A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology
Abstract
:1. Introduction
- To design a blockchain-based data privacy preservation model with a hybrid meta-heuristic algorithm over the supply chain network to secure information exchange and guarantee the privacy of data access in the Ethereum platform. Here, the performance improvement of the proposed model is applicable to different applications regarding cryptocurrency, food supply chains, and sealed-bid auctions.
- To generate the key with the help of developed ABC-ROA for exchanging the secured data in the supply chain framework using data restoration and data sanitization procedures in the Ethereum environment. The developed ABC-ROA algorithm is utilized to restore the data from the receiver side. Consequently, it helps to access the original data that can be generated from the original key.
- To implement the hybrid meta-heuristic algorithm known as ABC-ROA for choosing the best optimal key to maximize the performance of the developed blockchain-based privacy preservation model. Here, the designed ABC-ROA algorithm improves the system’s robustness. It is also used to solve complex issues.
- To compare the developed ABC-ROA-based privacy preservation system with existing meta-heuristic algorithms using a variety of metrics to verify the performance of the developed model.
2. Literature Survey
2.1. Related Works
2.2. Statement of Problem
3. Privacy Preservation of Supply Chain Management Data: New Meta-Heuristic with Ethereum Blockchain
3.1. Data Used for Privacy Preservation
3.2. SCM Privacy Preservation Framework
4. Supply Chain Network Creation and Privacy Preservation Steps Handled
4.1. Supply Chain Networks
4.2. Data Sanitization and Data Restoration
5. Adaptive Border Collie Rain Optimization Algorithm with Ethereum Blockchain for SCM Data Privacy Preservation
5.1. Optimal Key Generation
5.2. Objective Function
5.3. Ethereum Blockchain Technology
5.4. Proposed ABC-ROA
Algorithm 1: Developed ABC-ROA |
Initialize the population and acceleration value |
Find the fitness solution |
Calculate the velocity Using Equation (29). |
For |
For |
If |
Assign the value of |
Else |
Assign the value of |
End if |
If |
Select the radius of the raindrop using Equation (50). |
Update the solution with the ROA algorithm using Equation (51). |
Else |
Update the solution with the BCO algorithm using Equation (38). |
Determine the best fitness of the sheep |
Update the velocity of the sheep in the BCO algorithm |
Evaluate the sheep’s position |
Update the position of the sheep using Equation (32). |
End if |
End |
End |
Obtain the best position |
End |
6. Results and Discussion
6.1. Simulation Setting
6.2. Effectiveness Analysis Using Euclidean Distance
6.3. Performance Analysis Using the Harmonic Mean
6.4. Effectiveness Analysis Using the Arithmetic Mean
6.5. Cost Function Analysis on the Proposed Model
6.6. Effectiveness Analysis Using Key Sensitivity
6.7. Performance Analysis Using CPA and CCA
6.8. Statistical Analysis of the Designed Method
6.9. ANOVA Test for the Developed Data Privacy Preservation Model over the Ethereum Network
6.10. Validation of Control for Parameters of Different Algorithms Using the Designed Method
7. Security Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incentive. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2438–2455. [Google Scholar] [CrossRef]
