Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Four-Wavelength Non-Invasive Hemoglobin Testing System Design
2.1.1. Hardware System
2.1.2. Software Design for the Host Computer
2.2. Data Collection and Preprocessing
2.2.1. Data Collection
2.2.2. Data Preprocessing
2.3. PPG Signal Feature Extraction and Selection
2.3.1. Feature Extraction
2.3.2. Feature Selection
2.4. Hemoglobin Regression Model Selection
2.4.1. LR
2.4.2. SVR
2.4.3. XGBoost
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pintavirooj, C.; Ni, B.; Chatkobkool, C.; Pinijkij, K. Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare 2021, 9, 647. [Google Scholar] [CrossRef]
- Jensen, F.B.; Fago, A.; Weber, R.E. Hemoglobin structure and function. Fish Physiol. 1998, 17, 1–40. [Google Scholar]
- Pinto, C.; Parab, J.; Naik, G. Non-invasive hemoglobin measurement using embedded platform. Sens. Bio-Sens. Res. 2020, 29, 100370. [Google Scholar] [CrossRef]
- Munira, L.; Viwattanakulvanid, P. Influencing Factors and Knowledge Gaps on Anemia Prevention among Female Students in Indonesia. Int. J. Eval. Res. Educ. 2021, 10, 215–221. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Z.; Ward, R.; Menon, C.; Elgendi, M. Subject-Based Model for Reconstructing Arterial Blood Pressure from Photoplethysmogram. Bioengineering 2022, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T. Current progress of photoplethysmography and SPO2 for health monitoring. Biomed. Eng. Lett. 2019, 9, 21–36. [Google Scholar] [CrossRef]
- Kumar, A.; Komaragiri, R.; Kumar, M. A review on computation methods used in photoplethysmography signal analysis for heart rate estimation. Arch. Comput. Methods Eng. 2022, 29, 921–940. [Google Scholar]
- Touw, H.R.; Verheul, M.H.; Tuinman, P.R.; Smit, J.; Thone, D.; Schober, P.; Boer, C. Photoplethysmography respiratory rate monitoring in patients receiving procedural sedation and analgesia for upper gastrointestinal endoscopy. J. Clin. Monit. Comput. 2017, 31, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hajj, C.; Kyriacou, P.A. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed. Signal Process. Control 2020, 58, 101870. [Google Scholar] [CrossRef]
- Huttunen, R.; Leppanen, T.; Duce, B.; Oksenberg, A.; Myllymaa, S.; Toyras, J.; Korkalainen, H. Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography. Sleep 2021, 44, zsab142. [Google Scholar] [CrossRef] [PubMed]
- Sardana, H.; Dogra, N.; Kanawade, R. Dynamic time warping based arrhythmia detection using photoplethysmography signals. Signal Image Video Process. 2022, 16, 1925–1933. [Google Scholar]
- Kavsaoğlu, A.R.; Polat, K.; Hariharan, M. Non-invasive prediction of hemoglobin level using machine learning techniques with the PPG signal’s characteristics features. Appl. Soft Comput. 2015, 37, 983–991. [Google Scholar] [CrossRef]
- Acharya, S.; Swaminathan, D.; Das, S.; Kansara, K.; Chakraborty, S.; Kumar, D.; Francis, T.; Aatre, K.R. Non-invasive estimation of hemoglobin using a multi-model stacking regressor. IEEE J. Biomed. Health Inform. 2019, 24, 1717–1726. [Google Scholar] [CrossRef]
- Lakshmi, M.; Manimegalai, P.; Bhavani, S. Non-invasive haemoglobin measurement among pregnant women using photoplethysmography and machine learning. J. Phys. Conf. Ser. 2020, 1432, 012089. [Google Scholar] [CrossRef]
- Pinto, C.; Parab, J.; Sequeira, M.; Naik, G. Development of Altera NIOS II Soft-core system to predict total Hemoglobin using Multivariate Analysis. J. Phys. Conf. Ser. 2021, 1921, 012039. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Z.; Liu, G.; Elgendi, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Sci. Data 2018, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orphanidou, C. Quality Assessment for the Photoplethysmogram (PPG). In Signal Quality Assessment in Physiological Monitoring; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–63. [Google Scholar]
- Liang, Y.; Abbott, D.; Howard, N.; Lim, K.; Ward, R.; Elgendi, M. How effective is pulse arrival time for evaluating blood pressure? Challenges and recommendations from a study using the MIMIC database. J. Clin. Med. 2019, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Golap, M.A.u.; Raju, S.T.U.; Haque, M.R.; Hashem, M. Hemoglobin and glucose level estimation from PPG characteristics features of fingertip video using MGGP-based model. Biomed. Signal Process. Control 2021, 67, 102478. [Google Scholar] [CrossRef]
- Zhao, Z.; Morstatter, F.; Sharma, S.; Alelyani, S.; Anand, A.; Liu, H. Advancing Feature Selection Research–ASU Feature Selection Repository. 2010, pp. 1–28. Available online: https://www.researchgate.net/publication/305083748 (accessed on 15 January 2023).
