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Abstract: Sharpness is an important factor for image inpainting in future Internet, but the massive
model parameters involved may produce insufficient edge consistency and reduce image quality. In
this paper, we propose a two-stage transformer-based high-resolution image inpainting method to
address this issue. This model consists of a coarse and a fine generator network. A self-attention
mechanism is introduced to guide the transformation of higher-order semantics across the network
layers, accelerate the forward propagation and reduce the computational cost. An adaptive multi-
head attention mechanism is applied to the fine network to control the input of the features in order
to reduce the redundant computations during training. The pyramid and perception are fused as the
loss function of the generator network to improve the efficiency of the model. The comparison with
Pennet, GapNet and Partial show the significance of the proposed method in reducing parameter
scale and improving the resolution and texture details of the inpainted image.

Keywords: image inpainting; generative adversarial network (GAN); two-stage transformer; adaptive
multi-head attention mechanism; loss function

1. Introduction

Image inpainting originated from manual trimming in the Renaissance, which repairs
the damaged image by filling the defective areas with adequate information. It infers the
unknown area from known information such as structural, statistical, semantic, etc. [1–3].
Image inpainting can be applied to image super resolution, obstruction removal and
damaged image repair, and has been a popular research area in computer vision and digital
image processing.

Traditional image inpainting algorithms usually attack the image blurring or incom-
plete information caused by various types of noise during image acquisition. They can
be divided into the structure-based methods, the texture-based methods and the sparse-
representation-based method [4–6]. The PDE is the core of structured image inpainting,
also known as diffusion image inpainting. The PDE equation method [7] was first proposed
by Bertalmio et al. to perform diffusion-based restoration of images in pixels. However,
the consistency between the local and the global semantics in defective area is ignored,
not to mention the consideration of the constraint of the high-level semantics. Therefore,
this method is only suitable for restoring pictures with minor local defects, while texture
misalignment often occurs for large areas of defects. Texture-based image inpainting algo-
rithms [8,9] search for the optimal texture pixels in intact areas and fill them to the defective
area. This method can better preserve texture and structure information in images. The
image-block-based Criminisi algorithm [10] proposed by Criminisi greatly improves the
speed of restoration by searching for the target pixel blocks around the defective area.
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Sparse representations more effectively express known information in image inpainting
algorithms. Guleryuz et al. obtained the best estimation of the defect area by incorporating
an adaptive technique [11,12] into the sparse reconstruction algorithm. However, regardless
of whichever traditional image inpainting method is applied, the restoration of defective
images with large missing areas is unsatisfactory. Thus far, they have mainly been applied
to low-resolution images. The quality of the restored images cannot meet the demanding
needs due to the complexity of damaged images and the inherent ambiguity of methods.
The traditional methods encounter a major challenge, especially for high-resolution images.

With the rapid development of deep-learning technology recently, the image inpainting
network has much ameliorated the long-standing deficiencies of traditional approaches and
significantly improved the output quality [5]. The main aspect here is to extract the relevant
contextual information from various receptive fields. Since Goodfellow et al. proposed
the GAN model [13,14] in 2014, it [15–17] has become one of the mainstream methods for
computer image processing. It has made many achievements in the field of image inpainting
and greatly promoted the development of this technology. GAN consists of a generation
model and a discrimination model. The discrimination is essentially a classifier that
distinguishes between real pictures and fake pictures generated by the generator network,
whose function is to convert the input defective image into the output restored image. As
GAN methods suffer from unstable network training and model convergence, a series of
improvements have been proposed. DCGAN [18,19], proposed by Radford et al., optimizes
the learning representation performance by combining a deep convolutional network and
GAN. The pooling layer of DCGAN is replaced by strided convolution to optimize the
learning characterization performance of GAN. In addition, partial pooling layers are
also replaced by transposed convolutions so that the entire network can be differentiated.
Moreover, batch normalization can improve the model performance. However, for images
with large defect areas, it is not effective.