- Tahir, S.; Tahir, H.; Sajjad, A.; Rajarajan, M.; Khan, F. Privacy-preserving COVID-19 contact tracing using blockchain. J. Commun. Netw. 2021, 23, 360–373. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Chen, H.; Wang, X.; Zhang, Q.; Chen, Y.; Wang, H.; Lam, K.-Y. ZkRep: A Privacy-Preserving Scheme for Reputation-Based Blockchain System. IEEE Internet Things J. 2021, 9, 4330–4342. [Google Scholar] [CrossRef]
- Wu, G.; Wang, S.; Ning, Z.; Zhu, B. Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-Based Smart Healthcare System. IEEE J. Biomed. Health Inform. 2021, 26, 1917–1927. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, J.; Long, C.; Liang, W.; Lin, Y.-B. Blockchain-Enabled Multiparty Computation for Privacy Preserving and Public Audit in Industrial IoT. IEEE Trans. Ind. Inform. 2022, 18, 9259–9267. [Google Scholar] [CrossRef]
- Du, R.; Ma, C.; Li, M. Privacy-Preserving Searchable Encryption Scheme Based on Public and Private Blockchains. Tsinghua Sci. Technol. 2023, 28, 13–26. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H. Privacy-Preserving Transactive Energy Management for IoT-Aided Smart Homes via Blockchain. IEEE Internet Things J. 2021, 8, 11463–11475. [Google Scholar] [CrossRef]
- Tran, Q.N.; Turnbull, B.P.; Wu, H.-T.; de Silva, A.J.S.; Kormusheva, K.; Hu, J. A Survey on Privacy-Preserving Blockchain Systems (PPBS) and a Novel PPBS-Based Framework for Smart Agriculture. IEEE Open J. Comput. Soc. 2021, 2, 72–84. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, L.; Wu, J.; Long, C.; Li, B. A Blockchain-Based Multidomain Authentication Scheme for Conditional Privacy Preserving in Vehicular Ad-Hoc Network. IEEE Internet Things J. 2021, 9, 8078–8090. [Google Scholar] [CrossRef]
- Baza, M.; Sherif, A.; Mahmoud, M.M.E.A.; Bakiras, S.; Alasmary, W.; Abdallah, M.; Lin, X. Privacy-Preserving Blockchain-Based Energy Trading Schemes for Electric Vehicles. IEEE Trans. Veh. Technol. 2021, 70, 9369–9384. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, S.; Liu, Y.; Jiang, T.; Zhou, Y. Privacy-Preserving Scheme with Account-Mapping and Noise-Adding for Energy Trading Based on Consortium Blockchain. IEEE Trans. Netw. Serv. Manag. 2021, 19, 569–581. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, S.; Zhao, B.; Peng, Z. BPTM: Blockchain-Based Privacy-Preserving Task Matching in Crowdsourcing. IEEE Access 2019, 7, 45605–45617. [Google Scholar] [CrossRef]
- Abdelsalam, H.A.; Srivastava, A.K.; Eldosouky, A. Blockchain-Based Privacy Preserving and Energy Saving Mechanism for Electricity Prosumers. IEEE Trans. Sustain. Energy 2021, 13, 302–314. [Google Scholar] [CrossRef]
- Zou, S.; Xi, J.; Xu, G.; Zhang, M.; Lu, Y. CrowdHB: A Decentralized Location Privacy-Preserving Crowdsensing System Based on a Hybrid Blockchain Network. IEEE Internet Things J. 2021, 9, 14803–14817. [Google Scholar] [CrossRef]
- Rahman, M.S.; Khalil, I.; Moustafa, N.; Kalapaaking, A.P.; Bouras, A. A Blockchain-Enabled Privacy-Preserving Verifiable Query Framework for Securing Cloud-Assisted Industrial Internet of Things Systems. IEEE Trans. Ind. Inform. 2021, 18, 5007–5017. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, L.; Xu, C.; Sharif, K. PRVB: Achieving Privacy-Preserving and Reliable Vehicular Crowdsensing via Blockchain Oracle. IEEE Trans. Veh. Technol. 2020, 70, 831–843. [Google Scholar] [CrossRef]
