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Abstract: With the rapid development of UAVs (Unmanned Aerial Vehicles), abnormal state detection
has become a critical technology to ensure the flight safety of UAVs. The position and orientation
system (POS) data, etc., used to evaluate UAV flight status are from different sensors. The traditional
abnormal state detection model ignores the difference of POS data in the frequency domain during
feature learning, which leads to the loss of key feature information and limits the further improvement
of detection performance. To deal with this and improve UAV flight safety, this paper presents a
method for detecting the abnormal state of a UAV based on a timestamp slice and multi-separable
convolutional neural network (TS-MSCNN). Firstly, TS-MSCNN divides the POS data reasonably in
the time domain by setting a set of specific timestamps and then extracts and fuses the key features
to avoid the loss of feature information. Secondly, TS-MSCNN converts these feature data into
grayscale images by data reconstruction. Lastly, TS-MSCNN utilizes a multi-separable convolution
neural network (MSCNN) to learn key features more effectively. The binary and multi-classification
experiments conducted on the real flight data, Air Lab Fault and Anomaly (ALFA), demonstrate that
the TS-MSCNN outperforms traditional machine learning (ML) and the latest deep learning methods
in terms of accuracy.

Keywords: unmanned aerial vehicle; anomaly detection; ALFA; CNN

1. Introduction

With the development of unmanned aerial vehicles (UAVs), their applications in
civilian and military fields have expanded, including agriculture [1], transportation [2], and
fire protection [3]. However, as UAVs play an increasingly important role, their flight safety
problems have become more prominent [4]. Network attacks can lead to UAV failures,
and physical component failures such as elevators and rudders can also affect UAV flight
safety. For example, in June 2020, a US Air Force MQ-9 “Death” UAV crashed in Africa,
causing a loss of USD 11.29 million [5]. In February 2022, a DJI civilian UAV crashed out of
control, resulting in a personal economic loss of up to 16,300 RMB [6]. According to the
Civil Aviation Administration of China, the number of registered UAVs in China alone has
reached 8.3 million [7]. Therefore, it is necessary to establish a UAV safety detection model
to ensure the safety and reliability of UAV flights. Improving the flight safety of UAVs has
become a major research topic in the field of UAVs. Currently, a common method to ensure
UAV flight safety is to monitor UAV flight data for anomalies [8]. Abnormal flight data
indicates that the UAV may have hardware failure or misoperation, and timely identification
of the cause of the failure can effectively prevent UAV flight accidents. Figure 1 shows the
main components of a typical UAV anomaly detection system.

UAV flight data is mainly extracted from attitude estimation data of different UAV
sensors [9,10], which include the POS data and the system status (SS) data. These data
enable the detection of UAV flight status. The POS data consists of a triple of values in the
x, y, and z directions, while the SS data contains only a single value. Additionally, these
data are closely related to UAV guidance, navigation, and control (GNC) [11,12]. The early
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UAV anomaly detection method was based on flight data rules; however, the rule-based
anomaly detection method has a low detection performance [13]. To better ensure the flight
safety of UAVs, ML and deep learning methods have been introduced into the research
field of UAV safety. The development of these methods has opened up new ideas for the
research of UAV anomaly detection. However, the traditional anomaly detection method
ignored the difference between POS data and SS data used to evaluate the flight status
of UAVs in the frequency domain, resulting in the loss of some key feature information
in-flight data. This limitation restricts the performance of UAV anomaly detection models.
To address these problems, this paper proposes a method of extracting frequency domain
information by setting timestamp slices and proposes a UAV anomaly detection model
based on a multi-separable convolution neural network fusion method. It should be noted
that this paper takes the time of UAV failure as the dividing point and does not consider
the recovery process.

Figure 1. Main components in the UAV anomaly detection system.

In the next part of this paper, Section 2 describes the related research. Section 3
introduces the processing method of the ALFA dataset [14] and proposes the TS-MSCNN
anomaly detection model. Section 4 carries out experiments from various angles and
analyzes the experimental results of binary and multi-class classification. The final section
provides a summary and conclusion of this paper.

