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Abstract: Although Deep Learning (DL) models have been introduced in various fields as effective
prediction tools, they often do not care about uncertainty. This can be a barrier to their adoption in
real-world applications. The current paper aims to apply and evaluate Monte Carlo (MC) dropout,
a computationally efficient approach, to investigate the reliability of several skip connection-based
Convolutional Neural Network (CNN) models while keeping their high accuracy. To do so, a high-
dimensional regression problem is considered in the context of subterranean fluid flow modeling
using 376,250 generated samples. The results demonstrate the effectiveness of MC dropout in terms
of reliability with a Standard Deviation (SD) of 0.012–0.174, and of accuracy with a coefficient of
determination (R2) of 0.7881–0.9584 and Mean Squared Error (MSE) of 0.0113–0.0508, respectively.
The findings of this study may contribute to the distribution of pressure in the development of
oil/gas fields.

Keywords: deep learning; Monte Carlo dropout; reliability; regression; fluid flow modeling; mixed
GMsFEM; standard deviation

1. Introduction

The terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning
(DL) are frequently used interchangeably. From a holistic perspective, DL is a subcategory
of ML which, in turn, is a subdivision of AI. Artificial intelligence is a far-reaching branch
of computer science in which a range of tools and techniques are used to make machines
(namely computers and robots) more intelligent and consequently more effective and
efficient. Computational methods of ML such as Neural Networks (NNs), support vector
machines, and decision trees are employed to find relevant patterns within a dataset.
DL methods represent more sophisticated extensions of classical ML techniques and are
generally superior to them. There are various DL algorithms such as Convolutional Neural
Networks (CNNs), deep auto-encoders, and generative adversarial networks.

ML and DL models have been introduced in various fields [1–8] to make decisions
using available data and domain knowledge. It is crucial to consider both accuracy and
reliability when evaluating such models. These models are typically assessed based on
their accuracy using statistical error metrics such as: (i) for regression: the coefficient of
determination (R2), Mean Squared Error (MSE), and relative error, and (ii) for classification:
precision, F1 score, and confusion matrix.

In terms of reliability, ML and DL deal with two main types of uncertainty: (i) aleatoric
uncertainty (also called irreducible uncertainty/data uncertainty/inherent randomness)
and (ii) epistemic uncertainty (also called knowledge uncertainty/subjective uncertainty) [9].
Aleatoric uncertainty arises from an inherent property of the data and cannot be reduced
even with a higher volume of samples. The data used to develop a model can be sourced
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from experimental measurements, collected from other resources, or produced via simula-
tion/programming. This data always contains noise, which refers to the data distribution
and errors made while measuring, collecting, or generating data. A related problem is
incomplete coverage of the domain. That is why most models are constructed based on
a limited range of data and cannot be generalized. Epistemic uncertainty is a property of
a model caused by factors such as the selection of very simple or complex structures, the
stochastic nature of optimization algorithms, or the type of statistical error metrics. This
uncertainty is reducible by feeding enough training samples into the model.

Uncertainty Quantification (UQ) techniques are beneficial to limit the effect of un-
certainties on decision-making processes. According to [9], there are three main types of
UQ: (i) Bayesian methods such as Monte Carlo (MC) dropout, Markov Chain Monte Carlo,
variational inference, Bayesian active learning, Bayes by backprop, variational autoen-
coders, Laplacian approximations, and UQ in reinforcement learning like Bayes-adaptive
Markov decision process, (ii) ensemble techniques such as deep ensemble, deep ensem-
ble Bayesian/Bayesian deep ensemble, and uncertainty in Dirichlet deep networks like
information-aware Dirichlet networks, and (iii) other methods such as deep Gaussian
Process (GP) and UQ in the traditional ML domain using ensemble techniques like support
vector machine with Gaussian sample uncertainty.