- Chulerttiyawong, D.; Jamalipour, A. A Blockchain Assisted Vehicular Pseudonym Issuance and Management System for Conditional Privacy Enhancement. IEEE Access 2021, 9, 127305–127319. [Google Scholar] [CrossRef]
- Lin, C.; He, D.; Huang, X.; Xie, X.; Choo, K.-K.R. PPChain: A Privacy-Preserving Permissioned Blockchain Architecture for Cryptocurrency and Other Regulated Applications. IEEE Syst. J. 2021, 15, 4367–4378. [Google Scholar] [CrossRef]
- Rahmadika, S.; Astillo, P.V.; Choudhary, G.; Duguma, D.G.; Sharma, V.; You, I. Blockchain-Based Privacy Preservation Scheme for Misbehavior Detection in Lightweight IoMT Devices. IEEE J. Biomed. Health Inform. 2022, 27, 710–721. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, R.; Liu, J.; Huang, T.; Liu, Y.; Yu, F.R. A blockchain-based and privacy-preserved authentication scheme for inter-constellation collaboration in Space-Ground Integrated Networks. Comput. Netw. 2022, 206, 108793. [Google Scholar] [CrossRef]
- Singh, S.; Rathore, S.; Alfarraj, O.; Tolba, A.; Yoon, B. A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Futur. Gener. Comput. Syst. 2021, 129, 380–388. [Google Scholar] [CrossRef]
- Guo, L.; Xie, H.; Li, Y. Data encryption based blockchain and privacy preserving mechanisms towards big data. J. Vis. Commun. Image Represent. 2019, 70, 102741. [Google Scholar] [CrossRef]
- Mohan, D.; Alwin, L.; Neeraja, P.; Lawrence, K.D.; Pathari, V. A private Ethereum blockchain implementation for secure data handling in Internet of Medical Things. J. Reliab. Intell. Environ. 2021, 8, 379–396. [Google Scholar] [CrossRef]
- Elisa, N.; Yang, L.; Chao, F.; Cao, Y. A framework of blockchain-based secure and privacy-preserving E-government system. Wirel. Netw. 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dewangan, N.K.; Chandrakar, P.; Kumari, S.; Rodrigues, J.J. Enhanced privacy-preserving in student certificate management in blockchain and interplanetary file system. Multimedia Tools Appl. 2022, 1–20. [Google Scholar] [CrossRef]
- Abidi, M.H.; Alkhalefah, H.; Umer, U.; Mohammed, M.K. Blockchain-based secure information sharing for supply chain management: Optimization assisted data sanitization process. Int. J. Intell. Syst. 2020, 36, 260–290. [Google Scholar] [CrossRef]
- Dutta, T.; Bhattacharyya, S.; Dey, S.; Platos, J. Border Collie Optimization. IEEE Access 2020, 8, 109177–109197. [Google Scholar] [CrossRef]
- Moazzeni, A.R.; Khamehchi, E. Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions. J. Pet. Sci. Eng. 2020, 195, 107512. [Google Scholar] [CrossRef]
- Elgamal, Z.M.; Yasin, N.B.M.; Tubishat, M.; Alswaitti, M.; Mirjalili, S. An Improved Harris Hawks Optimization Algorithm with Simulated Annealing for Feature Selection in the Medical Field. IEEE Access 2020, 8, 186638–186652. [Google Scholar] [CrossRef]
- Hu, H.; Ao, Y.; Bai, Y.; Cheng, R.; Xu, T. An Improved Harris’s Hawks Optimization for SAR Target Recognition and Stock Market Index Prediction. IEEE Access 2020, 8, 65891–65910. [Google Scholar] [CrossRef]
Study | Techniques | Features | Disadvantages |
---|---|---|---|
Lin et al. [18] | PPChain |
|
|
Rahmadika et al. [19] | BiLSTM |
|
|
Xiong et al. [20] | SGINs |
|
|
Singh et al. [21] | Federated Learning |
|
|
Guo et al. [22] | Data encryption |
|
|
Mohan et al. [23] | Raspberry Pi network |
|
|
Elisa et al. [24] | peer-to-peer |
|
|
Dewangan et al. [25] | EdDSA |
|
|
Key Variations in the Percentage | HHO [29] | EF-HHO [30] | BCO [27] | ROA [28] | ABC-ROA |
---|---|---|---|---|---|
Dataset 1 | |||||