- Zabor, E.C.; Reddy, C.A.; Tendulkar, R.D.; Patil, S. Logistic regression in clinical studies. Int. J. Radiat. Oncol. Biol. Phys. 2021, 271–277. [Google Scholar] [CrossRef]
- Smola, A.; Scholkopf, B. A Tutorial on Support Vector Regression: NeuroCOLT; Technical Report NC-TR-98-030; Royal Holloway College: London, UK, 1998. [Google Scholar]
- Huang, H.; Wei, X.; Zhou, Y. An overview on twin support vector regression. Neurocomputing 2022, 490, 80–92. [Google Scholar] [CrossRef]
- Li, Q.; Qin, Z.; Liu, Z. Uncertain support vector regression with imprecise observations. J. Intell. Fuzzy Syst. 2022, 43, 3403–3409. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 1189–1232. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, T.; Xia, M.; Liu, Y.; Wang, Y.; Wang, X.; Zhuang, L.; Zhong, D.; Zhu, J.; He, H.; et al. Predicting the prognosis of patients in the coronary care unit: A novel multi-category machine learning model using XGBoost. Front. Cardiovasc. Med. 2022, 9, 764629. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Das, D.; Udutalapally, V.; Talukder, A.K.; Misra, S. sHEMO: Smartphone spectroscopy for blood hemoglobin level monitoring in smart anemia-care. IEEE Sens. J. 2020, 21, 8520–8529. [Google Scholar] [CrossRef]
- Saracoglu, A.; Abdullayev, R.; Sakar, M.; Sacak, B.; Girgin Incekoy, F.; Aykac, Z. Continuous hemoglobin measurement during frontal advancement operations can improve patient outcomes. J. Clin. Monit. Comput. 2022, 36, 1689–1695. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, Y.; Zhai, H.; Wang, Q.; He, H. A Smartphone-Based Biosensor for Non-Invasive Monitoring of Total Hemoglobin Concentration in Humans with High Accuracy. Biosensors 2022, 12, 781. [Google Scholar] [CrossRef]
- Hardyanto, I.; Pambudi, S.; Suyarna, Y.; Ardidarma, A.; Kurniawan, A.; Iskandar, J.; Siskandar, R.; Jenie, R.P.; Alatas, H.; Irzaman. Non-invasive hemoglobin blood level measurement system. AIP Conf. Proc. 2021, 2320, 050005. [Google Scholar]
- Pinto, C.; Parab, J.; Parab, M.; Naik, G. Improving hemoglobin estimation accuracy through standardizing of light-emitting diode power. Int. J. Electr. Comput. Eng. 2022, 12, 219–228. [Google Scholar] [CrossRef]
Type | Location | Index | Formula | Descriptions |
---|---|---|---|---|
Amplitude | PPG | F1 | x | Height of systolic peak |
F2 | y | Height of diastolic peak | ||
F3 | z | Height of dicrotic notch | ||
Time Span | PPG | F4 | tpi | PPG cycle |
F9 | t1 | Systolic peak time | ||
F10 | t2 | Dicrotic notch time | ||
F11 | t3 | Diastolic peak time | ||
F12 | T | Time interval between systolic peak and diastolic peak | ||
F13 | t1/2 | Peak half-systolic peak time | ||
VPG | F21 | ta1 | Time from point d1 to point a1 | |
F22 | tb1 | Time from point d1 to point b1 | ||
F23 | tc1 | Time from point d1 to point c1 | ||
F24 | td1 | Time from d1 point to the next d1 point | ||
APG | F28 | ta2 | Time from point d2 to the next point a2 | |
F29 | tb2 | Time from point d2 to the next point b2 | ||
Area | PPG | F14 | A2/A1 | Inflection Point area ratio |
Ratio | PPG | F5 | y/x | The ratio of diastolic peak amplitude to systolic peak amplitude |
F6 | (x − y)/x | Alternative augmentation index [19] | ||
F7 | z/x | The ratio of dicrotic notch amplitude to systolic peak amplitude | ||
F8 | (y − x)/x | Negative relative augmentation index [19] | ||
F15 | t1/x | The ratio of systolic peak time to systolic peak amplitude | ||
F16 | y/(tpi − t3) | Diastolic peak downward curve [19] | ||
F17 | t1/tpi | Ratio of systolic peak time to PPG cycle | ||
F18 | t2/tpi | Ratio of dicrotic notch time to PPG cycle | ||
F19 | t3/tpi | Ratio of diastolic peak time to PPG cycle | ||