2. Related Works

This section provides a review of research related to UAV anomaly detection, covering
rule-based algorithms and those based on ML and deep learning methods.

Regarding rule-based algorithms, Chen et al. [15] investigated the impact of attackers’
behavior on the effectiveness of malware detection technology and proposed a specification-
based intrusion detection system that showed effective detection with high probability and
low false positives. Mitchell et al. [16] considered seven threat models and proposed a
specification-based intrusion detection system with specific adaptability and low runtime
resource consumption. Sedjelmaci et al. [17] studied four attacks—false information propa-
gation, GPS deception, jamming, and black hole and gray hole attacks—and designed and
implemented a new intrusion detection scheme with an efficient and lightweight response,
which showed high detection rates, low false alarm rates, and low communication over-
head. This scheme was also able to detect attacks well in situations involving many UAVs
and attackers.

In terms of the UAV anomaly detection model based on traditional ML methods,
Liu et al. [18] proposed a real-time UAV anomaly detection method based on the KNN
algorithm for the UAV flight sensor data stream in 2015, which has high efficiency and
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high accuracy. In 2016, Senouci et al. [19] focused on the two main problems of intrusion
detection and attacker pop-up in the UAV-assisted network. The Bayesian game model was
used to balance the intrusion detection rate and intrusion detection resource consumption.
This method achieved a high detection rate and a low false positive rate. In 2019, Keifour
et al. [20] released an initial version of the ALFA dataset [13] and proposed a real-time
UAV anomaly detection model using the least squares method. This method does not need
to assume a specific aircraft model and can detect multiple types of faults and anomalies.
In 2021, Shrestha et al. [21] simulated a 5G network and UAV environment through the
CSE-CIC-IDS-2018 network dataset, established a model for intrusion detection based on
the ML algorithm, and also implemented the model based on ML into ground or satellite
gateways. This research proves that the ML algorithm can be used to classify benign or
malicious packets in UAV networks to enhance security.

However, some outliers can be difficult to detect using traditional machine learning
(ML) techniques [22]. To address this challenge, deep learning (DL) methods have been
increasingly used to improve the detection accuracy of UAV anomalies, especially when
processing high-dimensional UAV flight data. In 2021, Park et al. [23] proposed a UAV
anomaly detection model using a stacking autoencoder to address the limitations of the
current rule-based model. This model mainly judges the normal and abnormal conditions
of data through the loss of data reconstruction. The experimental results on different UAV
data demonstrate the effectiveness of the proposed model. In 2022, Abu et al. [24] proposed
UAV intrusion detection models in homogeneous and heterogeneous UAV network envi-
ronments based on a convolutional neural network (CNN) using three types of UAV WIFI
data records. The final experimental results demonstrate the effectiveness of the proposed
model. Dudukcu et al. [25] utilized power consumption data and simple moving average
data of the UAV battery sensor as the multivariate input of the time-domain convolution
network to identify the anomaly of the instantaneous power consumption of the UAV bat-
tery. The simulation results show that the time-domain convolutional network can achieve
good results in instantaneous power consumption prediction and anomaly detection when
combining simple moving average data and UAV sensor data. In addition, some studies
have explored the use of probability models, time series data, and data dimensions for
anomaly detection, achieving effective results [26–28], which have important implications
for this study.

All of the previously mentioned methods have been successful in detecting anomalies,
but they have not taken into account the differences between the POS data and SS data
used to evaluate UAV flight status in the frequency domain. This has resulted in the loss of
some key feature information in the flight data, which limits the improvement of anomaly
detection model performance. The differences in the frequency domain can be seen in
two aspects: first, the feature information amount of the POS data and the SS data in the
frequency domain is inconsistent in the same time domain; second, the data structure is
different. The feature of POS data in the frequency domain is triple, while SS data is a
single value. When the amount of feature information is inconsistent, a feature vector with
variable length is generated, which leads to the loss of key feature information in the model
training process. Additionally, the difference in data structure causes POS data and SS
data to lose some key information due to the confusion of feature information during the
anomaly detection model’s feature extraction process.