Typically, researchers tend to apply their techniques or methods to existing datasets.
Even when using new data, it may still face limitations such as restricted sample size or
low dimensionality. Moreover, while both classification and regression algorithms are
supervised learning techniques, previous studies on DL have mostly focused on classifica-
tion, and regression has received much less attention. Additionally, despite much research
into the accuracy of DL models, their reliability analysis remains inadequate. Finally, MC
dropout is a computationally efficient method that uses dropout as a regularization term to
estimate uncertainty. Putting these points together, the main contribution of this paper is
to demonstrate the potential of using MC dropout in skip connection-based CNN models
based on big data.

A high-dimensional regression problem from the domain of petroleum engineering is
included as a case study because subsurface flow problems usually involve some degree of
uncertainty due to the lack of data with which models are constructed. Moreover, despite
extensive efforts towards renewable energy, the oil/gas sector still supplies a significant
proportion of global energy consumption, so this research has real-world applications.

The rest of this paper is arranged as follows. Section 2 provides an overview of
MC dropout and references a number of relevant publications. In Section 3, the mixed
Generalized Multiscale Finite Element Method (GMsFEM) is briefly explained as a case
study. Section 4 presents the characteristics of the skip connection-based CNN models
used along with MC dropout. The results are given in Section 5. Section 6 provides some
discussion and the limitation of the research. The conclusions and future study are given in
Section 7.

2. MC Dropout and Its Related Work

Standard deterministic deep NNs operate on a one-input-one-output basis. Unlike
single-point predictions of such models, Bayesian methods such as Bayesian Neural Net-
works (BNNs) and (GPs) give predictive distributions. The weights of BNNs are incorpo-
rated with prior distributions, whereas GPs introduce priors over functions. A drawback of
BNNs and GPs is the computational cost, which becomes prohibitive given a very large net-
work, as in the case of deep networks. Bayesian neural networks need to get the posterior
distribution across the network’s parameters, in which all possible events are obtained at
the output. Gaussian processes require us to sample prior functions from multivariate Gaus-
sian distribution, wherein the dimension of Gaussian distribution increases proportionally
with the number of training points involving the whole dataset during predictions.

A computationally more efficient method called MC dropout has been recently de-
veloped [10]. A NN with any depth and non-linearities accompanying dropout before
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weight layers might be interpreted as a Bayesian approximation of the probabilistic deep GP.
Additionally, the dropout objective minimizes Kullback-Leibler (KL) divergence between
an approximate distribution and the posterior of a deep GP.

Dropout basically serves as a regularization technique within the training process
to reduce over-fitting in NNs. For the testing samples, the dropout is not applied, but
weights are adjusted, e.g., multiplied by ‘1 − dropout ratio’. With regards to MC dropout,
the dropout is applied at both training and test time. So, the prediction is no longer
deterministic at test time.

Given that ŷ is an output of a NN model with hidden layers L. Also, w = {W1, . . . , WL}
represents the NN’s weight matrices, and y∗ is the observed output corresponding to input
x∗. By defining X = {x1, . . . , xN} and Y = {y1, . . . , yN} as the input and output sets, the
predictive distribution is expressed as:

p(y∗ | x∗, X, Y) =
∫

p(y∗ | x∗, w)p(w | X, Y)dw (1)

here, p(y∗ | x∗, w) and p(w | X, Y) are the NN model’s likelihood and the posterior over
the weights.

The predictive mean and variance are used in the predictive distribution to estimate
uncertainty. The posterior distribution is, however, analytically intractable. As a replace-
ment, an approximation of variational distribution q(w) can be obtained from the GP such
that it is as close to p(w | X, Y) as possible, in which the optimization process happens
through the minimization of the KL divergence between the preceded distributions as
shown below:

KL(q(w) | p(w | X, Y)) (2)

With variational inference, the predictive distribution can be described as follows:

q(y∗ | x∗) =
∫

p(y∗ | x∗, w)q(w)dw (3)

According to [10], q(w) is selected to be the matrices distribution whose columns are
randomly set to zero given a Bernoulli distribution, specified as:

Wi = Mi.diag([zi,j]
Ki
j=1) (4)

where zi,j ∼ Bernoulli(pi) for i = 1, . . . , L and j = 1, . . . , Ki−1 with Ki × Ki−1 as the
dimension of matrix Wi. Also, pi represents the probability of dropout and Mi is a matrix
of variational parameters. Therefore, drawing T sets of vectors of samples from Bernoulli
distribution gives (Wt

