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Abstract: The significance of user participation in sustaining drinking water quality and assessing
other factors, such as cleanliness, sanitary conditions, preservation, and waste treatment, is essential
for preserving groundwater quality. Inadequate water quality spreads disease, causes mortality, and
hinders socioeconomic growth. In addition, disinfectants such as chlorine and fluoride are used to
remove pathogens, or disease-causing compounds, from water. After a substantial amount of chlorine
has been added to water, its residue causes an issue. Since the proposed methodology is intended to
offer a steady supply of drinkable water, its chlorine concentration must be checked in real-time. The
suggested model continually updates the sensor hub regarding chlorine concentration measurements.
In addition, these data are transmitted over a communication system for data analysis to analyze
chlorine levels within the drinking water and residual chlorine percentage over time using a fuzzy
set specifically using a decision tree algorithm. Additionally, a performance investigation of the
proposed framework is undertaken to determine the efficiency of the existing model for predicting
the quantity of chlorine substance employing metrics such as recall, accuracy, F-score, and ROC.
Henceforth, the proposed model has substantially better precision than the existing techniques.

Keywords: IoT; machine learning; residual chlorine; water quality assessment; fuzzy rules; deci-
sion tree

1. Introduction

Due to the numerous causes of pollution, most of which are caused by human activity,
ensuring that water is safe to drink is difficult. The overexploitation of environmental
resources is one of the primary factors contributing to water quality issues [1]. The quick
speed of industrialization and a more significant emphasis on agricultural expansion, along
with the most recent innovations, agricultural fertilizers, and a lack of enforcement of rules,
have led to a substantial increase in water pollution [2]. The situation might be made
significantly worse on occasion due to the uneven distribution of rainfall. In addition, the
behaviors that are particular to each individual contribute considerably to the formation
of the general pattern of water quality. Both point and non-point causes of pollution have
a detrimental effect on the water quality [3,4]. Some examples of point causes of decay
are sewage discharge, discharge from factories, run-off from agricultural areas, and urban
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run-off. A lack of awareness and education among individuals who consume water may
also contribute to flooding and droughts. These are two other types of water pollution.

The implication of user contribution in sustaining groundwater consumption quality
and assessing other factors, such as cleanliness, sanitary conditions, preservation, and
waste treatment, is essential for preserving groundwater quality [5]. Low water quality
significantly contributes to the spread of illnesses and slows socioeconomic development.
Worldwide, waterborne infections are responsible for the deaths of around 5 million people
each year. The rain has the potential to carry the fertilizers and pesticides that farmers
employ through the soil and deposit them in rivers [6]. Additionally, waste materials from
industry are flushed down drains and into lakes and rivers. These contaminants make their
way into the food chain, where they continue to build up until they reach hazardous levels
for animals, fish, and birds and finally cause their deaths. Wastes from chemical plants are
often discarded into nearby bodies of water [7]. The water from rivers is used in factories
to either power or clean machinery. They are raising the temperature to a higher level.

Pathogens, or substances that can cause disease, are eliminated from water using
disinfectants such as chlorine and fluoride. The cause of the difficulty in freshwater man-
agement is a residue left in the water when excessive amounts of chlorine are mixed [8].
Because when the residual quantity of chlorine is consumed in large quantities, it inter-
acts within the stomach and destroys specific organ cells. Various unfavorable health
impacts are associated with drinking chlorinated tap water. Some of these consequences
are caused by chlorine’s propensity to create trihalomethanes. Trihalomethanes (THMs),
such as chloroform, are produced when chlorine combines with small organic particles in
drinking water [9]. The chemical compounds, as mentioned above, have been linked to
various undesirable health effects, including respiratory infections, gastrointestinal issues,
congenital anomalies, and prostatic and rectal caecum cancers.

