Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health
Abstract
:1. Introduction
1.1. Presentation and Literature Review
1.2. Research Objectives
2. Materials and Methods
2.1. Participants
2.2. Research Variables
2.3. Research Instrument
2.4. Statistical Analysis
3. Results
4. Discussion
- To carry out an analogous study seeking homogeneous distributions by areas of knowledge and university tenure, in order to contrast the results obtained here;
- To extend the study by incorporating diverse areas of knowledge, with the aim of obtaining a more general overview of the influence of the area of knowledge on the behavior of the gaps by university tenure analyzed;
- Quantitatively analyze the influence of the age of the participants on the assessments given on the VR, both in the areas of knowledge analyzed and in other areas of knowledge;
- To extend the analysis to other regions, in order to study the dependence of the results on the geographic variable;
- To complete the results obtained here with a qualitative analysis that will allow us to identify the underlying reasons for the gaps identified.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishna, F.; Milne, E.; Bogo, M.; Pereira, L.F. Responding to COVID-19: New trends in social workers’ use of information and communication technology. Clin. Soc. Work. J. 2021, 49, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.; Hwang, Y. Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Comput. Hum. Behav. 2015, 51, 418–428. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Fernández-Arias, P.; Vergara-Rodríguez, D. Impact of the covid-19 pandemic on the use of ICT tools in science and technology education. J. Sci. Educ. Technol. 2023, 13, 130–158. [Google Scholar] [CrossRef]
- Vergara-Rodríguez, D.; Antón-Sancho, Á.; Fernández-Arias, P. Variables Influencing Professors’ Adaptation to Digital Learning Environments during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 3732. [Google Scholar] [CrossRef]
- Shin, D.H. The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telemat. Inform. 2017, 34, 1826–1836. [Google Scholar] [CrossRef]
- Wohlgenannt, I.; Simons, A.; Stieglitz, S. Virtual reality. Bus. Inf. Syst. Eng. 2020, 62, 455–461. [Google Scholar] [CrossRef]
- Riva, G. Virtual reality in psychotherapy. CyberPsychol. Behav. 2005, 8, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Cheok, A.D.; Yang, H.; Zhu, J.; Shi, J. Virtual reality and mixed reality for virtual learning environments. Comput. Graph. 2006, 30, 20–28. [Google Scholar] [CrossRef]
- Jonathan, N.T.; Bachri, M.R.; Wijaya, E.; Ramdhan, D.; Chowanda, A. The efficacy of virtual reality exposure therapy (VRET) with extra intervention for treating PTSD symptoms. Procedia Comput. Sci. 2023, 216, 252–259. [Google Scholar] [CrossRef]
- Zheng, J.M.; Chan, K.W.; Gibson, I. Virtual reality. IEEE Potentials 1998, 17, 20–23. [Google Scholar] [CrossRef]
- Zhao, Q. A survey on virtual reality. Sci. China Inf. Sci. 2009, 52, 348–400. [Google Scholar] [CrossRef]
- Kolbe, L.; Jaywant, A.; Gupta, A.; Vanderlind, W.M.; Jabbour, G. Use of virtual reality in the inpatient rehabilitation of COVID-19 patients. Gen. Hosp. Psych. 2021, 71, 76–81. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Kataria, R.; Tyagi, M.; Haleem, A.; Suman, R. Significant applications of virtual reality for COVID-19 pandemic. Diabetes Metab. Res. Rev. 2020, 14, 661–664. [Google Scholar] [CrossRef]
