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Abstract: This paper proposes an energy management strategy for a series hybrid electric vehicle
based on driving pattern recognition, driving condition prediction, and model predictive control to
improve the fuel consumption while maintain the state of charge of the battery. To further improve the
computational efficiency, the discretization and linearization of the model is conducted, and the MPC
problem is transferred into a quadratic programming problem, which can be solved by the interior
point method effectively. The simulation is carried out by using Matlab/Simulink platform, and the
simulation results verify the feasibility of the condition prediction method and the performance of
the proposed method. In addition, the predictive control strategy successfully improves the fuel
economy of the hybrid vehicle compared with the rule-based method.

Keywords: pattern recognition; condition prediction; model predictive control; energy management
strategy; hybrid electric vehicles

1. Introduction

With the increasing interest and investment in the field of new energy in the world,
we have reason to believe that a revolution in vehicle technology is coming. Against
this background, many new energy vehicles have mushroomed. At present, the most
common and mature plug-in hybrid vehicles in the civil vehicle market are the Toyota
Prius and hybrid versions of various models. There are also plug-in pure electric vehicles.
Under the policy guidance, the demand for pure electric vehicles is increasing. In
addition, fuel cell vehicles can realize the vision of no fossil energy consumption and
zero emissions, which is also a hot research field for new energy vehicles. However,
the development direction of hybrid electric vehicles is more flexible because of the
characteristics of multiple energy sources. In hybrid electric vehicles, according to the
layout structure and output energy form of power components, they can be divided into
three types: series, parallel, and serial-parallel [1].

1.1. Literature Review

For series structure, the engine and generator are combined in series and connected in
parallel with the battery. The electric power is transferred to the motor through the bus
and then converted into mechanical energy, which is output to the driving wheel. This
connection mode has a relatively low occupancy of space, so the degree of freedom of space
layout is quite large. In addition, since the type of energy output to the motor is electrical
energy, the engine generator set is not mechanically connected with other components,
so the fluctuation of vehicle speed is all regulated by the motor, which can realize the

Electronics 2023, 12, 1418. https://doi.org/10.3390/ electronics12061418

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics12061418
https://doi.org/10.3390/electronics12061418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061418
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061418?type=check_update&version=1

Electronics 2023, 12, 1418

20f17

decoupling between the engine and the ground, and is conducive to the efficient work of
the engine [2].

For parallel structure, the engine is connected in parallel with the battery and the
motor. The mechanical power generated by the former and the power generated by the
latter need to be transferred to the coupling mechanism and then distributed to the driving
wheel, which leads to the engine not completely decoupled from the ground. When the
vehicle is driving in the hybrid mode, its working point is bound to be affected by the
speed change, and it cannot always be guaranteed to work in the efficient area. However,
this connection mode has a high energy utilization rate, and the power requirement of the
engine is not very high. The energy source outputs mechanical power and electrical power.

The feature of serial-parallel structure is that it includes both series and parallel
structures, so it also has the characteristics of both structures, which can more flexibly
combine the working modes of various energy sources. This structure is adopted by the
Toyota Prius.

This study is mainly aimed at series hybrid electric vehicles, as shown in Figure 1.
Additionally, the improvement of vehicle performance by good control strategies is mainly
reflected in the following aspects:

1.  Asacomplex power component, the performance of the engine in dynamic response
is often unsatisfactory. In addition to the characteristics of preheating before stable
operation, the battery output can be dominant when the vehicle is started. This is due
to the fast response of the battery and the characteristics of the motor-low speed and
large torque. Under this condition, the vehicle can start quickly and smoothly, the
acceleration performance is significantly improved, the power output is stable, and
the emission reduction of the vehicle is also significantly improved [3].

2. The service life of the engine will be correspondingly increased because it can avoid
the engine working in the inefficient area.

3. During braking and downhill deceleration, the braking energy can be recovered and

stored in the battery.
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Figure 1. Structure of the series hybrid electric vehicle.