1, . . . , Wt
L)

T
t=1, and consequently, the predictive mean will be:

Eq(y∗ |x∗)(y∗) ≈
1
T

T

∑
t=1

ŷ∗(x∗, Wt
1, . . . , Wt

L) = pMC(y∗ | x∗) (5)

where ŷ∗ is the output obtained by the given NN for input x∗, and pMC is the predictive
mean of MC dropout, equivalent to doing T stochastic forward passes over the network
during the testing process with dropout and then averaging the results. It is useful to view
this method as an ensemble of approximated functions with shared parameters, which
approximates the probabilistic Bayesian method known as deep GP. In this method, there
are several outputs (considered 30, 50, 100, and 200 in this research) for a given input.
Subsequently, uncertainty could be examined in terms of factors such as variance, entropy,
and mutual information.

In the following, four examples are given to show the application of MC dropout
in modeling subsurface fluid flow. The researchers in [11] investigated the uncertainty
involved in ML seismic image segmentation models. Salt body detection was considered
as an example. They used MC dropout and concluded the developed models were reliable.
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The researchers in [12] used the dropout method for a classification problem to quantify
the fault model uncertainty of a reservoir in the Netherlands. The networks were trained
with dropout ratios of 0.25 and 0.5. The researchers concluded that the model variance
increased by increasing the dropout ratio. Also, they suggested training with more data
is needed.

The MC dropout approach and a bootstrap aggregating method were used to quantify
uncertainties of CO2 saturation based on seismic data in [13]. The researchers carried out DL
inversion experiments using noise-free and noisy data. The results showed that the model can
estimate 2D distributions of CO2 moderately well, and UQ can be done in real-time.

A semi-supervised learning workflow was used to effectively integrate seismic data
and well logs and simultaneously predict subsurface characteristics in [14]. It had three
distinct benefits: (i) using 3D seismic patterns for developing an optimal nonlinear mapping
function with 1D logs, (ii) being capable of automatically filling the gap of vertical resolution
between seismic and well logs, and (iii) having an MC dropout-based epistemic uncertainty
analysis. The results of the two examples showed reliable seismic and well integration, and
robust estimation of properties like density and porosity obtained by this procedure.

3. Case Study

Fluid flow in petroleum reservoirs is typically governed by: (i) the equation of mass
conservation, (ii) momentum law (Darcy’s law), (iii) energy equation, (iv) fluid phase
behavior equations (also known as equations of state) and certain rock property relation-
ships (such as compressibility) [15]. To solve this system of equations, it is necessary to
specify boundaries and initial conditions. Analytical (exact) solutions can be determined
for relatively simple reservoirs (i.e., by making several assumptions). An alternative is
to apply numerical (approximate) solutions, such as the finite difference method, Finite
Element Method (FEM), finite volume method, spectral method, and meshless method.

A mixed GMsFEM framework, as a numerical method, has recently been proposed for
a single-phase fluid in 2D heterogeneous (matrix composition and fracture distribution)
porous media [16]. The model approximates reservoir pressure in multiscale space. It does
so by applying several multiscale basis functions to a single coarse grid of the reservoir
volume. The fluid velocity is directly estimated across a fine grid space. Generally, the
number of Partial Differential Equations (PDEs) requiring solutions to enable multiscale
basis functions to be derived is dependent on the number of local cell and local eigenvalue
problems involved, which necessitates a substantial overhead. Therefore, it is reasonable
to replace PDE solvers with ML/DL approaches, given their exceptional abilities and
general acceptance in recent years. Readers are referred to [16] for additional information,
especially what the original flow problem is and how the mixed GMsFEM works.