The early use of attention mechanisms [20,21] in image inpainting was inspired by
the traditional idea of fast matching. Yan et al. introduced shift connection, based on the
UNet structure [22,23], to move the priori image information into the decoding network
layer holding the corresponding features so as to complete the missing information, which
improves the image inpainting capability. Yu et al. formally introduced the attention mech-
anism [24] to enhance image inpainting by finding the most similar feature blocks from the
background and foreground image by convolution to search for feature matching blocks at
a distance. However, current computer memory and processing resources are limited, and
existing deep-learning algorithms can only perform restoration of low-resolution images.
Zeng et al. proposed a high-resolution image inpainting technique that includes an iterative
restoration model with a feedback mechanism [25]. It divides the inpainting task into two
processes: low-resolution image inpainting and upsampling. Attention networks are also
incorporated, using a guided upsampling network of attention mechanisms to calculate
the feature similarity of low-resolution image feature blocks and guide the reconstruction
process. The above attention-mechanism-based approach improves the performance of the
network and proves the effectiveness of the attention mechanism. The attention mechanism
can effectively enhance the conversion of higher order image semantics across the network,
so that the overall structure is more sensitive to the restoration of detailed image texture.
The Transformer model [26,27] was proposed in 2017 by the Google machine translation
team [28], which has an outstanding performance in the field of natural language pro-
cessing. The full-attention mechanism model is used by the Transformer to replace the
traditional CNN [29–31] simply through a self-attention mechanism and a forward neural
network. The Transformer increases the learning capability of the model while reducing
the number of computational parameters, which makes its use in high-resolution image
inpainting a promising topic.

The increase in Internet transmission capacity and wide use of mobile cameras result in
an increasing demand for high-resolution images and videos. However, traditional image
inpainting methods for high-resolution images often yield a limited result. Although there
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has been a proliferation of techniques in this field recently, many methods still suffer from a
lack of model edge consistency and unclear output images. In this work, we aim to produce
sufficient edge consistency and high-quality images. The main contribution of this work are:

(1) We present a high-quality image inpainting network derived from Transformer, which
is a two-stage generator model based on the encoder-decoder network.

(2) We apply the adaptive multi-head attention mechanism to the fine network to control
the input of the features in order to reduce the computation overhead.

(3) We fuse the pyramid and perception as the loss function of the generator network to
improve the overall efficiency.

With the involvement of the adaptive multi-head attention mechanism, the computa-
tion is reduced, and the forward propagation is significantly accelerated. Pyramid loss and
perceptual loss are fused to improve model learning and speed up model restoration. After
a comprehensive experimental comparison, the improved algorithm has better restoration
performance. The edge and semantic information is more consistent and the resolution of
the restored image is sharper.

The paper is structured as follows: The architecture of GAN, self-attentive mechanisms
and image inpainting are presented in Section 2. The adaptive multi-head self-attention
mechanism is presented in Section 3. The network structure of the method and the loss
functions of the paper are also mentioned. Section 4 is devoted to the analysis of the
experimental part. Section 5 concludes the paper as a whole.

2. Related Work
2.1. GAN

The generative adversarial network is trained to reach a Nash equilibrium state.
After the generator is acquired, the defective images are fed into the generator to get the
restoration results. The purpose of the generator is to turn the input defective image into
a restored complete image. The generated fake images are identified and distinguished
from the real intact images by the discriminator. Either 0 or 1 is assigned to the fake image
or the ideal output image, respectively. GAN produces more realistic images, which are
widely used in the field of CV [32–34]. The generators and discriminators of the network
are trained by separate loss functions.

The loss function of the discriminator network is shown below.

max
D

V(D, G) = Ex∼pdata(x)[ln(D(x)) + Ez∼pinput(z)[ln(1− D(G(z))]] (1)

where E denotes the expectation, pdata(x): the true sample, G: the generator network, D:
the discriminator network and pinput(z): the input to the generator network.

The adversarial losses of the generating network are shown below.

min
G

max
D

V(D, G) = Ex∼pdata(x)[ln(D(x)) + Ez∼pinput(z)[ln(1− D(G(z))]] (2)

The generator is trained with a small expectation of the loss function, while the
discriminator has a large one. GAN is trained in alternative iterations, where the objective
functions for the discriminator and the generator are also optimized separately.

The objective function of the generator is shown below.

min
G

V(D, G) = Ez∼pinput(z)[ln(1− D(G(z))] (3)

First, the discriminator is trained. During its training the value of D(x) is as close to
1 as possible, while the value of D(G(z)) preferably converges to 0. After the discriminator
parameters have been updated, the discriminator parameters are frozen and the generator
is trained. For the training process of the generator, the D(G(z)) should be close to 1.
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2.2. Image Inpainting