For these reasons, for systems with multiple energy sources, the coordination of power
distribution among energy sources is crucial to fuel economy, driving performance and
emission reduction. Especially for the series non-plug hybrid electric vehicles, the battery
capacity is generally small, and the energy is mainly provided by the engine. The battery
plays the role of instantaneous supplement of insufficient power. Controlling the charging
and discharging of the battery is extremely important to maintain the health of the battery
and the energy utilization rate of the whole vehicle. The challenges of the current energy
management control strategy lie in the following aspects:
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1.  The system description of vehicles is often complex and nonlinear, which has
caused a huge obstacle to simulation modeling and control strategy design. How
to describe the system reasonably, reasonable simplification, and mathematical
processing are essential.

2. The conditions encountered by the vehicle during the driving process are changeable
and the speed of change is extremely fast, and the basis of energy management
decision-making is difficult to accurately determine.

3. The driving styles of drivers are different, and the terrain that vehicles encounter
at every moment is also changeable [4,5]. Therefore, in future research, vehicles
should be considered as a part of a larger system, and energy management should be
allocated in combination with various information.

Energy management strategies can be divided into two categories in terms of control
methods: rule-based control strategies and optimization-based control strategies, as shown
in Figure 2 [2,6-10].
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I
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Figure 2. Classification of EMS for HEV.
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At present, the most widely used and relatively mature strategy on hybrid electric
vehicles is the control strategy based on various rules [1]. Once this kind of control
strategy rule is formulated, real-time control can be realized through simple judg-
ment, and the efficiency and stability that can be exerted are very good. For instance,
Peng et al. proposed a rule-based energy management strategy for a series-parallel
plug-in hybrid electric bus, and a recalibration method is employed to improve the
performance of the rule-based method through the results calculated by the dynamic
programming (DP) algorithm [1]. However, its formulation requires high experi-
ence of designers and requires a lot of experimental support, so the design cycle
is very long. In addition, in view of the complexity of vehicle driving conditions,
it is difficult to fully cover these conditions by artificially set rules. Therefore, the
control effect is not very satisfactory, and there is still much room for optimization of
such strategies. Now, the control strategy based on optimization-based methods has
been applied more and more, and the optimal solution obtained is very convincing.
The optimization methods can be categorized into offline optimization and online
optimization. The offline optimization methods, such as DP, can obtain the best
solution theoretically [11,12]. However, its disadvantages are also obvious. When
solving the problem, it is necessary to know the driving conditions of the whole or
a long time in the future, and the calculation is large and time-consuming. Many



Electronics 2023, 12, 1418

40f17

people call it the “curse of dimensionality”. Therefore, the DP algorithm is suitable for
situations where the running track is known, fixed, and the traffic conditions are not
particularly complex, such as suburban buses or commuters [11-13]. In addition, due
to its good control effect, it is often used as a comparison to consider the advantages
and disadvantages of other control strategies. To realize the real-time optimization
while ensuring the computational efficiency, the online optimization based methods,
such as equivalent consumption minimization strategy (ECMS) and model predictive
control (MPC), are utilized for the energy management of the HEV [14,15].

The control method to be studied in this paper is Model Predictive Control (MPC). In
the process of energy management, this control not only takes into account the possible
operation state of the vehicle system in the future for a period of time, but also does not
have too much calculation, so it may be applied more in the field of online optimization.
However, in the past decade or so, such methods have only been applied in slow dynamic
processes. Recently, much effort has been applied for the application of the model predictive
control method in the automotive field [16,17]. For instance, Meng et al. proposed a
nonlinear extension of MPC charge control structure for lithium-ion batteries and an
extended Kalman filter is adopted for battery state estimation. Numerical validation with
real experimental data has shown that the e battery’s electrical constraints are respected
well during the whole process [18]. Xiang et al. developed a real time energy management
strategy for a hybrid electric vehicle where a speed predictor is developed with a neural
network structure [19]. Martin presented a model predictive control algorithm for energy
management in aircraft with hybrid electric propulsion system [20]. Moreover, the MPC
based methods has been already applied in the area of the energy management strategy for
the series hybrid electric vehicles, the architecture of which are the same with that of the
vehicle studied in this paper. For instance, Guo et al. proposed a real-time predictive energy
management strategy for a plug-in hybrid electric vehicle for the coordination control of
fuel economy and battery lifetime [21]. Wang et al. presented a MPC-based strategy for
a series hybrid electric tracked bulldozer. The main objective of the MPC algorithm is to
achieve optimal fuel economy by tracking the battery reference value [22].