For the configuration defined in this paper, the computational domain was set to be
Ω = [0, 1]× [0, 1] (Figure 1). The fine grid system adopted involves a uniform 30× 30
mesh. On the other hand, a sparser, uniform 10× 10 mesh was applied to represent the
coarse grid network. This configuration consists of 1300 separate PDEs, made up of 1200
(100× 12) PDEs addressing the local cell problems plus 100 (100× 1) local eigenvalue
problems. There were five multiscale basis functions, identified as Basis 1, 2, 3, 4, and 5 for
each generated permeability field (as the only input). A range of values for the permeability
of the matrix was chosen from 1 to 5 milliDarcies (mD) incrementing in steps of 1 (i.e., 1, 2,
3, 4, and 5 mD); and for the permeability of the fracture from 500 to 2000 mD incrementing
in steps of 250 (i.e., 500, 750, 1000, 1250, 1500, 1750, and 2000 mD). The number of fractures
was set to 1, 2, 3, . . . , 23, 24, and 25 (25 cases). Basis 1 is a piecewise constant, with binary
values of −1 and +1. Basis 1 is defined as part of FEM, it hence requires no training for DL
modeling. However, Basis 2, 3, 4, and 5 take values distributed across the range (−1, +1),
and therefore require training for DL modeling.
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Figure 1. A typical permeability field of a fractured porous medium. The matrix permeability is
assumed to be 4 mD. The fracture permeability is assumed to be 2000 mD. The fine grid squares
represent the formation matrix (blue) in some cases and fractures (yellow) in other cases (selected
randomly). The red lines define the coarse grid. Each coarse grid square contains nine fine-grid
squares. There are fifteen fractures assigned to this porous medium.

In terms of supervised learning, our problem was mapping an input of 100× 9 to an
output of 900× 1. Because there were four different basis functions, we had four distinct
mappings. In this regard, 376,250 samples were produced in the MatLab software including
306,250 examples for the training, 35,000 for the validation, and 35,000 for the testing. Due
to the random generation of the permeability fields, duplicates might have been present.
Consequently, the generated dataset was filtered to remove any duplicate data records. This
is necessary to remove the risk of introducing bias towards specific model configurations
in the DL analysis. For our data, 1739 training, 579 validation, and 6121 testing samples
were kept out. This reduced the training, validation, and testing samples to 304,511, 34,421,
and 28,879, respectively.

4. Skip Connection-Based CNN Model Architecture

Depending on the way in which an algorithm learns from data sets, DL (and also ML)
algorithms fall into four categories: (i) supervised, (ii) unsupervised, (iii) semi-supervised,
and (iv) reinforcement. Our problem is a supervised learning task. There are several
approaches that can be adopted in this category such as recurrent neural networks and
CNNs. Recurrent neural networks are often applied to process video, sound, and text data.
On the other side, CNNs are particularly designed for problems involving 2D arrays like the
regression case study in this research, where an input of 100× 9 is mapped to an output of
900× 1. The format defined for the permeability field was as a (900× 1) vector, subsequently
adjusted to be expressed as a 2D tensor (100× 9), in which, coarse grid units = 100 and each
coarse grid contains 9 fine grids. Each row in the array, therefore, represents a coarse grid.
Such a configuration enables the use of 2D CNN kernels. Furthermore, there was a logical
and convincing mathematical procedure behind convolutional filters. Convolutional neural
networks also automatically and adaptively learn the spatial hierarchies of features. Lastly,
it can reduce the number of parameters without sacrificing model quality. With regards to
the output, it was necessary to maintain the five basis functions as 900× 1 vectors, so that
they could be evaluated in the Fully Connected (FC) layers (dense layers) forming the final
section of the CNN network.
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A classic CNN model is normally composed of alternate convolutional and pooling
layers, followed by one or more FC layers at the end. In some situations, it is sensible to
replace an FC layer with a global average pooling layer. The convolutional and pooling
layers perform feature extraction, while the FC layers map the extracted features into an
output layer.

Distinct CNN model configurations, involving various combinations of convolutional,
pooling, FC, Batch Normalization (BN), regularization, and dropout filtering were tested
separately on each basis function requiring training (Basis 2, 3, 4, and 5). A similar optimal
CNN configuration was obtained for each of those four basis functions (Figure 2). It consists
of five convolutional layers and two FC layers, but does not include any pooling layers.
Each convolutional layer is followed by a single BN layer of the same dimensions. Typically,
neural network models can apply higher learning rates and converge more quickly when
the input to each layer is normalized; hence the value of adding the BN layers. The two FC
layers contain 2000 neurons with a dropout rate of 0.05.