F20 | T/tpi | Ratio of T to PPG cycle | ||
F40 | V2/V1 | Stress-induced vascular response index [19] | ||
VPG | F30 | ta1/tpi | Ratio of ta1 to PPG cycle | |
F31 | tb1/tpi | Ratio of tb1 to PPG cycle | ||
F32 | tc1/tpi | Ratio of tc1 to PPG cycle | ||
F33 | td1/tpi | Ratio of td1 to PPG cycle | ||
APG | F34 | ta2/tpi | Ratio of ta2 to PPG cycle | |
F35 | tb2/tpi | Ratio of tb2 to PPG cycle | ||
F36 | (ta1 + ta2)/tpi | Ratio of (ta1 + ta2) to PPG cycle | ||
F37 | (tb1 + tb2)/tpi | Ratio of (tb1 + tb2) to PPG cycle | ||
F38 | (tc1 + t2)/tpi | Ratio of (tc1 + t2) to PPG cycle | ||
F39 | (td1 + t3)/tpi | Ratio of (td1 + t3) to PPG cycle | ||
F25 | b2/a2 | Ratio of b2 to a2 | ||
F26 | c2/a2 | Ratio of c2 to a2 | ||
F27 | (b2 + c2)/a2 | Ratio of (b2 + c2) to a2 |
Feature Selection Methods | Number of Features | Regression Models | RMSE | MAE | |
---|---|---|---|---|---|
InfoGain | 10 | LR | 12.756 | 0.288 | 9.663 |
SVR | 10.083 | 0.555 | 7.594 | ||
XGBoost | 2.588 | 0.970 | 1.410 | ||
20 | LR | 11.968 | 0.373 | 9.114 | |
SVR | 8.677 | 0.670 | 6.547 | ||
XGBoost | 2.594 | 0.970 | 1.440 | ||
30 | LR | 11.530 | 0.418 | 8.740 | |
SVR | 7.252 | 0.769 | 5.450 | ||
XGBoost | 2.495 | 0.972 | 1.467 | ||
reliefF | 10 | LR | 14.955 | 0.021 | 7.421 |
SVR | 11.812 | 0.389 | 8.956 | ||
XGBoost | 10.669 | 0.501 | 13.406 | ||
20 | LR | 11.704 | 0.400 | 9.179 | |
SVR | 7.902 | 0.726 | 5.864 | ||
XGBoost | 2.665 | 0.968 | 1.413 | ||
30 | LR | 9.201 | 0.629 | 6.810 | |
SVR | 5.567 | 0.864 | 4.305 | ||
XGBoost | 1.960 | 0.983 | 1.091 | ||
Chi-square | 10 | LR | 14.561 | 0.072 | 12.129 |
SVR | 12.750 | 0.288 | 9.899 | ||
XGBoost | 12.168 | 0.352 | 9.040 | ||
20 | LR | 11.640 | 0.407 | 9.060 | |
SVR | 7.959 | 0.722 | 5.946 | ||
XGBoost | 2.446 | 0.973 | 1.459 | ||
30 | LR | 10.614 | 0.507 | 8.256 | |
SVR | 4.776 | 0.900 | 3.870 | ||
XGBoost | 0.762 | 0.997 | 0.325 |
Method | Features | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chi-square | 3F11 | 2F11 | 1F11 | 4F11 | 3F10 | 3F9 | 3F13 | 3F12 | 2F10 | 1F10 |
1F9 | 1F13 | 2F12 | 2F9 | 2F13 | 3F21 | 3F5 | 3F8 | 3F6 | 3F27 | |
4F6 | 4F5 | 4F8 | 4F10 | 1F12 | 3F22 | 1F6 | 1F5 | 1F8 | 4F9 |
References | Methodology | Wavelength | Algorithm | Subjects | RMSE | |
---|---|---|---|---|---|---|
Our study | PPG | 660 nm, 730 nm, 850 nm, 940 nm | XGBoost | 58 | 0.997 | 0.762 |
Ghosal et al. [28] | Smartphone + the RGB spectrum | - | FANIAD | 65 | Left Eye: 0.8774 Right Eye: 0.8144 | - |
Saracoglu et al. [29] | Radical-7 Pulse CO-Oximeter | - | - | 42 | - | - |
Fan et al. [30] | Smartphone +PPG | 660 nm, 810 nm, 900 nm, 970 nm, 1050 nm | Multiple linear regressor | 24 | 0.88 | 9.04 |
Hardyanto et al. [31] | PPG | 660 nm, 940 nm | Linear regression | 9 | - | - |
Pinto et al. [32] | PPG | 670 nm, 770 nm, 810 nm, 850 nm, 950 nm | Linear regression | 15 | 0.981 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Qin, H.; Ge, W.; Li, S.; Liang, Y. Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography. Electronics 2023, 12, 1346. https://doi.org/10.3390/electronics12061346
Chen Z, Qin H, Ge W, Li S, Liang Y. Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography. Electronics. 2023; 12(6):1346. https://doi.org/10.3390/electronics12061346
Chicago/Turabian StyleChen, Zhencheng, Huishan Qin, Wenjun Ge, Shiyong Li, and Yongbo Liang. 2023. "Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography" Electronics 12, no. 6: 1346. https://doi.org/10.3390/electronics12061346
APA StyleChen, Z., Qin, H., Ge, W., Li, S., & Liang, Y. (2023). Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography. Electronics, 12(6), 1346. https://doi.org/10.3390/electronics12061346