To address the issues mentioned above, this paper proposes several solutions. Firstly, a
specific timestamp size is set, and the frequency domain information of UAV data is divided
and extracted to fuse key feature information, addressing the problem of inconsistency
between POS data and SS data in the frequency domain. Secondly, POS and SS data are
reconstructed into grayscale images. Lastly, the MSCNN is utilized to learn and fuse the
key features of POS and SS data, overcoming the problem of key feature information loss
caused by the structural differences between POS data and SS data. The following sections
will provide a detailed description of these solutions.
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3. TS-MSCNN Model Design

Taking into account the analysis presented above, this section proposes a TS-MSCNN
anomaly detection model, which consists of two main components: a time stamp slice-
based frequency domain information processing method for extracting and fusing key
features of UAV flight data, and an MSCNN-based anomaly detection method for learning
and fusing flight data features. The processing flow of the TS-MSCNN model is illustrated
in Figure 2. The subsequent section will provide a detailed description of the model design.

Figure 2. The block diagram of the proposed TS-MSCNN.

3.1. UAV Flight Data Processing Methods
3.1.1. Analysis of ALFA Dataset

The ALFA dataset comprises the original flight log of a fixed-wing UAV that operated
in a real flight environment and can be roughly classified into five categories: no failure,
engine failure, rudder failure, elevator failure, and aileron failure. The UAV was flown at
Pittsburgh Airport in the United States. The dataset includes two types of data: SS data
with only one numerical dimension and POS data with three numerical dimensions. The
POS data contains latitude, longitude, elevation, heading angle (Phi), pitch angle (Omega),
and roll angle (Kappa) data obtained during the UAV flight, which are mainly represented
by different values in the X, Y, and Z directions. The original UAV flight log contains a
multitude of features, which are not conducive to model training. Therefore, this paper uses
the feature selection method in [23] to obtain the key features of UAV flight data shown
in Table 1.

Table 1. Features selected from the ALFA.

Category Feature Name Description

POS Data

Magnetic Field (x, y, z) The value of the magnetic field at axis x, y and z
Linear Acceleration (x, y, z) The linear acceleration at axis x, y and z
Angular Velocity (x, y, z) An angular velocity at axis x, y and z
Velocity (x, y, z) Measured velocity of axis x, y and z

System status Data

Fluid Pressure The value of the pressure using fluid pressure sensors
Temperature The temperature of the battery
Altitude Error The error value of current altitude
Airspeed Error The error value of current airspeed
Tracking Error (x) The tracking error at x axis
WP Distance The distance between ideal location and current location

3.1.2. Frequency Domain Information Extraction and Fusion Method Based on
Timestamp Slices

The frequency domain information of the original UAV data in the same time domain
is different, so the fixed length feature vector cannot be formed, which leads to the loss of
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key feature information in the model training process. Suppose that at time t, by observing
the temperature information of the UAV battery, ftemperature can be expressed as a binary,
that is, ftemperature = {temp1, temp2}. At different times, the value of the ftemperature binary
is different. According to the above representation, other flight data information from
UAV, such as fluid pressure and magnetic field value, can be expressed as corresponding
characteristic tuples, namely f pressure = {pre1, pre2, pre3, pre4}, fmagnetic = {mag1, mag2, mag3,
mag4, mag5, mag6}. These feature tuples are marked with inconsistent frequency domain
feature information at the same time (as shown in Figure 3a). During the calculation process,
features with more frequency domain information will cover other feature information
values, leading to the loss of key information. Therefore, this paper will process based on
the following methods.

Figure 3. (a) Distribution of various features. (b) Extraction of the features in the timestamp.

Step 1: Feature information extraction in the frequency domain.

select(feature)= {vij| when t = tk and (index (vij & tk) 6= index (vij & tk−1))} (1)

where vij represents the characteristic value, i represents the characteristic number, j rep-
resents the characteristic value number, index() represents the index of the characteristic
value in the frequency domain, and tk represents the time.