Figure 2. Structure of the skip connection-based CNN model developed in this study.
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The gradient of the loss function might quickly approach zero when a deep NN back
propagates the gradient from the final layers to earlier layers close to the input layer. This
refers to the ’vanishing gradient problem’, which makes the earlier layers not benefit
from additional training. Using the skip connection (shortcut) strategy, which enables the
gradient to be directly back-propagated to earlier layers of a network, is one of the most
effective ways to tackle this problem. After testing different cases, we found out it would
be better to add simultaneously two shortcut schemes to the main CNN structure: (i) from
the middle to the last layer and (ii) from the middle to the second-to-last layer.

The model, treated as a Bayesian approach, produces a different output each time
called with the same input. This is because each time a new set of weights is sampled from
the distributions to develop the network and produce an output. After examining various
cases, we discovered that 30 outputs are the ideal case for a given input, representing
the most efficient and effective solution. The models employ the activation function of
‘Rectified Linear Unit (ReLU)’ for the convolutional layers, ‘sigmoid’ for the FC layers, and
‘linear’ for the output.

5. Evaluation

To understand the role of MC dropout in the developed CNN models based on
accuracy, two statistical error metrics of R2 and MSE are included:

R2 = 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(ŷi − ȳ)2

(6)

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (7)

where yi, ȳ, and ŷi are the actual basis function of the i-th data point, the average of
actual basis function for all samples, and the predicted basis function for the i-th data
point, respectively. Also, N is the number of data points. As mentioned earlier, each basis
function is in the form of a 900× 1 tensor and R2 of all outputs are averaged, weighted
by the variances of each individual output. The R2 value lies between −∞ and 1 [17].
The closer the value is to 1, the more accurate the predictions produced by the model.
The error metric of MSE measures the average of squares of errors (i.e., the difference
between predicted and real values). It is basically non-negative, where values closer to zero
indicate more-accurate performance. The models without dropout yield promising results
when evaluated on the training subset using R2 and MSE metrics. Except for Basis 5, the R2

of others is above 0.9. The values obtained for MSE lie within the range of 0.0075 to 0.0243.
The constructed models perform suitably for the validation subset, with an R2 of 0.7900
to 0.8811 and a MSE of 0.0128 to 0.0512. Because the validation and testing subsets were
selected from a similar distribution of data, we can see almost the same results over the
testing samples: an R2 of 0.7857 to 0.8809, and MSE 0.0126 of to 0.0513.

According to Table 1, the dropout after two FC layers enhances performance over all
subsets for all multiscale basis functions. For the training subset, it has the maximum effect
on the model for Basis 3 and the minimum effect for Basis 4. For basis 3, R2 increases from
0.9327 to 0.9584, and MSE decreases from 0.0141 to 0.0113. There is an R2 increase from
0.9283 to 0.9326 and an MSE decrease from 0.0107 to 0.0101 for Basis 4.

Adding dropout to the initial architecture has generally a marginally positive ef-
fect on the validation and testing samples. The range of R2 and MSE is 0.7919–0.8858
and 0.0120–0.0507 for validation. The R2 and MSE lie in the range of 0.7881–0.8839 and
0.0121–0.0508 for testing.

As a general result, it is evident that the use of dropout has a positive impact on
the performance of the developed models across the training subset, regardless of the
basis functions used. Furthermore, it also demonstrates a similar positive impact over the
validation and testing subsets for Basis 3 and Basis 5. However, for Basis 2 and Basis 4, there
is only a marginal difference between the performance of CNNinitial and CNNdropout mod-
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els. The probable reasons for this could be attributed to the high-dimensional regression
problem considered in this paper and the complexity and non-linear nature of DL models.
Nonetheless, even this slight improvement in the models’ performance could help reduce
overfitting and enhance generalization in the constructed CNNdropout models. Additionally,
it can significantly affect the pressure distribution obtained through the basis functions.

Table 1. Performance of the developed models for Basis 2, 3, 4, and 5 in terms of R2 and MSE.