Furthermore, irritating the eyes, nose, and throat can arise from prolonged contact
with chlorine at low concentrations. At greater concentrations, inhaling chlorine gas can
cause alterations in the pace at which a person breathes, as well as coughing and lung
problems [10]. Chlorine exposure can also cause other severe symptoms. Workers who are
exposed to chlorine run the risk of experiencing health problems. The dose, duration, and
job being done all have a role in determining the degree of exposure [11].

Furthermore, the signs and symptoms of chlorine poisoning can be rather severe.
Workers who are exposed to chlorine run the risk of experiencing health problems. The
dose, duration, and job being done all have a role in determining the degree of exposure [12].
In addition, the chlorine decay rate within drinking water sources depends on several
variables, particularly temperature. Hence, we require a real-time quantity analysis of
drinking water.

The main intention of the proposed framework is to sustain a continuous supply of
drinkable water. Its quality concerning chlorine content must be checked in real-time [13].
Additionally, the existing system makes most laboratory-based testing methodologies
time-consuming and expensive. Even though advancements have been made in water
monitoring systems [14], they still rely on wireless sensor networks or wireless network
technology, which has several drawbacks, including inadequate information security,
transmission coverage, and power consumption control [15]. In this characteristic, the
Internet of Things (IoT) has benefited since it enables the construction of real-time systems
that are much more effective, reliable, and cost-efficient. The proposed model continuously
updates the chlorine level values to the sensor hub. Further, that information is transferred
through a communications channel for data analysis to evaluate chlorine levels in drinking
water and residual chlorine concentration over time in the drinking water.

2. Related Work

Pollution caused by industrialization and urbanization is detrimental to the environ-
ment and Earth’s life. Due to industrialization and urbanization, the environment has
become contaminated, especially the water [16]. Extremely polluted water could induce
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food contamination, diarrhea, short-term digestive disturbances, lung ailments, skin issues,
and significant health effects. In an emerging nation such as Bangladesh, ready-made cloth-
ing manufacturing is one of the most important suppliers to the overall Gross Domestic
Product (GDP). Most waste from garment manufacturers is thrown into adjacent rivers or
canals [3,17]. Consequently, the water quality in these rivers and streams has become very
inappropriate for living creatures, becoming one of the greatest threats to the environment
and human health [18].

It is critical to monitor the water quality in real time to reduce the risk of water
pollution. As a further consequence of water pollution in the sub-continent, the number of
fish in the country’s rivers and canals is dwindling daily [19,20]. To conserve fish and other
aquatic species and the ecosystem, one must monitor the water’s quality and determine
the source of the contamination. Most strategies for reducing water pollution are primarily
biological and conducted in laboratories, which require a significant investment of time
and materials. Researchers developed a mobile application with an Internet of Things (IoT)
platform to create a real-time groundwater quality assessment framework [21–25].

A platform based on the Internet of Things and used to monitor water quality will
include a CPU, sensors, and a communication module. The system’s processing unit is
a microcontroller; the sensor module controls the data collection, and the access point
transmits the data [26]. Through the use of Wi-Fi modules, the data that has been gathered
may either be sent to a cloud storage service to undergo additional analysis or to an
interface suitable for personal computers and smartphones [27]. There are a few different
framework designs, some of which recommend installing solar panels as the system’s
primary electricity source.

The research that has been published contains a large number of different concepts
that have been offered for Internet of Things-based groundwater pollution monitoring. The
IoT-based framework focuses on portability, overall efficiency, completeness of data, cost-
effectiveness, and communication capacity of the component [28,29]. IoT is used to observe
chemical or physical changes in rivers and streams to determine pollutant concentrations
in real-time and detect hydrologic variation in coastal and marine ecosystems for early
warning platforms and quick response to hazardous algal bloom occurrences. Developing
nations such as Nigeria utilize the Internet of Things to monitor the aquatic environment,
groundwater, rain, and commercially accessible water to guarantee that rural communities
can access potable water.