In image inpainting [35,36], the information in the filled and intact areas of the image
should be texturally and semantically consistent to enable a satisfactory restoration. The
input to GAN is generally a defective image and a 0–1 mask to distinguish between
defective and intact regions. A U-shaped encoder-decoder network with a patchwork
structure is used by the generator to pursue consistency between the input and output
image sizes. As shown in Figure 1, feature output by each layer captures the multi-scale
feature information. A loss function is applied to improve the final output by adjusting the
output of each layer. After iterative training, the final image restored by the generator will
be highly similar to the real image. Furthermore, guide the transmission of higher-order
semantics across layers should be guided by incorporating the attention mechanism, which
can reduce information loss and semantic bias during the computation.
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2.3. Self-Attentive Mechanism

Inpainting is obviously an ill-posed problem and hence is impossible without some
assumptions about the statistics of images. It is also a precise statistical inference prob-
lem. Computer image inpainting is a process of image repair using known and a prior
information in an image. The self-attention mechanism takes each pixel in the feature map
as a random variable and calculates the covariance between all pixels. It can enhance or
weaken the value of each predicted pixel according to its similarity with other pixels in
the image, respectively. Similar pixels are used in training and prediction, and dissimilar
pixels are ignored. This process requires that the semantics of the image inpainting results
match the original image. The same is required for the texture consistency and edges of the
image. This is a complex image-processing task. This requires the learning of deep-level
features and the excellent stability of the network. Since generators consisting of general
CNN sometimes do not learn sufficiently, the models can become quite complex when
meeting high-information demand. Therefore, the learning stability of the neural network
is strengthened by adding a self-attentive mechanism in this work.

The self-attentive mechanism [37] is a modification of the attention mechanism, which
is less dependent on external information and can better capture the internal relevance
of data features. The self-attentive mechanism consists of three parts: Q, K and V. Q
represents the query quantity of the input model, K represents the reference quantity with
high similarity to Q and V denotes the output content information corresponding to K.
Depending on the processing task, the information stored in each part is different. In image-
processing tasks, intrinsic information image features are used for attention interaction
and the original feature map is usually mapped to Q, K and V. As shown in Figure 2, the
correlation weight between Q and K are calculated and normalized using softmax. The
same operation is performed for V and the output is obtained by superimposing it with the
original input.
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2.4. Pyramid Loss

Pyramid loss [38] is a loss-calculation method proposed by Zeng et al. in 2019. The
final output is obtained by correcting the output of each layer. First, the feature information
from each layer of the U-shaped hop network decoder is collected, and the final ground
truth results are downsampled separately to calculate the L1 loss [39] and superimposed to
obtain the final pyramid loss. The calculation equation is shown below.

Lpd =
L−1

∑
l=1

∣∣∣∣∣∣xl − h(ϕl)
∣∣∣∣∣∣

1
(4)

where l represents the output of layer l of the U-shaped network, xl represents the down-
sampling of ground truth to the same dimensions as the output of layer l, h represents
the 1 × 1 convolution of ϕl decoded into RGB images and Lpd is the result of an L1 loss
calculation.

2.5. Perceptual Loss

Perceptual loss is a loss function proposed by Justin Johnson et al. [40] in the style-
conversion task. Now, it is also widely used in tasks such as image inpainting and super-
resolution. First, the loss of low-level features of pixel colo41r and edge are calculated. The
potential features are extracted by the convolutional layers to obtain features similar to
human perception. The features obtained by convolving the real image, typically extracted
using a VGG network, are compared with the convolved features of the generated image,
so as to keep the consistence of the content and high-level global structure information;
then the losses are calculated.

The feature reconstruction loss function for perceptual losses is calculated as follows:

Lj = ‖Ψ(ŷ)−Ψ(y)‖2 (5)

where Ψ denotes the pretrained network model, ŷ indicates the generated restoration image
and y denotes the original defective image. After pretraining, the network extracts the
semantic information of the original image and the generated image, and the perceptual
loss is obtained by calculating the two norms at the corresponding positions. Reducing the
perceptual loss can effectively improve the training performance of the model.

