 28
Number of fused layers

91

92

93

94

95

A
cc
ur
ac

y

Proposal
Without KD

Figure 4. Details of the layer-fusion experiment on DenseNet-40 without knowledge distillation.

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of fused layers

90

91

92

93

94

A
cc
ur
ac

y

Proposal
Without short finetuning

Figure 5. Details of the layer-fusion experiment on ResNet-110 without short fine-tuning.

Table 5. Accuracy of the compressed models and models trained from scratch with compressed ar-
chitectures.

Acc. by
Proposal (%)

Acc. from
Scratch (%)

Acc.
Improved (%)

ResNet-56 92.75 91.65 1.10
ResNet-110 93.04 92.31 0.73

DenseNet-40 93.66 93.25 0.41

5. Conclusions

In this paper, we proposed a CNN architecture-improvement approach to optimize
redundant models at the channel level and the layer level. First, the binary search method
is used to dynamically determine the appropriate pruning threshold, and then redundant
channels are removed based on the threshold. Then, bottleneck structures with only a few
channels are eliminated by layer fusion to compress the model at the layer level. Knowledge
distillation and short–long fine-tuning were introduced to layer fusion to enhance the
performance of the fused models. The experimental results show the efficiency of the
proposal: in terms of ResNet-56, 72.11% of FLOPs were eliminated, and there was a 0.77%
drop in accuracy; as for ResNet-110, 80.05% of FLOPs were eliminated, and there was a drop
in accuracy of 0.72%. In detail, the data demonstrate that there are 48 convolutional layers
that could be removed from ResNet110 by our method without harming the model. We
focused on the analysis of the proposal in the classification task. In future work, the effects
of detection and segmentation tasks will be analyzed, since compression is more difficult
for these tasks. Furthermore, the models with the optimized architecture are planned to be
implemented on FPGAs to evaluate the compression effect on resource-constrained devices.



Electronics 2023, 12, 1208 12 of 14

Author Contributions: Conceptualization, L.M. and H.L.; methodology, Q.L.; software, Q.L.; vali-
dation, Q.L. and H.L; formal analysis, Q.L.; investigation, Q.L.; resources, L.M.; data curation, Q.L.;
writing—original draft preparation, Q.L.; writing—review and editing, H.L. and L.M.; visualization,
Q.L.; supervision, L.M.; project administration, L.M.; funding acquisition, L.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of abbreviations and definitions.

Abbreviation Explanation

FLOP Floating-point operation
CNN Convolution neural network
FPGA Field-programmable gate array
lasso Least absolute shrinkage and selection operator
Fij Filter that connects the ith input channel to the jth

output channel
Mi Input feature map on the ith channel
Oi Output feature map on the ith channel
~ Convolution operator
b Bias
Pc Current demarcation point of En-sparsity
Pu Upper endpoint of target interval
Pl Lower endpoint of target interval
x Input of bottleneck structure
F () Carrier structure
G() Material structure
H() Fused layer
zi The probability of the ith class
T The temperature of knowledge distillation
qi The soft label of the ith class
GPU Graphics processing unit
CPU Central Processing Unit
Acc. Top-1 accuracy
Acc. ↓ Reduction in accuracy compared to the base model
FLOPs ↓ Reduction in FLOP compared to the base model
SGD Stochastic gradient descent algorithm

References
1. Li, Z.; Meng, L. Research on Deep Learning-based Cross-disciplinary Applications. In Proceedings of the 2022 International

Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 221–224. [CrossRef]
2. Chen, X.; Liu, L.; Tan, X. Robust Pedestrian Detection Based on Multi-Spectral Image Fusion and Convolutional Neural Networks.

Electronics 2022, 11, 1. [CrossRef]
3. Avazov, K.; Mukhiddinov, M.; Makhmudov, F.; Cho, Y.I. Fire Detection Method in Smart City Environments Using a Deep-

Learning-Based Approach. Electronics 2022, 11, 73. [CrossRef]
4. Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A Deep Learning-Based Object Detection Algorithm for

Empty-Dish Recycling Robots. Machines 2022, 10, 294. [CrossRef]
5. Ge, Y.; Yue, X.; Meng, L. YOLO-GG: A slight object detection model for empty-dish recycling robot. In Proceedings of the 2022

International Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 59–63.
6. Yue, X.; Li, H.; Fujikawa, Y.; Meng, L. Dynamic Dataset Augmentation for Deep Learning-Based Oracle Bone Inscriptions