This study presents a technique for identifying the substantial effect of non-point
sources, and the implications of micronutrients and confinement are also assessed. An
aquatic environment surveillance network shows a sensor network for detecting alkalinity,
soluble oxygen, conductivity, and humidity [30]. A remote monitoring system utilizing
Zigbee technology is presented for lowering expenses and maximizing adaptability; this
system delivers water-related data to the user. A system that employs temperature and pH
sensors to check water quality is presented for the autonomous observation of artificial lake
water [31]. In this investigation, the relevance of applying the Zigbee module for remote
agriculture monitoring is examined, as is the low power consumption of Zigbee during
wireless data transfer. A remote surveillance communication approach is formulated to
track how water is distributed. This model uses the flat-earth double-ray framework to
prove that it tends to work.

The pH level sensor, DO sensor, and GPS focus specifically on groundwater resources
as part of a cutting-edge system for measuring and tracking water quality [32]. The
temperature, phosphate concentration, oxygen dissolvability, resistance, pH, opacity, and
water depth are just a few parameters that may be monitored using Intelligent Coast
Multi-Sensor Technology [33]. A framework is presented for evaluating freshwater using
the Internet of Things (IoT) in a real-world environment. To assess the marine systems
in real-world systems, a pH sensor coupled with a Wi-Fi mode is used [34]. In addition,
long-range communication is presently used in various applications regularly because it
offers low-power, long-range, and dependable communication throughout sending data
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from edge devices to the server. The recommended system can carry out the long-range
IoT water quality evaluation technique without causing any data loss; the platform focuses
on using various sensors, including those that measure pH, humidity, sedimentation, and
conductivity.

Researchers came across this information in a literature review when looking into the
different techniques for evaluating the quantities of water quality criteria. The researchers
from [35] used web scraping to measure the many factors that make up the water’s qual-
ity. They used a YSI 600 module and Raspberry Pi to measure these parameters. The
researchers only found instances of individuals utilizing Internet of Things equipment to
run a Raspberry Pi with a few sensors [36]. The researchers devised an innovative approach
for assessing water quality and created a packaging system with a microprocessor and other
sensors in this investigation. They used innovative, one-of-a-kind sensor components that
monitor and broadcast real-time information. The sensors form a system that, combined
with a Zigbee module, may offer both a visual and an audible depiction of the experimental
measurements in the water [37]. Examining water quality also incorporates computer
vision and neural network techniques. In building models for water quality classification,
the Recurrent Neural Network (RNN) and the Long Short-Term Memory (LSTM) artificial
neural techniques are used.

The remaining sections are categorized as follows. In Section 2, we briefly cover
some pertinent literature. Section 3 describes the proposed methodology, Chlorine level
Assessment and Prediction in Water Monitoring System, using a fuzzy set specifically using
a decision tree algorithm. In Section 4, the data processing workflow of the proposed model
is detailed. In Section 5, the results and discussion are illustrated. Section 6 concludes with
the conclusion.

3. Proposed Model

In IoT-enabled ML for Water Quality Assessment, we use a temperature sensor, flow
sensor, chlorine sensor, and solenoid valve. These sensors are integrated into a microcon-
troller such as the Raspberry PI 3 model, which then transmits the sensor readings to the
Thing Speaks cloud service. After the data have been compiled in the cloud service, an
appropriate machine learning model will be utilized to anticipate the amount of chlorine
content, in addition to a forecasting strategy, essentially a subdivision of predictive model-
ing. The suggested model will primarily be used to measure and analyze the current level
of pollution as well as to estimate what that level will be in the future.

Chlorine level prediction using machine learning involves building a model that can
accurately predict the amount of chlorine in a sample based on various inputs as mentioned
in Figure 1. The process typically involves collecting data on chlorine levels and various
factors that may affect chlorine levels, such as temperature, pH, and other chemicals. Once
the data are collected, the next step is to preprocess the data to remove any outliers or
missing values and to normalize the data if necessary. The preprocessed data are then
divided into training and testing datasets. The machine learning algorithm is then trained
using the training dataset. This involves adjusting the model parameters based on the
input data so that the model can accurately predict the chlorine level for a given set of
inputs. The model is then tested on the testing dataset, and the accuracy of the predictions
is measured. If the accuracy is not satisfactory, the model may need to be adjusted, or a
different machine-learning algorithm may need to be used. Once the model is optimized, it
can be used to make predictions for new data points, providing accurate estimates of the
chlorine level in a sample. This information can be used to make informed decisions about
water treatment processes and ensure water is safe for consumption.
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Figure 1. Proposed water quality analysis framework.