Model predictive control is often applied to constrained optimization problems. Be-
cause of its characteristics of rolling optimization, the control actions in the future finite
time domain can be optimized at each sampling time, and a good planning can be carried
out [23,24]. However, only the first group of optimal solutions will be applied to the system,
instead of using all the control variables in the time domain. This is because the driving
state of the vehicle at the next sampling time will feed back to the control module, so
as to solve the optimal control quantity at the next time. After all, the control quantity
in the future time domain solved previously is obtained on the basis of the vehicle state
prediction, but there may be a large deviation between the predicted state and the actual
state of the vehicle. Such a mechanism reflects the ability of model predictive control feed-
back correction. This is just suitable for vehicle systems with complex prediction models
and inaccurate description, and it can also have a certain degree of resistance to external
interference. In addition, mastering the current and future driving status of the vehicle
is conducive to improving the predictive control effect of the model. This requires the
prediction of the future driving conditions of vehicles. The prediction methods currently
used include Markov chain model prediction and neural network prediction [25].

1.2. Motivation and Contribution

The above-mentioned methods have shown excellent performance improvement on
the energy management strategy of hybrid electric vehicles. However, for the future speed
prediction, they predict the future speed of the vehicle only based on the past and current
speed information with the utilization of different methods, such as Markov chain model or
neural networks, and the impact of different driving status on vehicle was not considered.
The speed varies significantly when the vehicle drives in an urban area, and the speed is
almost constant on the highway.
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To cover the gap, in this paper, a MPC-based energy management strategy with driv-
ing pattern recognition mechanism is proposed. The control process is shown in Figure 3.
By select a large number of cycle conditions, the paper extracts different characteristic
parameters and recognizes driving pattern by using the clustering method and Euclid-
ian distance to predict the future driving condition based on Markov chain model. By
combining MPC with multi-objective optimization function and converting it to quadratic
programming, the optimal control variables are solved by the interior point method, so as
to realize the control of engine operating points. Finally, the simulation results of control
strategy proves the effectiveness of the strategy.

( Start )

v

Driving pattern
recognition
Y Y
Driving condition )
g o1 Demanding Describe MPC
prediction elements —
: : problem
in a short horizon
Y
uadratic . .
prggramming P Build object
) function
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Control variables

!

System

Y

End

Figure 3. Control process of the method.

2. Driving Pattern Recognition and Speed Prediction

The condition recognition process is shown in Figure 4. Since the HEV will operate
in various scenarios, the sample data used to identify the vehicle conditions must contain
as comprehensive driving conditions as possible to ensure that the effectiveness of the
identification results is closer to the actual situation. This study selected up to 17 driving
cycle conditions, such as FTP, UDDSHDYV, and WVUINTER, to cover various working
conditions, such as cities, highways, and mountains.
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Figure 4. Flow chart of condition recognition.

It is crucial to consider if the choice of feature parameters is representative since
distinctive parameters of the working circumstances reflect cycling characteristics. The
optimal range of numbers for pattern recognition is 3 to 13, with the accuracy increasing
first and then decreasing as the number of distinctive factors grows [6].

Due to the possibility of repeated representation of the same feature between fea-
ture parameters, after calculating the correlations of parameters of each condition block,
three characteristic parameters, average speed, average acceleration, and parking time
proportion, are selected, which eventually can fully describe the speed of the vehicle, the
smoothness of the working conditions, and the smoothness of the road.