Subset Model
R2 MSE

Basis 2 Basis 3 Basis 4 Basis 5 Basis 2 Basis 3 Basis 4 Basis 5

Training
CNNinitial 0.9002 0.9327 0.9283 0.8847 0.0243 0.0141 0.0107 0.0075

CNNdropout 0.9113 0.9584 0.9326 0.9089 0.0211 0.0113 0.0101 0.0058

Validation
CNNinitial 0.7900 0.8434 0.8811 0.8038 0.0512 0.0329 0.0176 0.0128

CNNdropout 0.7919 0.8620 0.8858 0.8155 0.0507 0.0290 0.0170 0.0120

Testing
CNNinitial 0.7857 0.8422 0.8809 0.8044 0.0513 0.0332 0.0177 0.0126

CNNdropout 0.7881 0.8622 0.8839 0.8132 0.0508 0.0290 0.0173 0.0121

Depending on the input/output dimensions, type (classification/regression), and
approach applied to a problem, the magnitude of uncertainty can be analyzed statistically
and graphically. Standard Deviation (SD) measures the dispersion of a data set relative to
its average. It is the square root of the variance. The closer the value of SD is to zero, the
values of data are closer to the average. A high SD indicates that the values are spread out
over a broad range. Basically, the variance and SD are defined for a single-point data set
(there is only one output). On the other hand, the output (basis functions) in this study
is in the form of a 900× 1 vector. While dealing with a vector, it is necessary to calculate
the variance of each element of the vector separately. Then, the obtained variances are
averaged to reach the total variance. Finally, the SD is obtained as the square root of the
variance for each case. Standard CNNs (without dropout) give only one output for a given
input. That is why the SD is not defined for such models (it is always zero).

According to Table 2, the SD values lie within 0.0181–0.158, 0.0179–0.152, 0.0169–0.104,
and 0.0121–0.086 for the CNN models with dropout developed for Basis 2, 3, 4, and 5 based
on the training subset. For all basis functions, most samples have an SD lower than 0.05.
For instance, 221,006 out of 304,511 samples for Basis 3 are in the range of 0–0.05. In general,
SD exceeds 0.15 only for 547 samples. The SD obtained for Basis 4 and 5 is lower than that
for Basis 2 and 3.

Table 2. Reliability of the developed models using MC dropout for Basis 2, 3, 4, and 5 in terms of SD.

Subset SD Basis 2 Basis 3 Basis 4 Basis 5

Training

[0–0.05) 197,572 (0.649) 221,006 (0.726) 238,107 (0.782) 261,537 (0.859)

[0.05–0.1) 99,364 (0.326) 81,227 (0.267) 63,189 (0.208) 42,974 (0.141)

[0.1–0.15) 7143 (0.023) 2163 (0.007) 3215 (0.01) -

≥0.15 432 115 - -

Validation

[0–0.05) 2577 (0.075) 4679 (0.136) 7475 (0.217) 24,276 (0.705)

[0.05–0.1) 19,296 (0.561) 29,395 (0.854) 26,937 (0.783) 10,145 (0.295)

[0.1–0.15) 12,522 (0.364) 347 (0.01) 8 -

≥0.15 26 - 1 -

Testing

[0-0.05) 2245 (0.079) 3984 (0.138) 6232 (0.216) 20,725 (0.718)

[0.05–0.1) 16,321 (0.565) 24,599 (0.852) 22,641 (0.784) 8154 (0.282)

[0.1–0.15) 10,289 (0.356) 296 6 -

≥0.15 24 - - -

With regards to the validation subset, the developed models for Basis 2, 3, 4, and 5 have
an SD of 0.0268–0.174, 0.0237–0.124, 0.019–0.171, and 0.012–0.097, respectively. Generally,
only 27 out of 34,421 samples have an SD higher than 0.15. The model built for Basis 5 has
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the best performance in terms of uncertainty, with 24,276 samples with an SD of lower than
0.05 and 10,145 samples with an SD of 0.05–0.1. After that, the models developed for Basis
4 and 3 come. The model designed for Basis 2 has the worst performance because only 2577
samples have an SD of 0–0.05.