Temperature can affect the solubility of the chlorine compounds in the water and the
reaction kinetics between the chlorine and other substances in the water. For example,
warmer temperatures can increase the solubility of chlorine compounds and can speed up
the reaction kinetics, leading to a higher chlorine aggregate ratio. It is important to monitor
the groundwater’s temperature and consider it when assessing the chlorine aggregate
ratio. This can help ensure that accurate predictions are made and that the water quality is
properly maintained.

3.1. Phase 1

Temperature is one factor that impacts the chlorine aggregate ratio in groundwater.
The chlorine bulk decay rate in drinking water is one factor that is predominantly influenced
by temperature, and the temperature sensor is used to determine this rate. The chlorine
sensor detects the amount of chlorine dissolved in the water utilizing PPM (Part Per
Million). We have ranged the value from 0 to 10 PPM in the proposed model. Where values
4, 5, 6 come under moderate chlorine content, values 7, 8, 9, 10 come under high chlorine
content, and values 1, 2, 3 come under low chlorine content, respectively. The PPM data
are transmitted to the sensor hub in real-time, as was just indicated (Raspberry PI). The
real-time PPM values from the sensor hub are also sent to the Data Acquisition Centre
(DAC) via a communication network.

3.2. Phase 2

Fuzzy logic can be used to predict chlorine levels in the water. Fuzzy rules describe the
relationship between input variables (e.g., temperature, pH, etc.) and the output variable
(chlorine level). These rules can be combined to form a fuzzy inference system, making
predictions based on input data. The accuracy of the predictions depends on the quality
of the fuzzy rules and the accuracy of the input data. It is important to validate the fuzzy
inference system using data to ensure accuracy.

In phase two, fuzzy rules are employed to calculate the amount of chlorine in the
drinking water. If the range of chlorine content is less, another beach is required; if the
scope of the chlorine value is moderate or less, another beach is not required to be added.
Further, through a fuzzy algorithm, the determined chlorine range sends the signal to the
solenoid valve. The solenoid valve is an electromechanical component that opens up the
beach or chlorine in the water tank, as mentioned in Figure 2. Further, flow meters are used
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to calculate the volume of chlorine, measured in liters, that has to be decomposed in the
storage tank. A solenoid valve is used to make the connection to the flow sensor.
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Figure 2. Proposed chlorine content assessment and recommendation in drinking water using ML.

The decision tree algorithm is an intuitive and interpretable method for making
predictions. It can also handle missing data and is not sensitive to outliers. However, it can
become complex and overfit the data if fewer branches and input variables exist. To address
this issue, decision trees can be pruned by removing branches that do not significantly
improve the accuracy of the predictions. The pruning process helps reduce the model’s
complexity and improve its accuracy. The decision tree algorithm is a popular choice for
chlorine level assessment and prediction in water monitoring systems due to its ease of
use and ability to handle complex data. However, it is important to validate the model’s
performance using appropriate metrics to ensure that the predictions are accurate.

The chlorine level is predicted based on two input variables: temperature and chlorine
values. Similarly, chlorine sensors measure the amount of chlorine dissolved in the water in
the buffer. Since multiple sensors are involved in measuring different values for a particular
time interval, it leads to fuzzy rules. The workflow diagram for predicting chlorine levels
using fuzzy rules is shown in Figure 3.
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The initial step is fuzzification, which converts the measured chlorine level value from
the sensor as input and converts it to linguistic variables of fuzzy sets, which consists of
5 tuples as Very High, High, Medium, Low, and Very Low. Fuzzy rules are formed and
evaluated by Fuzzy Associative Mapping (FAM), which is illustrated in Table 1.