To determine the driving characteristics more clearly, it is necessary to classify condi-
tion blocks for patterns.

Based on the maximum likelihood estimation and Jensen inequality, the EM algorithm
is divided into two steps: E-step, expectation; M-step, maximum; and E-step and M-step
are iterated until the algorithm converges to the local optimal solution.

Here, all blocks are divided into five categories using the EM clustering algorithm.
The classification results and five cluster centers are shown in Figure 5
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Figure 5. Classification results of the EM algorithm.

In order to select the driving pattern of the vehicle, historical vehicle speeds are
recorded for a period of time, its characteristic parameters are calculated, and the Eu-
clidean distance is used to select the clustering center that is closest to the operating
conditions. To illustrate the advantage, a K-means algorithm-based pattern recognition
method is developed, where the number of type is also selected as 5, as shown in Figure 6.
Additionally, the Davies-Bouldin Index (DB) is utilized to evaluate the performance of
different methods [26].

k caC
DB = % y max(ﬂ
=1 A el (1)
C=2 ¥ ||Jxn—w
dr £ Il —wl

where k = 5, C is the average distance within one type, () is a collection of all elements
of a type, x,, is the three-dimensional characteristic parameter of this type, and w is the
three-dimensional coordinate of the center of the type. Smaller DB means the smaller the
intra-class distance and the larger the inter-class distance, that is, the more obvious the
classification feature. Substitute the characteristic parameters of each working condition
into the formula, and the DBs of K-means and EM are 0.6228 and 0.3309, respectively.

The DB of EM is smaller, which indicates that the difference between the clusters
of this algorithm is greater, and the similarity between the elements within the cluster is
greater. It can be concluded that EM algorithm is more suitable for the research object in
this paper than the K-means algorithm.

For each classification, the principle of Markov chain model is utilized to predict
the future speed of the HEV. To predict the future speed of the vehicle, it is necessary to
calculate the transition probability between states, that is, the state transition probability
matrix. The specific calculation process is as shown in (2) [27]. Results obtained are shown
in Figure 7.

Tj = Pr[N (ax i1 = ) [N(Vi = V})] )
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Figure 6. Classification results of the K-means algorithm.

Among them, n is the future time to be predicted, N(Vj = V;) is the number of vehicles
whose speed is V; at the current moment, N(ay;,41 = 4;) is the number of acceleration
equals to 4; at the next moment, Tj; is the probability that the future acceleration is 4;, and
the current vehicle speed is V;.

According to the Markov chain model above, the next-time acceleration weighted
value corresponding to each vehicle speed is calculated, the vehicle acceleration at the next
moment can be predicted at the current time, and the next-time vehicle speed is obtained.
This method is used for the WLTC driving cycle, and the predicted horizon is set to 5 s. The
result is shown in Figure 8.

To further illustrate the superiority of the proposed method, the comparison results
about the prediction error and the root-mean-square-error (RMSE) are shown in Tables 1-3.

Table 1. Prediction error with pattern recognition.

Time Error 1st 2nd 3rd 4th 5th
Max error (km/h) 0.3572 0.5236 0.7692 1.0751 1.7846
Ave error (km/h) 0.2918 0.3982 0.6732 0.8736 1.2358

Table 2. Prediction error without pattern recognition.

Time Error 1st 2nd 3rd 4th 5th
Max error (km/h) 0.6723 0.9762 1.3674 2.3268 3.1469
Ave error (km/h) 0.4174 0.7214 0.9826 1.6746 2.3478

root-mean-square-error (RMSE).

Table 3. Values of RMSE.

Condition Predict Method RMSE

Prediction error with recognition 1.1834

Prediction error without recognition 2.0762
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Figure 8. Prediction results.

The above results demonstrate that the proposed method, including the driving pattern
recognition and Markov chain model, can significantly improve the prediction accuracy.

3. MPC-Based Energy Management Strategy

This section uses the model predictive control method to solve the optimization
problem with constraints. First, the predicted vehicle speed is converted into demand
power, and then mathematical models and optimization problems are established for the
research object. Finally, the interior point method is used to solve the problem.