For the testing subset, the SD values lie within 0.025–0.169, 0.024–0.142, 0.020–0.113,
and 0.012–0.098 for the CNN models with dropout developed for Basis 2, 3, 4, and 5.
The trend is the same as the validation subset. In other words, the model for Basis 5 has
the best, and the one for Basis 2 has the worst performance, respectively. Also, there is no
sample with an SD higher than 0.15, except with 24 cases for Basis 2.

As mentioned earlier, the output is in the form of a 900× 1 vector, which is too big to
show in a graph. Additionally, basis functions in the mixed GMsFEM are defined in one
coarse grid element, which includes 9 fine grids. Figure 3 gives the 30 values obtained for
each of the nine points using MC dropout for a coarse grid with the matrix permeability of
1 mD (as a representative sample). The average of 30 outputs (for each point) is considered
the model’s output. The figure demonstrates that the values are close to each other (some
overlap) and have a very low SD.

Figure 3. Values dispersion of a representative coarse grid: (a) for Basis 2, (b) for Basis 3, (c) for
Basis 4, and (d) for Basis 5.

In order to visualize the pressure changes over the defined computational domain,
three examples are illustrated for selected training (Figure 4a), validation (Figure 4b), and
testing (Figure 4c) subsets. The plots in the left-side columns display the permeability fields,
for representative sample grids. The plots in the central columns display the pressure
distribution derived by FEM (considered to be true distribution). The plots in the right-side
columns display the predicted pressure distributions using the skip connection-based CNN
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models developed in this study. In fact, the pressure is obtained through the multiscale
basis functions. Generally, there is a better match for the training sample in comparison
with the validation and testing cases.

Figure 4. A comparison between the actual pressure distributions and those obtained by the skip
connection-based CNN models: (a) training sample, (b) validation sample, and (c) testing sample.

6. Discussion

In terms of accuracy, it was perceived that considering high initial sets of weights does
not influence the accuracy of the models. More specifically, no meaningful improvement
was observed by defining 50, 100, and 200 sets. Hence, the number of 30 sets considered
here seems almost optimal given the developed models’ high accuracy and low SD for
multiscale basis functions.

In a standard deterministic NN, a single prediction is obtained for a given input, with
no information about the uncertainty of the used data or the model fitness. This is because
only one initial set of weights/biases is used/updated in such models. The Bayesian
methods can be applied to tackle this issue somewhat, taking a positive step toward the
reliability of NN models. Bayesian neural networks are different from standard NNs in
that their weights are assigned a probability distribution rather than a single value or point
estimate. These probability distributions describe the uncertainty in weights and can be
used to estimate uncertainty in predictions. In this research, we used the MC dropout
only for the FC layers of the CNN structures. In other words, the dropout technique was
not used regarding the convolutional layers because it negatively affected the accuracy
of the models. Moreover, although multiple techniques were used to quantify the data
uncertainty, we got some errors. So, it would be better to consider both uncertainty sources
to construct more reliable CNN models.
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In terms of UQ statistical investigation, we defined several indices for uncertainty such
as entropy, Negative Log Likelihood (NLL), and SD for the statistical measures. However,
the values obtained for entropy and NLL were meaningless. Therefore, it would be helpful
to use more applicable statistical measures to convey the information about the uncertainty
more meaningfully.

7. Conclusions

Standard deterministic deep NNs converge on a one-input-one-output basis, with no
information about the uncertainty of the data or model fitness. Bayesian approaches are
effective in uncertainty estimations. However, they face a high computational cost when
applied to large datasets. That is why MC dropout, a computationally more efficient method,
was used in this study as a positive step towards the reliability of skip connection-based
CNN models based on 376,250 samples from the oil/gas domain. The SD values obtained
confirm the robustness of MC dropout in terms of epistemic uncertainty, in addition to
the high degree of accuracy. There are two suggestions for mitigating the limitations of
the present study: (i) quantifying the aleatoric uncertainty for the developed models, and
(ii) using more dropout ratios and comparing it with the ratio of 0.05 considered here.
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