3. Methodology
3.1. Adaptive Multi-Head Attention Mechanism

The self-attention mechanism can be treated as an interaction between different forms
of the input vector in a linear projection space. The multi-head attention mechanism [41]
creates projection information on the same input in several different projection spaces.
The projections of the input matrix in different spaces are stitched together to enable
the collection of features at multiple dimensions and directions. As shown in Figure 3,
Value, Key and Query are fixed single values. There are three groups of both linear layers
and scaled dot product attention units. This means that the input will be projected in
3 feature spaces. Finally, different weight coefficients are assigned to different self-attention
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mechanism heads to concatenate the projection results together for result integration.
However, the feature extraction method changes for different heads. Because of the decay
of the attention features, the weight of the head is changed during the learning process
of the model. The magnitude of change varies greatly for different heads. Therefore, the
adaptive multi-head attention mechanism can adapt to the changes in weights generated
by the model during the learning process. By adding a mask to the features at different
locations, we can effectively lower the computation burden. Training produces a continuous
mask so that the model can apply different weights for different heads, which reduces the
computational burden and also allows different features to be learned.
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The Softmask function is shown below.

mz(x) = min[max[
1
R
(R + z− x), 0], 1] (6)

where mz(x) represents the function of the adaptive mask, z is the given attention weight,
R is a hyperparameter that controls the adaptive mechanism and x is the input tensor.

Therefore, the formula for calculating the attention weight is as follows.

atr =
mz(t− r) exp(str)

t−1
∑

q=t−s
mz(t− q) exp(stq)

(7)

where atr represents the attention weight formula, Str represents the result of the self-
attention mechanism before self-adaptation and t and r represent the feature information
used to calculate similarity. Stq represents the similarity score calculated at t and q.

The formula of str is shown below.

str = xt
TWq

T(Wkxr + pt−r) (8)

where Wk and Wq are the k, q feature matrices, respectively, and pt−r is the embedding
result for the relevant position.

3.2. Network Structure Based on Transformer

The network structure proposed in this study is shown in Figure 4. The network
includes a generator and a discriminator, where the input of the generator is a defective
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image and a binary mask of the defective area. The two-stage restoration network is used,
which is divided into rough network and fine network. Rough network can generate
roughly restored images, and the filled content is roughly consistent with the intact area.
However, there are some flaws in the texture and semantic details of the image. The input
of the fine network is composed of the padding content of the rough network for the defect
area and the original defect image. Fine networks can predict more detailed content in areas
of image defects. The rough network consists of a convolutional layer and a self-attention
mechanism layer. First, the defect image and the mask binary image are the input data
to the network. The layer of self-attention mechanism in rough network can guarantee
the preservation of useful information across layers. The fine network is a combination
of transformer and convolution layers. First, the image and mask will pass through the
position embedding layer for information embedding at the corresponding location. After
the transition of four-dimensional image information to 3D features, a compression of the
feature information is performed by downsampling convolution. The transformer layer
computes the similarity between the features and attaches an adaptive mask to them to
realize the dynamic multi-attention mechanism. The redundant calculation of the model is
reduced. The last layer in the model is an embedding input. The feature map with position
information is parsed into image features, and the number of layers of rough network
is less than that of the fine network. In comparison, the span of up and down sampling
between each two layers of the rough network is larger.
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The discriminator is a full convolutional network consisting of five convolutional
layers. Each convolutional layer is immediately followed by a normalization layer and
finally by an activation layer. The role of the discriminator is to distinguish between the
generated fake ones and the original true intact image, which is essentially a classification
network. The resulting low-quality restored images are marked as false during the training
process. The iteration process guarantees that the restored images are close to the real
original image in terms of texture and content.
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3.3. Loss Functions

The loss function is a key component whose choice determines the learning efficiency
and direction of the model. It has three parts: the loss function of discriminator, the coarse
network and the fine network. The loss function of the discriminator is the MSE loss
function. In the generator loss, the L1 loss was chosen by the rough generative network
because of the feature that L1 loss can increase the stability of the model learning process.
The loss function of the fine generative network consists of four components, including
perceptual loss, pyramidal loss, adversarial loss and L1 loss. The pre-trained VGG-19
network is responsible for extracting the higher order information and calculating the
perceptual loss. The perceptual loss is calculated as shown below.

Lj =
1

Cj ∗ Hj ∗Wj
||Vj(Ŷ)−Vj(Y)||22 (9)

where Cj, Hj, Wj denote the number of feature channels, feature length and width of the jth
layer feature Y, respectively. Vj denotes the pre-trained VGG19 model.

The overall loss function of the generator network is shown below.

Lg = αLc + βLr (10)

where Lc denotes the rough generator network losses, while Lr represents the losses of the
fine network. α and β are the parameters given to adjust the weights of each loss function
in the overall loss.

The loss function of the coarse network is shown below.

Lc = γL1 (11)

where γ is the parameter given to adjust the corresponding weight.
The loss function of the fine network is shown below.

Lr = δLa + εLp + ηLpd + λL1 (12)

where La is the antagonistic loss, Lp is the perceptual loss and Lpd is the pyramidal loss. δ, ε, η
and λ are the parameters given to adjust the weights of each loss function in the overall loss.