3.1. Demanded Power Calculation

The demanding power of the vehicle can be calculated based on the longitudinal
dynamics [28].
]. dU CDA 3
Pig = ——— (6mV — V+—V

ama = 3ga0mm MV g +mefV+ 535V ®)

where V is the speed of the vehicle (km/h), 7, is the efficiency, m is the mass of the vehicle,
f is the resistance coefficient, J is the vehicle rotational mass coefficient, Cp is the air
resistance coefficient, and A is the windward area (m?).

3.2. System Model

The state—space equation for the energy management strategy of the system can be
obtained based on power balance and Kirchhoff’s voltage law as follows [19]:

Tene
Ve VR P — )
N 2RC,

4)

x = f(x,u,v)

X = [SOC],LL: l: Tg :|,U_ [Pdmd] ©
Ne
where P, is motor power (kW), C;, represents the capacity of the battery (aH), V;. is the
open circuit voltage of the battery (V), R is battery interior resistance (), #7; is the efficiency
of the battery, T is the torque of the generator (Nm), 7, is the rotational speed of the
engine-generator set (rpm), and 74 is the efficiency of the generator.
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3.3. Linearizing Predictive Model

The system model of vehicles is highly nonlinear, and dealing with this type of problem
is more complicated. Therefore, in practical applications, a simpler and more effective
linear model is often used, as follows.

X =Ax+Bu+Cv+D (6)

Among them,

)
Il

X=Xq,U=uUp,0=00r

X=X0,U=Uy,0=00s

o
[
g I g

X=X0,U=Uy,0=0~
D = f(xo, o, v9) — Axg — Bug — Cvp

Additionally, the terminal state can be expressed as

x(k+T) = Ax(k) + gu(k|k) + ¢v(k|k) + pD(k|k) )

Among them,

u(klk) = [u(k);u(k+1);..;u(k+T —1)]

A=1

o(k|k) = [v(k),o(k+1),...,0(k+T—1)]"

¢ =[AT-1B AT-2B ... A'B]

¢ =[AT-1C AT-2C ... A'C]

p=[AT-1 AT-2 AT-3 A0

E(k‘k) —DD...D"

T is the prediction horizon.

3.4. Optimization Process

The primary objective of this study is to satisfy the need for power, which is mostly
supplied by the engine generator set. Additionally, SOC maintenance has a significant
impact on battery life for hybrid electric vehicles that are not plugged in. Thus, the cost
function that was constructed is as follows:

J = || 5550 — o(k|k)| [ + Q + sign([x(k + T) — xope]) [x(k + T) — xopt]
s.t. x(k+T) = ATx(k) + gu(k|k) + ¢o(k|k) @®)

Xmin < X < Xmax

Umin < U < Umax

[l Tg;igg — ov(k|k)||% penalize the difference between the power provided of the EGS
and the demanded power, R and Q are the weighting coefficients, and
Qxsign([x(k+ T) — xopt]) [x(k + T) — Xopt] is the terminal punishment of the SOC where
Xopt 18 set to 0.65.

Convert (8) to a quadratic programming form:

= u (k|k) THu(k|k) + cTu(k|k) +d
J = u (klK) " Hu(k|k) + cTu(k|K) + o

s.t. Qu > w
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where
H = diag(R)

€= *2971504}75 [Ryo(k) Roo(k+1) ... Rro(k+T—1)]" + QB"
d = v (k|k) T « diag(R) * v(k‘k) +Qxe

e=ATx(k) + (,va(k’k) + l[JET(k‘k) + —s0Copt
Q = [I5x5, —I5x5), @ = [tmin tmax]"

3.5. Interior Point Method

To balance the optimization effect and real-time algorithm as much as possible, an
interior point method is employed when solving the above QP problem, and the result can
be obtained by solving the KKT condition iteratively, as shown below [29]:

HO0o —QT 7 [Au —74
Q —-10 As| = | —1p (10)
0 A S AA —SAe

wherer; = Qu — OTA +¢, rp =Qu—s—w,S = diag(sy,s2,...,5mc), A = diag(A, A, ..., Awme),
e=(1,1,..., 1)T, Dual gapisé = 57%, s is a slack variable, A is a Lagrange multiplier, and .
is the number of inequality constraints. Additionally, the control variables can be obtained by
solving the above equation iteratively.