- Tran, Q.H.; Nguyen, T.M. Determinants in student satisfaction with online learning: A survey study of second-year students at private universities in HCMC. TESOL Int. J. 2022, 2, 63–80. [Google Scholar] [CrossRef]
- Elshami, W.; Taha, M.H.; Abuzaid, M.; Saravanan, C.; Al Kawas, S.; Abdalla, M.E. Satisfaction with online learning in the new normal: Perspective of students and faculty at medical and health sciences colleges. Med. Educ. Online 2021, 26, 1920090. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S. Management challenges in chronic obstructive pulmonary disease in the COVID-19 pandemic: Telehealth and virtual reality. J. Clin. Med. 2021, 10, 1261. [Google Scholar] [CrossRef]
- Hatta, M.H.; Sidi, H.; Siew Koon, C.; Che Roos, N.A.; Sharip, S.; Abdul Samad, F.D.; Mohamed Saini, S. Virtual reality (VR) technology for treatment of mental health problems during COVID-19: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 5389. [Google Scholar] [CrossRef] [PubMed]
- Di Lanzo, J.A.; Valentine, A.; Sohel, F.; Yapp, A.Y.; Muparadzi, K.C.; Abdelmalek, M. A review of the uses of virtual reality in engineering education. Comput. Appl. Eng. Educ. 2020, 28, 748–763. [Google Scholar] [CrossRef]
- Pantelidis, V.S. Virtual reality and engineering education. Comput. Appl. Eng. Educ. 1997, 5, 3–12. [Google Scholar] [CrossRef]
- Duffy, V.G.; Salvendy, G. Concurrent engineering and virtual reality for human resource planning. Comput. Ind. 2000, 42, 109–125. [Google Scholar] [CrossRef]
- Jayaram, S.; Connacher, H.I.; Lyons, K.W. Virtual assembly using virtual reality techniques. Comput. Aided Des. 1997, 29, 575–584. [Google Scholar] [CrossRef]
- McCloy, R.; Stone, R. Virtual reality in surgery. Br. Med. J. 2001, 323, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Székely, G.; Satava, R.M. Virtual reality in medicine. Br. Med. J. 1999, 319, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satava, R.M. Medical applications of virtual reality. J. Med. Syst. 1995, 19, 275–280. [Google Scholar] [CrossRef]
- Soliman, M.; Pesyridis, A.; Dalaymani-Zad, D.; Gronfula, M.; Kourmpetis, M. The application of virtual reality in engineering education. Appl. Sci. 2021, 11, 2879. [Google Scholar] [CrossRef]
- Kraus, N.; Marchenko, O. Innovative-digital entrepreneurship as key link of Industry X. 0 formation in the conditions of virtual reality. Balt. J. Econ. Stud. 2021, 7, 47–56. [Google Scholar] [CrossRef]
- Vergara, D.; Fernández-Arias, P.; Extremera, J.; Dávila, L.P.; Rubio, M.P. Educational trends post COVID-19 in engineering: Virtual laboratories. Mater. Today Proc. 2022, 49, 155–160. [Google Scholar] [CrossRef]
- Try, S.; Panuwatwanich, K.; Tanapornraweekit, G.; Kaewmoracharoen, M. Virtual reality application to aid civil engineering laboratory course: A multicriteria comparative study. Comput. Appl. Eng. Educ. 2021, 29, 1771–1792. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Timm, B.W.; Kamat, V.R. General-purpose modular hardware and software framework for mobile outdoor augmented reality applications in engineering. Adv. Eng. Inform. 2008, 22, 90–105. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 2013, 572, 582–585. [Google Scholar] [CrossRef]
- Vergara, D.; Antón-Sancho, Á.; Dávila, L.P.; Fernández-Arias, P. Virtual reality as a didactic resource from the perspective of engineering teachers. Comput. Appl. Eng. Educ. 2022, 30, 1086–1101. [Google Scholar] [CrossRef]