Step 2: Frequency domain information fusion.

v = {select(feature0)∪select(feature1) . . . ∪select(featuren)|when t = tk} (2)

where n represents the characteristic number and tk represents the time.
Figure 3b illustrates the results of information extraction and fusion at different time

points. It shows that the same feature has different index positions in different timestamps,
which preserves the differences between features in different time domains and enables
the maximum amount of information to be obtained. In real UAV log data, POS data
and other values change significantly, and there are more characteristic data in the same
timestamp than in the SS data. Therefore, this paper extracts and fuses flight log data based
on Equations (1) and (2), using the time span of the feature with the least amount of data as
the time stamp unit. This approach ensures the difference between different features, as
well as the consistency of frequency domain information of different features in the time
domain, and the frequency domain difference of the same feature in different time domains.

3.1.3. Unbalanced Data Processing

Based on the idea presented in Section 1, this paper performed information extraction
and fusion on the ALFA UAV flight dataset, and the results are shown in Figure 4a. The
dataset had a serious data imbalance, with the largest percentage of abnormal data for
engines being 58% of the entire dataset, the minimum percentage of abnormal data for
elevators being 4%, and only 12% of the data being normal. This imbalance can lead
to learning deviations in the anomaly detection model, causing the model to learn the
features of the data with a high proportion while only learning a few features from the
data with a low proportion. Therefore, this paper balanced the data distribution using the
down-sampling method, and the resulting balanced data distribution is shown in Figure 4b.
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Figure 4. (a) The data distribution of ALFA. (b) The balanced ALFA.

3.1.4. Validation of Flight Data

To demonstrate the effectiveness of the obtained UAV flight data, this paper repro-
duces normal flight and flight with elevator failure using a UAV flight simulator. The
configuration of the main parameters is shown in Table 2, and the flight path is illustrated
in Figure 5. During the flight, when the elevator fails at a specific time, the UAV cannot
complete the ascent and descent, so it can only maintain the same flight altitude. The
trouble-free UAV completes the difficult flight activities by lifting and lowering. This paper
simulates the flight trajectory of UAVs using the obtained data, and the trajectory has a
noticeable difference in 2D and 3D space, thus demonstrating the difference of abnormal
data of different UAVs and the effectiveness of the proposed UAV data processing method
in this paper.

Figure 5. (a) The normal flight data. (b) The flight data of elevator failure.
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Table 2. Parameter configuration of the simulator.

SITL Parameter Default Description

SIM_RC_FAIL 0.000000 Force RC failure
SIM_ACCEL_FAIL 0.000000 Force IMU ACC failure

SIM_ENGINE_MUL 1.000000 -
SIM_MAG1_DEVID 97,539.000000 1st Compass (0 to remove)

SIM_SPEEDUP 1.000000 Allows running sim SPEEDUP times faster
SIM_WIND_TURB 0.000000 Not implemented

SIM_GYR_FAIL_MSK 0.000000 Bitmask for setting a Gyro 1, 2, and/or 3 failure

3.2. Design of Anomaly Detection Model
3.2.1. Separable Convolutional

The separable convolution technique offers several advantages, including fewer pa-
rameters and lower computational cost, while also exhibiting high expressiveness in the
field of texture image recognition [29]. Its primary structure consists of a channel convo-
lution kernel that has the same size as the input image and a 1 × 1 convolution kernel
used to fuse the channel convolution information, as shown in Figure 6a. The structure of
the separable convolutional neural network (SCNN) is shown in Figure 6b. Compared to
traditional convolutional neural networks, separable convolution networks require fewer
parameters and consume less computational resources while maintaining classification
accuracy, as illustrated in Figure 7.

Figure 6. (a) The separable convolutions. (b) The separable convolutional neural network.

Figure 7. Traditional CNN convolution layers.