3.6. Simulation Results

The simulation was conducted under the specified cycle circumstances to assess the
efficacy of the control method. The parameter of the vehicle is shown in Table 4. The
aforementioned rule-based method and a model predictive control method without pattern
recognition are employed for comparison. The WVUCITY driving cycle is utilized for
analysis, as shown in Figure 9. The simulation results are shown in Figures 10-13, in which
the abbreviation PR means pattern recognition.

Table 4. The primary parameters of the HEV.

Parameter Value Unit
Vehicle mass m 8000 kg
Radius of wheels 7y, 0.38 m
Windward area A 3.24 m?
Air resistance coefficient Cp 0.38 -
rolling resistance coefficient f 0.015 -
Capacity of battery pack Cyax 20 Ah
Voltage of battery pack V¢ 360 \Y%
Rated power of the engine 120 kW
Rated power of the generator 120 kW
Rated power of the motor 160 kW

From Figure 10, it can be seen that all the three methods can regulate the SOC of the
battery near the optimal state, which is 0.65 for the battery in this paper. However, the
maximum deviation of the SOC with the rule-based strategy is more pronounced than
those with the model predictive control-based strategies. Specifically, the MPC strategy
with pattern recognition outperforms the MPC-based strategy without pattern recognition
in terms of the SOC regulation, which illustrates the effectiveness of the driving pattern
recognition mechanism.
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The power of the engine-generator set is shown in Figure 11. It can be seen that,
under some conditions with rapid acceleration, the rule-based strategy demands more
power that the other two strategies. The fuel consumption results are depicted in Figure 12.
The final fuel volumes for the whole cycle of the rule-based strategy, MPC-based strategy
without pattern recognition, and MPC-based strategy with pattern recognition are 0.49, 0.47,
and 0.45 L. It can be concluded that, compared with the rule-based strategy, MPC-based
strategy performs well in terms of the SOC maintenance and fuel efficiency improvement.
Additionally, the driving pattern recognition mechanism can help the control algorithm for
better performance.

To evaluate the computational burden under different prediction horizon of the
MPC, numerous simulations are conducted, and the results are illustrated in Figure 13.
For the driving cycle with 1400 s, the computational time is acceptable and to balance
the computational burden and the fuel efficiency, and the prediction horizon is set to 5
in this paper.

4. Conclusions

In this study, the driving pattern is recognized using the expectation maximization
algorithm, and the future demanded power of the HEV was then forecast using a Markov
chain model. It was discovered that pattern recognition significantly improves prediction
outcomes, and by comparison, pattern recognition reduces the predictive error significantly.
Using the predicted speed, the model predictive control-based energy management strategy
is developed in which maintaining the state of charge of the battery while reducing the
energy consumption of the engine is set to the objective of the algorithm. The MPC is
transferred into a quadratic programming solved with the interior point method.

Simulations are carried out, and the results illustrate that, compared with the rule-
based EMS and the MPC-based EMS without pattern recognition, the MPC-based EMS
with pattern recognition performs better in terms of reducing fuel consumption, as well as
the fluctuation of the SOC.

Since the model used in this paper ignores the time-variance of system parameters
due to continuous operation of the vehicle, improving the accuracy of the model used in
this paper, while improving the computational efficiency, are left to future work.
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Nomenclature

HEV  hybrid electric vehicle

EMS energy management strategy

EM expectation maximization

SOC state of charge

MPC  model predictive control

ECMS equivalent consumption minimization strategy

DP dynamic programming
PR pattern recognition
EGS engine generator set
DB Davies-Bouldin index
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