In the system model, we take temperature and chlorine as two input variables and
map them into a matrix format in two-dimensional matrix form, which is shown in Table 2.
Chlorine is represented column-wise, and temperature is represented row-wise. Fuzzy
Associative Mapping reduces the rate of false negatives during the prediction phase.
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Table 1. Sample rule for predicting the water quality.

Rule 1: If (Temp == high) AND (Chlorine == low) THEN (water == non-Useable);

Rule 2: If (Temp == high) AND (Chlorine == moderate) THEN (water == Useable);

Rule 3: If ((Temp == low) AND (Chlorine == high) THEN (water == Partial Useable);

Table 2. Fuzzy Associative Mapping for water quality prediction.

Chlorine
Temp Very High High Moderate Low Very Low

Very High Partial Useable Non-Useable Non-Useable Non-Useable Non-Useable

High Partial Useable Partial Useable Non-Useable Non-Useable Non-Useable

Moderate Useable Useable Useable Useable Useable

Low Partial Useable Non-Useable Non-Useable Non-Useable Non-Useable

Very Low Non-Useable Non-Useable Non-Useable Non-Useable Non-Useable

4. Data Processing Workflow

Several challenges must be addressed when using the proposed model to predict
chlorine levels in water monitoring systems, including the data quality and availability;
the machine learning algorithms require large amounts of accurate data to train the model.
Ensuring that the data collected is high quality and available in sufficient quantities is
crucial for developing an accurate prediction model. Furthermore, feature selection is
important to identify the key factors that affect chlorine levels in the water, as these will
become the input variables for the prediction model. Careful selection of the input variables
is crucial for obtaining accurate predictions. Additionally, a simple model may not capture
the complex relationships between the input variables and chlorine levels. At the same time,
a too complex model may overfit the data, leading to poor predictions for new data. Finally,
model evaluation is important in evaluating the model’s performance using appropriate
metrics such as mean absolute error and root means square error or R-squared. This helps
to determine the predictions’ accuracy and identify areas for improvement.

The time of observation of the problem statement and combination of elements for
the water quality domain must be comprehensive. Consider the chlorine level data set,
which includes all qualities and characteristics of the water quality data set. It facilitates
feature engineering and enables the selection of the best feature. Employ pre-processing
techniques such as data cleaning to eliminate erroneous or inconsistent data or to fill in
missing data in a variety of ways, for as by discarding missing values, filling them in
indiscriminately, or predicting incomplete data. Finally, remove unnecessary entries from
the pre-processed data. Pearson, spearman, and Kendall may correlate target class labels
and characteristics. Correlation affects the model’s performance. Dimension reduction
is performed on the pre-processed dataset to extract vital elements/attributes from the
current dataset. It reduces the dimension via matrix factorization. Feature extraction and
feature selection are used to decrease the features in the following ways: feature extraction
generates new features from current ones.

The feature selection technique picks a subset of the current method. The aim is to
eliminate inappropriate and noisy information, minimize computing time and complexity,
and performance enhancement of machine learning algorithms. Three types of feature
selection methods are distinguished. Filter method is expandable and performs quicker
before classification; moreover, a Black Box Evaluator is utilized to determine the optimum
subsection of features. It is more efficient than the filter technique. Filter technique is used
more often than wrappers, which is quite costly. Finally, the hybrid approach bridges the
gap between the filter and wrapper methods. The filter will provide the wrapper with a
reduced feature set, allowing the wrapper to grow to more enormous datasets efficiently.
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The hybrid strategy, which merges the wrapper and filter approaches, utilizes the ranking
information provided by the filter method.