4. Experiments
4.1. Experimental Settings

The dataset used for the experiments in this work is the public dataset CelebA [42], and
all experiments were conducted using the selected training data on CelebA. The selected
training set is 1500 and the test set is 500.

The model is compared with Partial [43], Pennet [38] and GapNet [44]. Partial is the
use of partial convolutions, where the convolution is masked and conditioned on only
valid pixels by renormalization. Pennet is a pyramid context encoder network for image
inpainting by deep generative models. A novel neural network for point cloud, dubbed
GapNet, learns local geometric representations by embedding graph-attention mechanisms
within stacked multi-layer-perceptron layers.

In order to objectively evaluate the experimental results, we use the peak signal to
noise ratio (PSNR) and structural similarity (SSIM) [45] metrics.

4.2. Quality Assessment

In the same experimental setting, the ablation experiments of the algorithms in this
paper are essential and the results are shown in Figure 5.
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From the comparison graph of the ablation experimental results in Figure 5, it can be
found that the four superimposed items of two-stage transformer, adaptive multi-head
attention mechanism, pyramidal loss and perceptual loss are the most effective parts
and generate the highest-resolution restored images. The two-stage transformer and the
adaptive multi-head attention mechanism approaches lack perceptual loss and pyramidal
loss, respectively. Some colour flaws were created in the restored parts. The other combined
approach has an increased computation of redundant information due to the lack of an
adaptive multi-head attention mechanism. Therefore, the details of the partial restoration
from the model do not match the semantic information and some colour defects are present.
When all transformer layers in the restoration model are removed, the resulting non-
transformer bilayer networks can obtain the perceptual loss and pyramidal loss. The lack
of a full-attention mechanism model transformer and a multi-head attention mechanism
results in poor repair results where pixel-level imperfections are present.

In the same experimental environment, the method of this paper was compared with
Partial, Pennet and GapNet on the same set of test images, and the experimental results are
shown in Figure 6.

As shown in Figure 6, the experimental results of all methods performed well in the
restoration of semantic information. Among them, the overall restoration and clearness
of Partial’s is not as good as others. With regard to edge consistency, the gap between the
processing results of Pennet compared with GapNet and the proposed method is large. The
difference in colour and semantic information between the restored and intact areas of the
Pennet creates a distinct edge. However, the edges of the defective regions of GapNet and
our method are not obvious. The proposed method incorporates an adaptive multi-head
self-attentive mechanism with the involvement of pyramidal and perceptual losses. Thus,
the model reduces the computation of redundant information. The model focuses more
on the generation of semantic information. In terms of edge consistency of the restoration
results, our method outperforms GapNet. Regarding face details, the method proposed in
this paper uses a two-stage network structure and the resolution quality of the image has
strong performance compared with the other methods. Other methods do not highlight
the details of the face, whereas the results from ours reveal detailed information such as
wrinkles on the face.
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4.3. Quantitative Analysis

The algorithm reduces the model’s computation of redundant information through an
adaptive multi-head self-attention mechanism. This boosts the calculation and alleviates
the edge inconsistency arising from the model restoration results, while improving the
model’s restoration capability for semantic information. The transformer-based two-stage
network enables the model to generate sharper images and enhances the quality of the
restored images. Incorporating pyramidal loss and perceptual loss enhances the learning
performance and efficiency of the model. The comparisons are implemented on the same
set of test images. The experimental data are shown in Tables 1 and 2. The analysis of the
experimental data shows that the algorithm in this paper is preferred in PSNR and SSIM
metrics compared with other methods.

Table 1. PSNR comparison result.

Network Model MAX PSNR/dB MIN PSNR/dB AVE PSNR/dB

Partial 30.75 28.86 29.12
Pennet 32.75 30.86 31.72
GapNet 34.27 32.37 33.55

Ours 37.38 34.98 36.13

Table 2. Comparison of SSIM metrics.