- Ahmed, S. A review on using opportunities of augmented reality and virtual reality in construction project management. Organ. Technol. Manag. Constr. 2018, 10, 1839–1852. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.T.; Pedro, A.; Park, C.S. A social virtual reality based construction safety education system for experiential learning. J. Intell. Robot. Syst. 2015, 79, 487–506. [Google Scholar] [CrossRef]
- Getuli, V.; Capone, P.; Bruttini, A.; Isaac, S. BIM-based immersive Virtual Reality for construction workspace planning: A safety-oriented approach. Autom. Constr. 2020, 114, 103160. [Google Scholar] [CrossRef]
- Mujber, T.S.; Szecsi, T.; Hashmi, M.S. Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 2004, 155, 1834–1838. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Woksepp, S.; Olofsson, T. Credibility and applicability of virtual reality models in design and construction. Adv. Eng. Inform. 2008, 22, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Kaleja, P.; Kozlovská, M. Virtual Reality as Innovative Approach to the Interior Designing. SSP J. Civil Eng. 2017, 12, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Sumdani, H.; Aguilar-Salinas, P.; Avila, M.J.; Barber, S.R.; Dumont, T. Utility of augmented reality and virtual reality in spine surgery: A systematic review of the literature. World Neurosurg. 2022, 161, 8–17. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Kassem, M.A.; Li, H.; Hua, B. Application of VR technology in civil engineering education. Comput. Appl. Eng. Educ. 2022, 30, 335–348. [Google Scholar] [CrossRef]
- Huang, W.; Roscoe, R.D. Head-mounted display-based virtual reality systems in engineering education: A review of recent research. Comput. Appl. Eng. Educ. 2021, 29, 1420–1435. [Google Scholar] [CrossRef]
- Berni, A.; Borgianni, Y. Applications of virtual reality in engineering and product design: Why, what, how, when and where. Electronics 2020, 9, 1064. [Google Scholar] [CrossRef]
- Wolfartsberger, J. Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 2019, 104, 27–37. [Google Scholar] [CrossRef]
- Riva, G. Virtual reality for health care: The status of research. Cyberpsychol. Behav. Soc. Netw. 2002, 5, 219–225. [Google Scholar] [CrossRef]
- Ruthenbeck, G.S.; Reynolds, K.J. Virtual reality for medical training: The state-of-the-art. J. Simul. 2015, 9, 16–26. [Google Scholar] [CrossRef]
- Hao, J.; Pu, Y.; Chen, Z.; Siu, K.C. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2023, 32, 106960. [Google Scholar] [CrossRef]
- Knight, R.G.; Titov, N. Use of virtual reality tasks to assess prospective memory: Applicability and evidence. Brain Impair. 2009, 10, 3–13. [Google Scholar] [CrossRef]
- Smits, M.; Staal, J.B.; Van Goor, H. Could Virtual Reality play a role in the rehabilitation after COVID-19 infection? BMJ Open Sport Exerc. Med. 2020, 6, e000943. [Google Scholar] [CrossRef]
- Jo, H.J.; Jung, Y.H.; Hong, Y.J.; Shin, Y.B.; Baek, K.D.; Kim, E.; Kim, J.J. The applicability of virtual reality-based training for controlling anger in aggressive individuals. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Mabrey, J.D.; Reinig, K.D.; Cannon, W.D. Virtual reality in orthopaedics: Is it a reality? Clin. Orthop. Relat. Res. 2010, 468, 2586–2591. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Ryder, L.; Chen, Y. Using interactive virtual reality tools in an advanced Chinese language class: A case study. TechTrends 2019, 63, 251–259. [Google Scholar] [CrossRef]