Set the input as M channels, the image size as Df_in × Df_in, the convolution kernel as
N× (M×Dk ×Dk), and the output feature map as N channels and size Df_out×Df_out. So, the
parameters of the separable convolution are Dk × Dk ×M + M × N; the parameter quantity
of the conventional convolution is Dk × Dk × M × N. The calculation consumption of the
separable convolution is M×Dk ×Dk ×Df_out ×Df_out +1× 1×N×Df_out ×Df_out; the cal-
culation consumption of the conventional convolution is M×Dk ×Dk ×Df_out ×Df_out ×N.
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The comparison of parameter quantity and computational consumption between separable
convolution and conventional convolution is presented in Figures 8 and 9. It is evident that
as the number of channels and convolution layers increases, the parameter quantity and
computational consumption of the conventional convolution layer are much higher than
those of the separable convolution layer, and the increase of the conventional convolution
is exponential. This illustrates that the separable convolution layer can save more parame-
ters and computational consumption than the conventional convolution layer and has a
faster calculation speed. Consequently, this paper will devise an efficient model based on
separable convolution.

Figure 8. The influence of model structure on the number of parameters.

Figure 9. The influence of model structure on computational overhead.

3.2.2. Feature Extraction and Fusion Layer

Based on the analysis above, this section presents the design of the feature extraction
and fusion layer (FEF) for POS data and SS data in UAV flight data using separable
convolution, as illustrated in Figure 10. FEF mainly consists of multi-layer parallel separable
convolutions and a feature fusion layer, and the number of separable convolution layers
varies for each data image. The main methods of feature extraction and fusion calculations
are as follows:

f =
p

∑
k=1

max
(

wc2k
Tmax

(
∑c1k

l=1 wl
Txi,j + bc1k , 0

)
+ bc2k , 0

)
(3)

where (i, j) is the pixel index in the feature map, xi,j is the input slice centered on the
position (i, j), c is the channel index in the feature map, and p is the separable convolutional
parallel number.
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Figure 10. The feature extraction and fusion layer.

The FEF layer is designed to extract features from the grayscale image corresponding
to the POS and SS data, and then fuse the two extracted features. The main fusion method
involves concatenating the two feature maps. For instance, if there are 3 feature maps from
the convolution layer for each of the POS and SS data, the resulting feature map size after
fusion will be 6.

3.2.3. Feature Mapping and Classification Layer

Based on the fusion feature map of the FEF layer, this paper requires an effective
feature mapping to the sample classification space. Therefore, this paper designed a
Feature Mapping and Classification (FMC) layer, as illustrated in Figure 11a. The FMC
layer is composed of three layers, namely the Flatten layer, the Fully Connected layer, and
the Output layer. The Flatten layer maps the obtained feature map to a one-dimensional
space. The Fully Connected layer acts as a classifier by fusing local information of features.
The Output layer mainly uses the softmax function to map the calculated values of neurons
to a probability space with a sum of 1. The working mode of the flattened layer is shown in
Figure 11b. The classification calculation equation is as follows:

class = max

 emax(wT f
′
+b,0)i

∑k
j=1 emax(wT f ′+b,0)j

∣∣∣∣∣∣i = 1, . . . , k

 (4)

where f’ represents one-dimensional characteristic data and k represents the number of
sample categories.

Figure 11. (a) Feature mapping and classification layer. (b) The way the feature flattens out.

3.2.4. TS-MSCNN Model Design

The complete design of the TS-MSCNN model is illustrated in Figure 12. During the
training process, the model is validated using the verification set to ensure the accuracy
of the training process. The loss rate threshold is set as the termination condition for
the model training. Finally, the trained model is used to detect the test set and output
the evaluation metrics. The process of the TS-MSCNN model, from training to anomaly
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detection, involves three main stages: forward propagation, backward propagation, and
model testing, which can be broken down into the following six steps.

Figure 12. The structure of TS-MSCNN model.