Recognition. J. Comput. Cult. Herit. 2022, 15, 76. [CrossRef]

http://doi.org/10.1109/ICAMechS57222.2022.10003391
http://dx.doi.org/10.3390/electronics11010001
http://dx.doi.org/10.3390/electronics11010073
http://dx.doi.org/10.3390/machines10050294
http://dx.doi.org/10.1145/3532868


Electronics 2023, 12, 1208 13 of 14

7. Meng, L.; Hirayama, T.; Oyanagi, S. Underwater-drone with panoramic camera for automatic fish recognition based on deep
learning. IEEE Access 2018, 6, 17880–17886. [CrossRef]

8. Deng, M.; Inoue, A.; Shibata, Y.; Sekiguchi, K.; Ueki, N. An obstacle avoidance method for two wheeled mobile robot. In
Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, London, UK, 15–17 April 2007;
pp. 689–692. [CrossRef]

9. Wen, S.; Deng, M.; Inoue, A. Operator-based robust non-linear control for gantry crane system with soft measurement of swing
angle. Int. J. Model. Identif. Control 2012, 16, 86–96. [CrossRef]

10. Bergerman, M.; van Henten, E.; Billingsley, J.; Reid, J.F.; Deng, M. IEEE Robotics and Automation Society Technical Committee on
Agricultural Robotics and Automation. IEEE Robot. Autom. Mag. 2013, 20, 20–125. [CrossRef]

11. Yue, X.; Lyu, B.; Li, H.; Meng, L.; Furumoto, K. Real-time medicine packet recognition system in dispensing medicines for the
elderly. Meas. Sens. 2021, 18, 100072. [CrossRef]

12. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

13. Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in
disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [CrossRef]

14. Ghimire, D.; Kil, D.; Kim, S.H. A Survey on Efficient Convolutional Neural Networks and Hardware Acceleration. Electronics
2022, 11, 945. [CrossRef]

15. Ahamad, A.; Sun, C.C.; Kuo, W.K. Quantized Semantic Segmentation Deep Architecture for Deployment on an Edge Computing
Device for Image Segmentation. Electronics 2022, 11, 3561. [CrossRef]

16. Zhao, M.; Li, M.; Peng, S.L.; Li, J. A Novel Deep Learning Model Compression Algorithm. Electronics 2022, 11, 1066. [CrossRef]
17. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is More: Towards Compact CNNs. In Proceedings of the Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing:
Berlin/Heidelberg, Germany, 2016; pp. 662–677.

18. Li, H.; Yue, X.; Wang, Z.; Chai, Z.; Wang, W.; Tomiyama, H.; Meng, L. Optimizing the deep neural networks by layer-wise refined
pruning and the acceleration on FPGA. Comput. Intell. Neurosci. 2022, 2022, 8039281. [CrossRef] [PubMed]

19. Jordao, A.; Lie, M.; Schwartz, W.R. Discriminative Layer Pruning for Convolutional Neural Networks. IEEE J. Sel. Top. Signal
Process. 2020, 14, 828–837. [CrossRef]

20. Yuan, S.; Du, Y.; Liu, M.; Yue, S.; Li, B.; Zhang, H. YOLOv5-Ytiny: A Miniature Aggregate Detection and Classification Model.
Electronics 2022, 11, 1743. [CrossRef]

21. Lin, S.; Ji, R.; Chen, C.; Tao, D.; Luo, J. Holistic CNN Compression via Low-Rank Decomposition with Knowledge Transfer. IEEE
Trans. Pattern Anal. Mach. Intell. 2019, 41, 2889–2905. [CrossRef]

22. Li, H.; Wang, Z.; Yue, X.; Wang, W.; Hiroyuki, T.; Meng, L. A Comprehensive Analysis of Low-Impact Computations in Deep
Learning Workloads. In Proceedings of the 2021 on Great Lakes Symposium on VLSI, GLSVLSI ’21, Virtual Event, 22–25 June
2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 385–390. [CrossRef]

23. Hao, Z.; Li, Z.; Dang, X.; Ma, Z.; Liu, G. MM-LMF: A Low-Rank Multimodal Fusion Dangerous Driving Behavior Recognition
Method Based on FMCW Signals. Electronics 2022, 11, 3800. [CrossRef]

24. Gong, C.; Chen, Y.; Lu, Y.; Li, T.; Hao, C.; Chen, D. VecQ: Minimal Loss DNN Model Compression With Vectorized Weight
Quantization. IEEE Trans. Comput. 2021, 70, 696–710. [CrossRef]