10 | 99.911 | 91.762 | 95.836 | 99.319 | 87.762 |
20 | 99.877 | 93.113 | 96.495 | 99.396 | 89.113 |
30 | 99.845 | 94.312 | 97.079 | 99.673 | 90.312 |
40 | 99.873 | 95.739 | 97.806 | 99.787 | 91.739 |
50 | 99.927 | 96.462 | 98.194 | 99.861 | 92.462 |
Dataset 2 | |||||
10 | 99.909 | 91.626 | 95.767 | 99.31 | 87.626 |
20 | 99.876 | 92.894 | 96.385 | 99.389 | 88.894 |
30 | 99.843 | 94.071 | 96.957 | 99.669 | 90.071 |
40 | 99.871 | 95.452 | 97.661 | 99.784 | 91.452 |
50 | 99.926 | 96.283 | 98.105 | 99.859 | 92.283 |
Dataset 3 | |||||
10 | 99.926 | 92.981 | 96.454 | 99.429 | 88.981 |
20 | 99.899 | 93.969 | 96.934 | 99.494 | 89.969 |
30 | 99.872 | 94.909 | 97.391 | 99.729 | 90.909 |
40 | 99.895 | 96.057 | 97.976 | 99.823 | 92.057 |
50 | 99.94 | 96.858 | 98.399 | 99.884 | 92.858 |
Key Variations in the Percentage | HHO [29] | EF-HHO [30] | BCO [27] | ROA [28] | ABC-ROA |
---|---|---|---|---|---|
Dataset 1 | |||||
10 | 58.784 | 52.465 | 55.624 | 58.236 | 43.465 |
20 | 62.388 | 59.351 | 60.87 | 61.866 | 50.351 |
30 | 65.623 | 63.651 | 64.637 | 65.13 | 54.651 |
40 | 68.534 | 65.454 | 66.994 | 68.075 | 56.454 |
50 | 71.114 | 65.723 | 68.418 | 70.684 | 56.723 |
Dataset 2 | |||||
10 | 57.875 | 49.222 | 53.548 | 57.313 | 40.222 |
20 | 61.469 | 55.313 | 58.391 | 60.935 | 46.313 |
30 | 64.722 | 60.534 | 62.628 | 64.219 | 51.534 |
40 | 67.695 | 63.39 | 65.542 | 67.223 | 54.39 |
50 | 70.332 | 64.698 | 67.515 | 69.891 | 55.698 |
Dataset 3 | |||||
10 | 68.646 | 61.093 | 64.87 | 68.191 | 52.093 |
20 | 71.919 | 66.26 | 69.089 | 71.501 | 57.26 |
30 | 74.772 | 70.154 | 72.463 | 74.389 | 61.154 |
40 | 77.269 | 72.702 | 74.986 | 76.918 | 63.702 |
50 | 79.448 | 74.553 | 77 | 79.127 | 65.553 |
Terms | HHO [29] | EF-HHO [30] | BCO [27] | ROA [28] | ABC-ROA |
---|---|---|---|---|---|
Dataset 1 | |||||
Best | 6.5506 | 5.5954 | 6.2903 | 5.8088 | 5.5696 |
Worst | 6.6609 | 6.6609 | 6.6609 | 6.6609 | 6.125 |
Mean | 6.5815 | 5.6644 | 6.3546 | 5.9459 | 5.6203 |
Median | 6.5506 | 5.5963 | 6.2927 | 5.8587 | 5.5836 |
Standard Deviation | 0.050579 | 0.21239 | 0.12052 | 0.18825 | 0.11126 |
Dataset 2 | |||||
Best | 6.5078 | 5.0281 | 6.2831 | 5.2618 | 4.8695 |
Worst | 6.6822 | 6.6822 | 6.6716 | 6.6822 | 5.7822 |
Mean | 6.5701 | 5.1008 | 6.3662 | 5.4352 | 4.9401 |
Median | 6.5303 | 5.0323 | 6.3072 | 5.3044 | 4.8807 |
Standard deviation | 0.071683 | 0.32951 | 0.11869 | 0.3084 | 0.18276 |
Dataset 3 | |||||
Best | 6.552 | 6.2897 | 6.5597 | 6.3459 | 6.2438 |
Worst | 6.7356 | 6.7356 | 6.7356 | 6.7356 | 6.5356 |
Mean | 6.6597 | 6.3163 | 6.625 | 6.4021 | 6.3077 |
Median | 6.6337 | 6.2905 | 6.6029 | 6.3933 | 6.2847 |
Standard deviation | 0.080236 | 0.088813 | 0.054733 | 0.082943 | 0.063698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viswanadham, Y.V.R.S.; Jayavel, K. A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics 2023, 12, 1404. https://doi.org/10.3390/electronics12061404
Viswanadham YVRS, Jayavel K. A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics. 2023; 12(6):1404. https://doi.org/10.3390/electronics12061404
Chicago/Turabian StyleViswanadham, Yedida Venkata Rama Subramanya, and Kayalvizhi Jayavel. 2023. "A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology" Electronics 12, no. 6: 1404. https://doi.org/10.3390/electronics12061404
APA StyleViswanadham, Y. V. R. S., & Jayavel, K. (2023). A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics, 12(6), 1404. https://doi.org/10.3390/electronics12061404