Step 1: Feature data extraction and fusion. Set the timestamp slice, extract and fuse the
UAV frequency domain information through Equations (1) and (2), and obtain the fixed
length UAV flight data feature vector.
Step 2: Data to image. The POS and SS data of UAV are transformed into two-dimensional
grayscale images by data reconstruction to adapt to model input.
Step 3: Feature extraction and fusion. The grayscale image features of UAV POS data and
SS data are extracted and fused using the FEF layer pass-through Equation (3).
Step 4: Feature mapping and classification. The feature map from the FEF layer is flattened
into one-dimensional data, and then the one-dimensional feature data is mapped to the
sample category space using Equation (4) to achieve classification.
Step 5: Backpropagation and parameter updating. After classification, the cross-entropy
loss function is first used to calculate the loss between the predicted and actual values.
The cross-entropy loss function is given as Equation (5) (where p(si) and q(si), respectively,
represent the real and predicted distributions of sample i, and H represents the final loss
value. Backpropagation is then carried out according to the loss value. The Adam optimizer
is adopted for the backward propagation to update the weight and bias of each layer.):

H(p, q) = −∑k
i=1 p(ci)log(q(ci)) (5)

Step 6: Model testing. Input test data into the model to test the effect of the model.

4. Experiment

This study employs the PyTorch [30] deep learning library to train the TS-MSCNN and
conventional CNN models. The experiments were conducted on an HP-Z480 workstation
equipped with an Intel Xeon ® CPU and 64 GB of RAM. In this section, we will first
introduce the evaluation metrics of the model and then demonstrate the performance of the
TS-MSCNN model in binary and multi-classification tasks. We compare our model with
conventional machine learning algorithms, conventional CNNs, and other relevant research
results to verify its effectiveness. It should be noted that to adapt the convolutional structure
for feature extraction, we convert the UAV flight data into a two-dimensional grayscale
image using a data reconstruction method. Figure 13 displays the data reconstruction
method and UAV image data, where the ‘ALL’ chart shows the image data used for
the single model structure. The detailed experimental process will be discussed in the
next section.
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Figure 13. Two-dimensional UAV flight data.

4.1. Evaluation Metrics

The main performance metric used in this paper is accuracy, followed by Recall,
F1-score, and Precision. TPs (true positive) refers to the number of abnormal records
identified as abnormal. True negative (TNs) is the number of normal records that are
considered normal. False positives (FPs) are the number of normal records identified as
abnormal. False negatives (FNs) are the number of abnormal records identified as normal.
The performance metrics used in this paper are defined as follows.

Accuracy: the percentage of the number of correctly classified records to the total
number of records, as shown in Equation (6).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (6)

Recall: Measure how many positive examples in the sample are correctly predicted,
that is, the proportion of all positive examples correctly predicted, as shown in Equation (7).

Recall = TP/(TP + FN) (7)

Precision: It is used to measure how many samples with positive prediction are real
positive samples, that is, the proportion of real positive samples in the results with positive
prediction, as shown in Equation (8).

Precision = TP/(TP + FP) (8)

F1-score: The F1-score measures the harmonic mean of the precision and recall, which
serves as a derived effectiveness measurement, as shown in Equation (9).

F1 =
2× Precision× Rcall

Precision + Rcall
(9)

4.2. Single SCNN Model for Binary Classification

In previous research, UAV flight data has been imaged. In this section, traditional
CNN and SCNN models of a single model will be trained based on UAV image data. To
better train the model, this paper sets the learning rate to 0.001 and the termination loss
rate of model training to 0.001. Divide the processed ALFA dataset into a training set,
test set and verification set according to the ratio of 6:3:1, and classify the data set into
abnormal and normal. In addition, the number of convolution layers in various models is
both designed as 3. Table 3 shows the experimental result of the CNN model and SCNN
model and it also shows that separable convolution ensures the validity of the model while
optimizing the model parameters and computing consumption.
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Table 3. The accuracy of the single model.