- Southgate, E.; Smith, S.P.; Cividino, C.; Saxby, S.; Kilham, J.; Eather, G.; Bergin, C. Embedding immersive virtual reality in classrooms: Ethical, organisational and educational lessons in bridging research and practice. Int. J. Child. Comput. Interact. 2019, 19, 19–29. [Google Scholar] [CrossRef]
- Sorensen, C.; Donovan, J. An examination of factors that impact the retention of online students at a for-profit university. Online Learn. J. 2017, 21, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y. Use of virtual reality technology in animation course teaching. Int. J. Emerg. Technol. 2021, 16, 191–208. [Google Scholar] [CrossRef]
- Adedoyin, O.B.; Soykan, E. COVID-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ. 2020, 1–13. [Google Scholar] [CrossRef]
- Tsekhmister, Y.; Konovalova, T.; Tsekhmister, B.; Agrawal, A.; Ghosh, D. Evaluation of virtual reality technology and online teaching system for medical students in Ukraine during COVID-19 Pandemic. Int. J. Emerg. Technol. 2021, 16, 127–139. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Fernández-Arias, P.; Vergara, D. Virtual Reality in Health Science Education: Professors’ Perceptions. Multimodal Technol. Interact. 2022, 6, 110. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Vergara, D.; Fernández-Arias, P.; Ariza-Echeverri, E.A. Didactic use of virtual reality in Colombian universities: Professors’ perspective. Multimodal Technol. Interact. 2022, 6, 38. [Google Scholar] [CrossRef]
- Krumsvik, R.J. Aprendizaje situado y competencia digital docente. Educ. Inf. Technol. 2008, 13, 279–290. [Google Scholar] [CrossRef]
- Johannesen, M.; Øgrim, L.; Giæver, T.H. Notion in motion: Teachers’ digital competence. Nord. J. Digit. Lit. 2014, 9, 300–312. [Google Scholar] [CrossRef]
- Røkenes, F.M.; Krumsvik, R.J. Development of student teachers’ digital competence in teacher education-A literature review. Nord. J. Digit. Lit. 2014, 9, 250–280. [Google Scholar] [CrossRef]
- Pettersson, F. On the issues of digital competence in educational contexts—A review of literature. Educ. Inf. Technol. 2018, 23, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Instefjord, E.J.; Munthe, E. Educating digitally competent teachers: A study of integration of professional digital competence in teacher education. Teach. Teach. Educ. 2017, 67, 37–45. [Google Scholar] [CrossRef]
- Krpálek, P.; Berková, K.; Kubišová, A.; Krelová, K.K.; Frendlovská, D.; Spiesová, D. Formation of professional competences and soft skills of public administration employees for sustainable professional development. Sustainability 2021, 13, 5533. [Google Scholar] [CrossRef]
- Bendeck Soto, J.; Toro Ocampo, D.; Beltrán Colon, L.; Oropesa, A.V. Perceptions of ImmerseMe virtual reality platform to improve English communicative skills in higher education. Int. J. Interact. Mob. Technol. 2020, 14, 4–19. [Google Scholar] [CrossRef]
- Rasimah, C.M.Y.; Ahmad, A.; Zaman, H.B. Evaluation of user acceptance of mixed reality technology, Australas. J. Educ. Technol. 2011, 27, 1369–1387. [Google Scholar] [CrossRef]
- Naidu, P.; Derani, N.E.S. A comparative study on quality of education received by students of private universities versus public universities. Procedia Econ. Finance 2016, 35, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Jabbouri, N.I.; Siron, R.; Zahari, I.; Khalid, M. Impact of information technology infrastructure on innovation performance: An empirical study on private universities in Iraq. Procedia Econ. Finance 2016, 39, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Vergara, D.; Antón-Sancho, Á.; Fernández-Arias, P. Player profiles for game-based applications in engineering education. Comput. Appl. Eng. Educ. 2023, 31, 154–175. [Google Scholar] [CrossRef]