Model validation is essential in chlorine level assessment and prediction in water
monitoring systems. The purpose of model validation is to assess the accuracy of the
model’s predictions by comparing its predictions with the actual chlorine levels in the
water. As mentioned above, the most common model validation approach divides the
data into two parts: a training dataset and a testing dataset. The training dataset is used
to train the proposed algorithm, while the testing dataset is used to validate the model’s
performance, as mentioned in Figure 4. The model is trained on the training dataset, and
its predictions are compared with the actual chlorine levels in the testing dataset. This
comparison calculates metrics such as recall, precision, and F-score. These metrics give a
quantitative measure of the accuracy of the predictions and can be used to compare the
performance of the proposed model.
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5. Result and Discussion

The performance evaluation of the proposed framework for determining the level
of chlorine substance is focused on obtaining accurate classification on metrics such as
recall, precision, and F-score, which are perhaps the most prominent in the classification
algorithm. This is done so that the level of chlorine substance can be accurately determined.
One way to evaluate how well a machine learning framework performs its job is to look
at how accurately it makes optimistic predictions. This particular metric is referred to as
precision. The ratio of the number of accurate forecasts, also known as true positives, to
the maximum population of precise predictions, also known as pessimistic predictions, is
called precision. This total number considers the number of correct predictions and false
positives. Another essential measure is recalled, which refers to the portion of a class’s
samples that a model adequately predicts. It is defined as the proportion of samples.

One of the most common metrics in machine learning algorithms is the F1 score. This
score is the modulation index of the provided accuracy and recall values. The proposed
water quality algorithm has proven to be effective in comparison with KNN and SVM,
where recall is 90%, the precision value is 92%, and the F-score value is 89%, respectively,
as mentioned in Figure 5.
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Figure 5. Performance analysis—Recall, Precision, and F-score.

The thresholds are the separate probability cut-offs used in binary classification to
discriminate between the two groups. By using the idea of probability, it finds out how
well a model distinguishes between the paths. The proposed model ROC is persuaded
towards an actual positive rate with AUC values of 0.9108, which is effective compared to
SVM (Support Vector Machine) and KNN (K-Nearest Neighbor), respectively, in Figure 5.
The region underneath the receiver operating characteristic (RoC) curve, often known as
the coefficient of determination (AUC), is an additional standard measure as mentioned in
Figure 6.
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Figure 6. Performance analysis—ROC Curve.

The fusion performance within a range of 10 to 30 m evaluation and estimation of the
suggested model is Centered on Perception, Precision, Accuracy, and Matthew Correlation
Coefficient (MCC). In addition, we calculate the F-Curve, the P-Curve, the R-Curve, and the
PR-Curve. Ultimately, we analyze the performance comparison based on metrics such as
training dataset vs. box loss, obj loss, cls loss, and other similar metrics. The recommended
approach’s accuracy may now be evaluated by dividing the number of actual positive
(+VE) forecasts by the total number of optimistic (+VE) predictions, as seen in Figure 7.
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Figure 7. Overall performance indicators.

6. Conclusions

The chlorine level must be monitored regularly to ensure that it is within safe limits,
neither too low to be effective nor too high to cause health problems. Accurate assessment
and prediction of chlorine levels in water monitoring systems are essential for controlling
and maintaining the water treatment process, detecting and addressing any deviations in
water quality, and ensuring compliance with regulations and standards. Regular monitor-
ing of chlorine levels also helps water utilities to optimize their water treatment processes
and reduce costs associated with excess chlorine addition. The quality of the water’s
chlorine level must be checked in real-time since the objective of the proposed technique is
to provide a continuous supply of water that may be used safely. The measurements of
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chlorine concentration that are stored in the sensor hub are kept constantly up to date by the
recommended model. In addition, these data are sent across a communication environment
for data analysis. Specifically, a fuzzy algorithm analyzes chlorine levels inside drinking
water and the proportion of residual chlorine over time. In addition, a performance study
of the proposed framework is undertaken to evaluate the current model’s performance for
predicting the quantity of chlorine material using metrics such as recall, accuracy, F-score,
and ROC. Consequently, the accuracy of the suggested model is much greater than that of
existing approaches.
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