25. Husham Almukhtar, F.; Abbas Ajwad, A.; Kamil, A.S.; Jaleel, R.A.; Adil Kamil, R.; Jalal Mosa, S. Deep Learning Techniques
for Pattern Recognition in EEG Audio Signal-Processing-Based Eye-Closed and Eye-Open Cases. Electronics 2022, 11, 4029.
[CrossRef]

26. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. [DL] A survey of FPGA-based neural network inference accelerators. ACM Trans.
Reconfigurable Technol. Syst. TRETS 2019, 12, 1–26. [CrossRef]

27. Li, H.; Yue, X.; Wang, Z.; Wang, W.; Tomiyama, H.; Meng, L. A survey of Convolutional Neural Networks —From software to
hardware and the applications in measurement. Meas. Sens. 2021, 18, 100080. [CrossRef]

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

29. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

30. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

31. Kuang, J.; Shao, M.; Wang, R.; Zuo, W.; Ding, W. Network pruning via probing the importance of filters. Int. J. Mach. Learn.
Cybern. 2022, 13, 2403–2414. [CrossRef]

32. Li, Y.; Gu, S.; Mayer, C.; Gool, L.V.; Timofte, R. Group sparsity: The hinge between filter pruning and decomposition for network
compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 8018–8027.

33. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-based accelerators of deep learning networks for learning and classification: A
review. IEEE Access 2018, 7, 7823–7859. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2820326
http://dx.doi.org/10.1109/ICNSC.2007.372863
http://dx.doi.org/10.1504/IJMIC.2012.046699
http://dx.doi.org/10.1109/MRA.2013.2255513
http://dx.doi.org/10.1016/j.measen.2021.100072
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1016/j.scijus.2021.11.002
http://dx.doi.org/10.3390/electronics11060945
http://dx.doi.org/10.3390/electronics11213561
http://dx.doi.org/10.3390/electronics11071066
http://dx.doi.org/10.1155/2022/8039281
http://www.ncbi.nlm.nih.gov/pubmed/35694575
http://dx.doi.org/10.1109/JSTSP.2020.2975987
http://dx.doi.org/10.3390/electronics11111743
http://dx.doi.org/10.1109/TPAMI.2018.2873305
http://dx.doi.org/10.1145/3453688.3461747
http://dx.doi.org/10.3390/electronics11223800
http://dx.doi.org/10.1109/TC.2020.2995593
http://dx.doi.org/10.3390/electronics11234029
http://dx.doi.org/10.1145/3289185
http://dx.doi.org/10.1016/j.measen.2021.100080
http://dx.doi.org/10.1007/s13042-022-01530-w
http://dx.doi.org/10.1109/ACCESS.2018.2890150


Electronics 2023, 12, 1208 14 of 14

34. Misra, J.; Saha, I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing 2010, 74, 239–255.
[CrossRef]

35. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

36. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Comput. Archit. News 2016, 44, 367–379. [CrossRef]

37. Hameed, R.; Qadeer, W.; Wachs, M.; Azizi, O.; Solomatnikov, A.; Lee, B.C.; Richardson, S.; Kozyrakis, C.; Horowitz, M.
Understanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 37–47.

38. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the Future of Parallel Computing. IEEE Micro 2011,
31, 7–17. [CrossRef]

39. Chen, S.; Zhao, Q. Shallowing Deep Networks: Layer-Wise Pruning Based on Feature Representations. IEEE Trans. Pattern Anal.
Mach. Intell. 2019, 41, 3048–3056. [CrossRef]

40. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

41. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
42. Huang, Z.; Wang, N. Like what you like: Knowledge distill via neuron selectivity transfer. arXiv 2017, arXiv:1707.01219.
43. Aghli, N.; Ribeiro, E. Combining weight pruning and knowledge distillation for cnn compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3191–3198.
44. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
45. CIFAR-10 and CIFAR-100 Datasets. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 3 October 2021).
46. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2010.03.021
http://dx.doi.org/10.1145/3007787.3001163
http://dx.doi.org/10.1145/3007787.3001177
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.1109/TPAMI.2018.2874634
http://dx.doi.org/10.1007/s11263-021-01453-z
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Related Work
	Methods
	Preliminary
	Dynamic Pruning
	Layer Fusion
	Knowledge Distillation
	Short–Long Fine-Tuning
	Iterative Layer Fusion


	Experimental
	Experimental Configuration
	Experiments on CIFAR10
	Experiments on ImageNet50
	Analysis

	Conclusions
	Appendix A
	References