Factor | Cronbach’s Alpha | CR |
---|---|---|
Digital skills | 0.7108 | 0.7001 |
Technical aspects | 0.8352 | 0.8193 |
Usability of VR | 0.7723 | 0.7212 |
Disadvantages of VR | 0.7607 | 0.7208 |
Future projection | 0.7339 | 0.7223 |
Didactic aspects | 0.8320 | 0.8107 |
Factor | Mean (Out of 5) Health Sciences | Mean (Out of 5) Engineering | t-Statistic | p-Value |
---|---|---|---|---|
Digital skills | 2.77 | 2.74 | 0.59 | 0.5539 |
Technical aspects | 3.88 | 4.18 | –6.77 | <0.0001 * |
Usability of VR | 4.15 | 4.26 | –2.76 | 0.0059 * |
Disadvantages of VR | 3.58 | 3.57 | 0.12 | 0.9019 |
Future projection | 3.96 | 3.85 | 1.94 | 0.0527 |
Didactic aspects | 4.11 | 4.15 | –1.12 | 0.2610 |
Factor | Std. Deviation (Out of 5) Health Sciences | Std. Deviation (Out of 5) Engineering | Levene F | p-Value |
---|---|---|---|---|
Digital skills | 1.18 | 1.27 | 12.35 | 0.0005 * |
Technical aspects | 1.03 | 0.87 | 27.02 | <0.0001 * |
Usability of VR | 0.86 | 0.90 | 12.02 | 0.0005 * |
Disadvantages of VR | 1.32 | 1.24 | 26.77 | <0.0001 * |
Future projection | 0.93 | 1.05 | 12.70 | 0.0004 * |
Didactic aspects | 1.02 | 1.01 | 13.20 | 0.0003 * |
Competence | Technical | Usability | Disadvantages | Future | Didactic | |
---|---|---|---|---|---|---|
Competence | 1 | –0.0918 | 0.1986 * | 0.0770 | 0.0321 | 0.1603 * |
Technical | 1 | 0.5565 * | 0.0439 | 0.2804 * | 0.3045 * | |
Usability | 1 | 0.1338 * | 0.3847 * | 0.3438 | ||
Disadvantages | 1 | 0.0173 | –0.2689 * | |||
Future | 1 | 0.2146 | ||||
Didactic | 1 |
Competence | Technical | Usability | Disadvantages | Future | Didactic | |
---|---|---|---|---|---|---|
Competence | 1 | –0.0250 | 0.1181 * | 0.1554 * | 0.1785 * | –0.0808 |
Technical | 1 | 0.2500 * | 0.0501 | 0.2574 * | 0.0293 | |
Usability | 1 | 0.1980 * | 0.2854 * | 0.0951 | ||
Disadvantages | 1 | 0.1018 * | –0.3080 * | |||
Future | 1 | 0.0077 | ||||
Didactic | 1 |
Health | Engineering | MANOVA F | p-Value | |||
---|---|---|---|---|---|---|
Private | Public | Private | Public | |||
Competence | 2.85 | 2.71 | 2.71 | 2.75 | 2.17 | 0.1412 |
Technical | 3.91 | 3.85 | 4.22 | 4.15 | 0.03 | 0.8526 |
Usability | 4.26 | 4.07 | 4.52 | 4.08 | 9.17 | 0.0025 * |
Disadvantages | 3.63 | 3.54 | 3.70 | 3.49 | 1.87 | 0.1716 |
Future | 3.89 | 4.02 | 3.87 | 3.84 | 1.86 | 0.1726 |
Didactic | 4.30 | 3.97 | 4.21 | 4.11 | 11.45 | 0.0007 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Arias, P.; Antón-Sancho, Á.; Sánchez-Jiménez, M.; Vergara, D. Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics 2023, 12, 1366. https://doi.org/10.3390/electronics12061366
Fernández-Arias P, Antón-Sancho Á, Sánchez-Jiménez M, Vergara D. Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics. 2023; 12(6):1366. https://doi.org/10.3390/electronics12061366
Chicago/Turabian StyleFernández-Arias, Pablo, Álvaro Antón-Sancho, María Sánchez-Jiménez, and Diego Vergara. 2023. "Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health" Electronics 12, no. 6: 1366. https://doi.org/10.3390/electronics12061366
APA StyleFernández-Arias, P., Antón-Sancho, Á., Sánchez-Jiménez, M., & Vergara, D. (2023). Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics, 12(6), 1366. https://doi.org/10.3390/electronics12061366