Model Accuracy

CNN 95.40%
SCNN 96.35%

Next, this paper will use conventional ML methods to detect binary anomalies based
on UAV flight data. Among them, the main algorithms used are ZeroR, OneR, Naive-
Bayes [31], KNN [32], J48 [33], RandomForest [34], RandomTree [35], and Adaboost [36].
Figure 14a shows the comparison between traditional ML algorithms and CNN and SCNN
models. Additionally, the SCNN model is the best, with 96.35%. Obviously, the CNN
model has great potential for detecting UAV anomalies, and it can accurately learn fea-
tures from data. At the same time, the SCNN model based on separable convolution has
higher accuracy.

Figure 14. (a) Performance of the single model. (b) Performance of the TS-MSCNN and other models.

4.3. Multi-SCNN Fusion Model for Binary Classification

To enhance the accuracy of the UAV binary anomaly detection model, this paper
proposes a TS-MSCNN model that leverages the characteristics of UAV flight data. Table 4
presents the performance of CNN, SCNN, and TS-MSCNN models in terms of binary
classification. The TS-MSCNN model outperforms CNN and SCNN in all metrics. Further-
more, Figure 14b compares the TS-MSCNN model with other models, showing that the
TS-MSCNN model achieves superior accuracy to other comparison algorithms, with the
highest accuracy rate of 98.50%. The results demonstrate that the TS-MSCNN model effec-
tively extracts and fuses features from UAV flight data and accurately detects anomalies.

Table 4. The detailed performance of CNN, SCNN, and TS-MSCNN.

Model Accuracy Class Recall Precision F1-Score

CNN 95.40%
No_failure 99.50% 95.41% 97.41%

failure 67.56% 95.27% 79.06%

SCNN 96.35%
No_failure 98.35% 96.53% 97.43%

failure 76.06% 87.18% 81.24%

TS-MSCNN 98.50%
No_failure 99.24% 98.98% 99.11%

failure 93.06% 94.76% 93.91%

4.4. Single SCNN Model for Multiclass Classification

The objective of UAV anomaly detection is to identify UAV faults and prevent po-
tential losses. This paper conducts a multi-class anomaly detection experiment using the
ALFA dataset, which includes multiple classes of objects. The dataset contains four types
of abnormal flight data and one type of normal flight data. In this section, we implement a
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multi-classification experiment using a single-model SCNN and present the specific experi-
mental results in Table 5. The results show that, in the case of multi-classification, the SCNN
not only optimizes the convolution structure parameters and computational consumption
but also ensures the effectiveness of the model and accurately detects anomalies across
multiple classes.

Table 5. The accuracy of the single model.

Model Accuracy

CNN 93.10%
SCNN 94.68%

Furthermore, this paper also employs traditional ML methods, consistent with those
used above, to detect anomalies. Figure 15a presents the experimental results. Among
them, the SCNN model achieved the best performance, with 94.68%. These results indicate
that the SCNN model has advantages over traditional ML methods in processing high-
dimensional UAV data. Moreover, the OneR algorithm obtains the lowest accuracy rate, as
it only uses a specific feature in the training data as the classification basis.

Figure 15. (a) Performance of the single model. (b) Performance of the TS-MSCNN and other models.

4.5. Multi-SCNN Fusion Model for Multiclass Classification

In the case of multi-classification, it has been shown that the single-structure anomaly
detection model has limitations. To address this issue, this paper proposes using the feature
fusion method described above to enhance the accuracy of the convolution-based anomaly
detection model. The training and test sets used are consistent with those described above.
Table 6 presents the detailed performance of the CNN, SCNN, and TS-MSCNN models in
multi-classification. The TS-MSCNN model outperforms the CNN and SCNN models in
all metrics. Furthermore, Figure 15b shows a comparison between the TS-MSCNN model
and other models, where the TS-MSCNN model performs better than other comparison
algorithms with the highest accuracy rate being 97.99%.