Network Model MAX SSIM/% MIN SSIM/% AVE SSIM/%

Partial 69.61 62.42 68.23
Pennet 78.02 73.56 75.75
GapNet 90.08 85.01 88.13

Ours 94.96 89.66 92.09

Table 1 shows the results of the PSNR metric evaluation for various image inpainting
contents. Our method has the highest scores in both MAX PSNR and AVE PSNR com-
pared with other methods. Our method improves by 3.11 dB (9.0%) and 2.58 dB (7.6%),
respectively, compared with the GapNet method. Compared with the Pennet method, the
improvement is 4.63 dB (14.1%) and 4.41 dB (13.9%). This is an improvement of 6.63 dB
(21.6%) and 7.01 dB (24.1%) compared with the Partial method.
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Table 2 shows the results of the experiments on the SSIM evaluation metrics. Our
method also has the highest scores on both the maximum and the mean. In particular,
our method improved by 4.88 (5.4%) and 3.96 (4.5%) on the mean and maximum values
compared with the GapNet method, respectively. Compared with the Pennet method it
improved by 16.94 (21.7%) and 16.34 (21.6%). Compared with the Partial method, the
improvement was 25.35 (36.4%) and 23.86 (35.0%).

A quantitative analysis of the experimental data shows that our method is more
effective than other methods of restoration. The restoration performance is stable and there
is not much difference between the maximum and minimum values. Therefore, the image
inpainting model in this paper has stronger and more stable restoration performance.

Table 3 shows the results of the PSNR and SSIM metrics analysis for the ablation
experiments. The analysis of the experimental data revealed that the best performance
was obtained by the combination of the two-stage transformer, the adaptive multi-head
attention mechanism and the loss function. The highest values were obtained on both
MAX PSNR and AVE SSIM. Compared with the combination of the two-stage transformer
and the adaptive multi-head attention mechanism, the improvement is 1.59 dB (4.4%) and
0.84 dB (2.4%), respectively. Compared with the two-stage transformer and loss function
combination, the improvement is 0.18 dB (0.5%) and 0.86 dB (2.4%), respectively. The
improvement is 4.54 dB (13.8%) and 4.18 dB (13.1%) compared with the non-transformer
two-stage network and loss function combination.

Table 3. Comparison of PSNR metric for ablation experiments.

Network Model MAX PSNR/dB MIN PSNR/dB AVE PSNR/dB

non-transformer two-layer network + loss function 32.84 30.62 31.95
two-layer network transformer + loss function 37.20 34.36 35.27

two-layer transformer + adaptive multi-head attention mechanism 35.79 34.67 35.29
two-layer transformer + adaptive multi-head attention

mechanism + loss function 37.38 34.98 36.13

Table 4 shows the SSIM metrics for the ablation experiments. The combination of the
two-stage transformer, adaptive multi-head attention mechanism and loss function yielded
the highest figures for all metrics. In the maximum and mean values, compared with the
combination of the two-stage transformer and adaptive multi-head attention mechanism,
there is an improvement of 3.87 (4.2%) and 2.82 (3.2%), respectively. This is an increase
of 1.71 (1.8%) and 2.90 (3.3%) compared with the two-stage transformer and loss function
combinations. The improvement is 10.84 (12.9%) and 9.98 (12.2%) compared with the
non-transformer two-stage network and loss function combination.

Table 4. Comparison of SSIM metric for ablation experiments.

Network Model MAX SSIM/% MIN SSIM/% AVE SSIM/%

non-transformer two-layer network + loss function 84.12 79.68 82.11
two-layer network transformer + loss function 93.25 84.97 89.19

two-layer transformer + adaptive multi-head attention mechanism 91.09 84.18 89.27
two-layer transformer + adaptive multi-head attention

mechanism + loss function 94.96 89.66 92.09

Quantitative analysis of the ablation experiments demonstrates that the restoration
results of our model using combination of a two-stage transformer, an adaptive multi-head
attention mechanism and a loss function have a better restoration performance compared
with a method using only some of these.
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5. Conclusions

For the problem of edge consistency and the blurred resolution of image inpainting,
this paper proposes a transformer-based image restoration method with a two-stage gener-
ator restoration network. A self-attentive mechanism in the rough network is used to guide
the transfer of higher-order semantic information across the network. It can effectively
reduce the loss of image information during the transduction process. The improved
transformer model and designed adaptive multi-head self-attention mechanism in the fine
network reduce the number of parameters effectively in the model. The learning ability
of the model and the resolution of the generated images have been improved. The fusion
of pyramidal loss and perceptual loss improves the training performance of the model.
Edge and semantic consistency problems in inpainted images are effectively solved. The
proposed method has obtained good experimental results on CelebA compared with other
methods. The applicability of the proposed method is less prominent on other datasets.
Future work will involve optimizing the current inpainting framework for better perfor-
mance by working on enriching the testing dataset. The developed method will be applied
to other applications in the future.
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