In addition, this paper compares the anomaly detection results of multi-classification
and binary classification, as shown in Figure 16. It can be inferred that due to the more
detailed classification of anomaly types, there are significant differences among the data
types, which increases the challenge of model classification and leads to better experi-
mental results in binary classification than in multi-classification. For the TS-MSCNN
model, the results of the binary classification experiment are only 0.51 higher than those
of the multi-classification experiment, which further verifies the effectiveness of the pro-
posed TS-MSCNN model and demonstrates that it can accurately extract UAV flight data
characteristics in both multi-classification and binary classification scenarios.
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Table 6. The detailed performance of CNN, SCNN, and TS-MSCNN.

Model Accuracy Class Recall Precision F1-Score

CNN 93.10%

aileron_failure 94.33% 93.42% 93.87%
elevator_failure 77.11% 90.14% 83.12%
engine_failure 98.01% 96.19% 97.09%

no_failure 91.50% 93.59% 92.53%
rudder_failure 84.07% 88.95% 86.44%

SCNN 94.68%

aileron_failure 95.44% 93.50% 94.46%
elevator_failure 75.90% 86.90% 81.03%
engine_failure 97.91% 96.57% 97.24%
no_failure_failure 91.28% 92.10% 91.69%
rudder_failure 82.42% 90.91% 86.46%

TS-MSCNN 97.99%

aileron_failure 99.72% 96.39% 98.03%
elevator_failure 90.36% 94.94% 92.59%
engine_failure 98.98% 99.08% 99.03%

no_failure 96.20% 97.07% 96.63%
rudder_failure 91.76% 97.66% 94.62%

Figure 16. Comparison between the binary classification and the multiclass classification.

The research in [20] and [23] are similar to the research conducted in this paper. In
order to compare the experimental results, Table 7 is presented. It is important to note that
while [23] evaluates the area under the curve (AUC) of the receiver operating characteristic
curve (ROC), this section supplements the AUC results for multiple classifications. The
authors of [20] utilized a reduced version of the ALFA dataset, whereas [23] employed
the same full version of the ALFA dataset as used in this paper. The experimental model
proposed in this paper outperforms the other comparison algorithms. Overall, the experi-
mental results show that the TS-MSCNN model proposed in this paper has achieved the
desired purpose and is ready to be used for UAV flight anomaly detection.

Table 7. The accuracies of the TS-MSCNN and the other latest algorithm in multiclass classification.

Model
AUC

ACCAileron_Failure Elevator_Failure Engine_Failure Rudder_Failure

TS-MSCNN 99.75% 98.35% 99.77% 98.14% 97.99%
Autoencoder [23] 75.09% 80.76% 76.46% 93.21% /

Recursive Least Squares [20] / / / / 88.23%
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5. Conclusions

UAV flight anomaly detection is a common safety measure to ensure the safety of
UAV flights by identifying abnormal UAV flight data. However, the conventional anomaly
detection model neglects the difference in POS data used to evaluate UAV flight status in
the frequency domain, resulting in the loss of some crucial feature information that limits
the improvement of the UAV anomaly detection model’s accuracy. Therefore, without
considering the recoverable operation of UAV, this paper proposes a TS-MSCNN anomaly
detection model based on timestamp slice and the MSCNN. Firstly, by setting a specific
timestamp size, this paper extracts and fuses the frequency domain key features of POS
data and SS data in the UAV flight log time domain. Then, the POS data and SS data are
transformed into two-dimensional grayscale images to serve as the input data of the TS-
SCNN model through data reconstruction. Finally, the TS-SCNN model accurately learns
and fuses UAV grayscale image data features. The final experimental results demonstrate
that the TS-SCNN model outperforms the comparative algorithm in the experimental
results of binary classification and multi-classification, which validates the effectiveness of
the TS-SCNN model proposed in this paper.

The deep learning model used in anomaly detection has a high time complexity, and
UAVs typically have limited resources. Therefore, in future research, the authors of this
paper will investigate a lightweight UAV anomaly detection model, taking into account
both the timeliness of the anomaly detection model and the computational resources
required by the model. The goal is to develop an anomaly detection model that can meet
the resource constraints of UAV-embedded systems.
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